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Within a systematic approach based on dimensionally regularized nonrelativistic quantum electrodynamics,
we derive a complete result for the two-loop correction to order �� /��2�Z��4 for the g factor of an electron
bound in an nS state of a hydrogenlike ion. The results obtained significantly improve the accuracy of the
theoretical predictions for the hydrogenlike carbon and oxygen ions and influence the value of the electron
mass inferred from g-factor measurements.
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I. INTRODUCTION

The g factor of a bound electron is the coupling constant
of the spin to an external, homogeneous magnetic field. In
natural units �=c=�0=1, it is defined by the relation

�E = −
e

2m
��� · B� �

g

2
, �1�

where �E is the energy shift of the electron due to the inter-

action with the magnetic field B� , m is the mass of the elec-
tron, and e is the physical electron charge �e�0�. The matrix

�� ·B� contains the Pauli spin matrices �� and has eigenvalues

±�B� �.
Studies of the free-electron g factor play an important role

in modern physics. Together with the discovery of the Lamb
shift in hydrogen, the observation of the electron magnetic
moment anomaly led to the development of quantum elec-
trodynamics �QED�. After decades of intensive theoretical
and experimental studies, the free-electron g factor provides
one of the most accurate and stringent tests of QED �1�. With
the increased experimental and theoretical precision, it pres-
ently yields the most accurate determination of the fine-
structure constant � �2�.

It has not been until recently that investigations of the
bound-electron g factor came into prominence. As was dem-
onstrated in Ref. �3�, the theoretical value of the bound-
electron g factor can be used for the determination of the
mass of the electron when combined with an experimental
value for the ratio of the electronic Larmor precession fre-
quency 	L and the cyclotron frequency of the ion in the trap
	c,

m = mion
g

2

�e�
q

	c

	L
, �2�

where q is the charge of the ion and mion is its mass. The
accuracy of the best experimental results for light hydrogen-
like ions �4,5� is already below the 1 part per 109 level and is
likely to be improved in the future. According to the recent
adjustment of fundamental constants �2�, these measure-

ments provide the most accurate method for the determina-
tion of the electron mass.

In order to match the experimental precision achieved,
various binding and QED corrections to the bound-electron g
factor have to be calculated. It was found long ago �6� that in
a relativistic �Dirac� theory, the g factor of a bound electron
differs from the value g=2 due to the so-called binding cor-
rections. For an nS state, they are given by

g�0� =
2

3
�1 + 2

E

m
	 = 2 −

2

3

�Z��2

n2 + � 1

2n
−

2

3
	 �Z��4

n3 + ¯ ,

�3�

where E is the Dirac energy. Other corrections to the bound-
electron g factor arise from the QED theory. They were the
subject of extensive theoretical investigations during the last
decade. Accurate calculations of the one-loop self-energy
�7–11�, vacuum-polarization �8,9,12,13�, nuclear-recoil
�14–16�, and nuclear-polarizability �17� corrections have
been carried out. Detailed g-factor investigations have been
performed also for other systems that could be of experimen-
tal interest in the near future, in particular for Li-like ions
�18� and hydrogenlike ions with a nonzero nuclear spin �19�.

The subject of this work is the two-loop QED correction,
which is presently the main source of the uncertainty of the-
oretical predictions for the g factor of hydrogenlike ions. We
present a complete calculation of this correction up to the
order of �� /��2�Z��4. This two-loop correction has already
been addressed in our former work �20�, where an incom-
plete calculation using a photon-mass regularization was pre-
sented and an estimate for the total contribution up to the
order �� /��2�Z��4 was obtained. The present computational
method is based on the dimensionally regularized nonrelativ-
istic quantum electrodynamics �NRQED�, which is a rela-
tively new and very powerful approach for the calculation of
higher-order relativistic and radiative effects. It has already
been successfully applied to several challenging problems:
e.g., to the calculation of the positronium hyperfine splitting
�21� and the ground-state energy of the helium atom �22�.
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II. DIMENSIONALLY REGULARIZED NRQED

As is customary in dimensionally regularized QED, we
here assume that the dimension of the space-time is D=4
−2� and that of the space d=3−2�. The parameter � is con-
sidered as small, but only on the level of matrix elements,
where an analytic continuation to a noninteger spatial dimen-
sion is allowed.

Let us briefly discuss the extension of the basic formulas
of NRQED to the case of an arbitrary number of dimensions.
The momentum-space representation of the photon propaga-
tor preserves its form: namely g
� /k2. The Coulomb interac-
tion is �21�

V�r� = − Ze2
 ddk

�2��d

eik�·r�

k2 = −
Ze2

4�r1−2���4���
��1 − 2��
��1 − �� �

 −
Z��

r1−2� , �4�

where the latter representation provides an implicit definition
of Z� and we have used the formula for the surface area of a
d-dimensional unit sphere:

d =
2�d/2

��d/2�
. �5�

The nonrelativistic Hamiltonian of the hydrogenic system is

H0 =
p�2

2m
−

Z��

r1−2� . �6�

The operator p�2 is well defined in any integer dimension. If
we restrict our consideration to the spherically symmetric
states, p�2 can be continued to an arbitrary real dimension by

p�2 = −
1

rd−1

�

�r
rd−1 �

�r
. �7�

In the following, we will not need the explicit �unknown�
form of the solution of the Schrödinger equation in d dimen-
sions. It will be sufficient to use instead its scaling proper-
ties, which we obtain by introducing the dimensionless radial
variable �:

� = �m��1/�1+2��r . �8�

In atomic units—i.e., expressed as a function of the dimen-
sionless �—the Schrödinger Hamiltonian takes the form

H0 = �2/�1+2��m�1−2��/�1+2��� p��
2

2
−

Z�

�1−2�	 . �9�

We now turn to relativistic corrections to the Schrödinger
Hamiltonian in an arbitrary number of dimensions. These
corrections can be obtained from the Dirac Hamiltonian by
the Foldy-Wouthuysen transformation. In order to incorpo-
rate a part of radiative effects right from the beginning, we
use an effective Dirac Hamiltonian modified by the electro-
magnetic form factors F1 and F2 �see, e.g., Chap. 7 of �23��:

H = �� · �p� − eF1��� 2�A� � + �m + eF1��� 2�A0

+ F2��� 2�
e

2m
�i�� · E� −

�

2
�ijBij	 , �10�

where

Bij = �iAj − � jAi, �11�

�ij =
i

2
��i,� j� . �12�

We use three-dimensional notation here: namely, �i�i
=� /�xi. Formulas for the electromagnetic form factors F1,2
can be found in Appendix A.

Having the Foldy-Wouthuysen transformation defined by
the operator S �see Ref. �24� and �F2�0��

S = −
i

2m
���� · �� −

1

3m2���� · �� �3 +
e�1 + ��

2m
i�� · E�

−
e�

8m2 ��� · �� ,��ijBij�� , �13�

the new Hamiltonian is obtained via

H� = eiS�H − i�t�e−iS �14a�

and takes the form

H� =
�� 2

2m
+ e�1 + F�1�0��� 2�A0 −

e

4m
�1 + ���ijBij −

�� 4

8m3

−
e

8m2 �1 + 2����� · E� + �ij�Ei,� j��

+
e

8m3 ��1 + ��p2�ijBij + 2�pk�kiBijpj�

−
e

8m2 �F�1�0� + 2F�2�0���ij��� 2Ei,� j� + ¯ , �14b�

where by the ellipsis we denote the omitted higher-order
terms �X ,Y�XY +YX and �ij = ��i ,� j� / �2i�. The Hamil-
tonian H� is a generalization of the Foldy-Wouthuysen
Hamiltonian HFW �24� to an arbitrary number of dimensions.
The electromagnetic field in H� is the sum of the external
Coulomb field, the external �constant� magnetic field, and a
slowly varying field of the radiation. For practical calcula-
tions, it is more convenient to have a Hamiltonian expressed
in terms of the gauge-independent field strengths. To achieve
this, we separate out the Coulomb field and perform the
Power-Zienau transformation of the Hamiltonian H� with the
operator S� of the form �24�

S� = − e

0

1

dur� · A� �ur�,t� . �15�

After neglecting irrelevant spin-independent terms, the trans-
formed Hamiltonian becomes
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H� =
p2

2m
+ V − er� · E� +

�1 + 2��
8m2

V�

r
�ijLij

−
e

4m
�Lij + �1 + ���ij�Bij +

e

8m3 ��1 + ��p2�ijBij

+ 2�pk�kiBijpj� −
e�1 + 2��

8m2

V�

r
�ijrjBikrk

+
e2�1 + 2��

8m2 �ijEjBikrk −
e�1 + ��

4m
�ijrkB,k

ij

−
e�1 + 2k�

4m2 �ijEipj + F�1�0�4�Z��d�r� −
e

8m2 �F�1�0�

+ 2F�2�0���ij� j�4�Z��d�r��Bikrk. �16�

Here, Lij =ripj −rjpi and B,k�kB. H� is the generalization
of the Power-Zienau Hamiltonian HPZ �24� to an arbitrary
number of dimensions.

The Hamiltonian H� includes most of the radiative correc-
tions that are needed for our calculation, but not all of them.
First, the higher-order terms with the anomalous magnetic
moment are omitted in H�. This contribution is more conve-
niently calculated with the exact Dirac-Coulomb wave func-
tions, starting directly from the Hamiltonian �10�. Further-
more, there is an additional correction that cannot be
accounted for by the F1 and F2 form factors. It is represented
by an effective local operator that is quadratic in the field
strengths. This operator is derived separately by evaluating a
low-energy limit of the electron scattering amplitude off the
Coulomb and magnetic fields. Details of this calculation are
presented in Appendix B. The result is

�H =
e2

2m
�2�ijBik� jEk� + �ijBij�kEk�� , �17�

where B=const, E is an arbitrary electric field, and the func-
tions � and � are given by Eqs. �B16� and �B17�, respec-
tively.

III. ONE-LOOP SELF-ENERGY CORRECTION

The dimensionally regularized NRQED approach formu-
lated in the previous section will be first employed
for a derivation of the self-energy correction to order
�� /���Z��4 for the bound-electron g factor. This derivation
will serve us as a test of the new approach �as this result has
been already obtained in our previous work �20�� and also as
a basis for the two-loop calculation.

As in �20�, we separate the one-loop self-energy correc-
tion up to the order of �� /���Z��4 into three parts,

g�1� = g1
�1� + g2

�1� + g3
�1�, �18�

where the first part is the the contribution due to the free-
electron form factors F1 and F2, the second part is the con-
tribution induced by the additional Hamiltonian �17�, and the
third part is the contribution coming from low-energy
photons—i.e., a Bethe-logarithm type contribution.

We start with the form-factor part g1
�1�. The anomalous

magnetic moment F2�0� in the modified Dirac-Coulomb

Hamiltonian �10� leads to the following energy shift linear in
the magnetic field �d=3�:

�E1A = �− F2
�1��0�

e

2m
��� · B��

+ 2�F2
�1��0�

ie

2m
�� · E�

1

�E − H��
�− e��� · A�� , �19�

where A� = �B� �r�� /2, and we denote the one-loop components
of the form factors by the corresponding superscript. The
corresponding correction to the g factor is

g1A
�1� = 2F2

�1��0��1 +
�Z��2

6n2 + �3

2
−

5

24n
	 �Z��4

n3 � . �20�

In obtaining this result, we used the closed-form expression
�25,26� for the component of the Dirac wave function per-
turbed by the magnetic interaction, which has the same rela-
tivistic angular momentum, as the reference state.

For the remaining part of the form-factor contribution, we
employ the transformed Hamiltonian �16�. The last term of
this Hamiltonian,

−
e

8m2 �F�1�0� + 2F�2�0���ij� j�4�Z��d�r��Bikrk, �21�

gives rise to a contribution

g1B
�1� = − �F1�

�1��0� + 2F2�
�1��0���4�Z��d�r�� . �22�

The second-order correction to the energy,

2�F1�
�1��0�4�Z��d�r�

1

�E0 − H0��
e

8m3 p2�ijBij� , �23�

yields

g1C
�1� = 2�3 − 8��F1�

�1��0��4�Z��d�r�� . �24�

The other second-order correction to the energy,

2�F1�
�1��0��� 2V

1

�E0 − H0��
�− 1�

e

8m2

V�

r
�ijrjBikrk� ,

�25�

gives

g1D
�1� = − �1 − 4��F1�

�1��0��4�Z��d�r�� . �26�

The total form-factor contribution is

g1
�1� = g1A

�1� + g1B
�1� + g1C

�1� + g1D
�1� . �27�

The second part of Eq. �18�, denoted by g2
�1�, is a high-

energy correction that is not accounted for by the form fac-
tors. It is given by the effective Hamiltonian �17�, with E
being the electric Coulomb field. The corresponding correc-
tion to the g factor is
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g2
�1� = 4�2

d
��1� + ��1�	�4�Z��d�r��

=
�

�
� 2

9�
+

19

27
	�4�Z��d�r�� , �28�

where ��1� and ��1� are the one-loop components of the coef-
ficient functions given below in Eqs. �B16� and �B17�.

The third part of Eq. �18� is a low-energy contribution that
can be considered as a correction to the Bethe logarithm due
to the interaction with an external magnetic field. Let us first
derive the Bethe-logarithm correction to the hydrogen Lamb
shift within the dimensional regularization. The correction to
the energy is

�EL = e2
 ddk

�2��d2k
�T

ij� pi

m

1

E0 − k − H0

pj

m
�

= e2
 ddk

�2��d2k
�T

ijk2�ri 1

E0 − k − H0
rj� . �29�

Here, �T
ij =�ij −kikj /k2 is the transverse delta function and k

= �k��. After performing the integration over k and dropping a
common overall factor of �4�����1+��, �EL becomes

�EL =
�

�

1

6�

�4�Z��d�r��
m2 + m

�

�

�Z��4

n3 �10

9
−

4

3
�ln�Z��2�

−
4

3
ln k0� , �30�

where the Bethe logarithm ln k0 is given by

ln k0 =
�p��H0 − E0�ln�2�H0 − E0�

m�Z��2 �p��
�p��H0 − E0�p��

. �31�

We now consider all corrections to �EL due to the presence
of the external magnetic field. The first one is induced by the
correction to the Hamiltonian �the fifth term on the right-
hand side of Eq. �16��:

�AH =
p2

8m3e�ijBij . �32�

The corresponding energy shift is given by

�AE = e2
 ddk

�2��d2k
�T

ijk2�A�ri 1

E0 − k − H0
rj� , �33�

where by �A�¯� we denote the first-order correction to the
matrix element induced by the perturbing Hamiltonian �AH.
This matrix element is calculated using the scaling properties
of the Schrödinger Hamiltonian given by Eq. �9�, and the
corresponding correction to the g factor is found to be

g3A
�1� =

�

�

1

3�
�4�Z��d�r��

−
�

�

�Z��4

n3 �8

3
ln�Z��2 +

8

3
ln k0 +

100

9
� . �34�

The second correction to the interaction with the magnetic
field is �sixth term in Eq. �16��

�BH = −
e

8m2

V�

r
�ijrjBikrk = −

d − 2

d

e

8m2V�ijBij , �35�

where the last part of the equation holds only for S states.
The corresponding contribution to the g factor is

g3B
�1� = −

�

�

2

9�
�4�Z��d�r��

+
�

�

�Z��4

n3 �16

9
ln�Z��2 +

16

9
ln k0 +

64

27
� . �36�

The third correction is due to the coupling with the radiation
field �seventh term in Eq. �16��:

�CH =
e2

8m2�ijEjBikrk = �− er� · E� ��− e�ijBij

8m2d
� . �37�

Here, the last expression is obtained by d-dimensional angu-
lar averaging. The corresponding energy shift is written as

�CE = 2�− e�ijBij

8m2d
�e2
 ddk

�2��d2k
�T

ijk2�ri 1

E0 − k − H0
rj� .

�38�

The contribution to the g factor is

g3C
�1� =

�

�

1

9�
�4�Z��d�r��

−
�

�

�Z��4

n3 �8

9
ln�Z��2 +

8

9
ln k0 −

28

27
� . �39�

The fourth contribution involves both the correction to the
coupling with the radiation field and the interaction with the
magnetic field �the fourth and the ninth term of Eq. �16��,

�DH = −
e

4m2�ijEipj −
e

4m
LijBij , �40�

and is of the form

�DE = 2e2
 ddk

�2��d2k
�T

ijk2

� �ri 1

E0 − k − H0
�− e

4m
LabBab� 1

E0 − k − H0

� jkpk

4m2 � .

�41�

The corresponding correction to the g factor is
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g3D
�1� =

�

�

1

3�
�4�Z��d�r��

−
�

�

�Z��4

n3 �8

3
ln�Z��2 +

8

3
ln k0 −

20

9
� . �42�

The fifth contribution is due to another correction to the cou-
pling with the radiation field and the same interaction with
the magnetic field,

�EH = −
e

4m
�ijrkB,k

ij −
e

4m
LijBij , �43�

and is of the form

�EE =
4e2

d

 ddk

�2��d2k
k2�ri 1

E0 − k − H0

��−
e

4m
LabBab� 1

E0 − k − H0

ik�ijrj

4m2 � . �44�

The corresponding correction to the g factor is

g3E
�1� = −

�

�

4

9�
�4�Z��d�r�� +

�

�

�Z��4

n3 �32

9
ln�Z��2

+
32

9
ln k0 −

136

27
� . �45�

The sixth and last contribution is due to the spin-orbit inter-
action and the interaction to the magnetic field:

�FH =
1

8m2

V�

r
�ijLij −

e

4m
LijBij . �46�

This correction involves a more complicated matrix element
with three propagators:

�FE = 2e2
 ddk

�2��d2k
�T

ijk2�ri 1

E0 − k − H0
� 1

8m2

V�

r
�ijLij�

�
1

E0 − k − H0
�−

e

4m
LijBij� 1

E0 − k − H0
rj� . �47�

The corresponding correction to the g factor is

g3F
�1� =

�

�

1

3�
�4�Z��d�r�� −

�

�

�Z��4

n3 �8

3
ln�Z��2

+
8

3
ln k3 −

20

9
� , �48�

where ln k3 is implicitly defined by the relation



0

�

dkk2�r�
1

E0 − H0 − k

1

r3

1

E0 − H0 − k
r��

= �� 1

r
� − 4

�Z��3

n3 �ln
2�

�Z��2 − ln k3� , �49�

which holds in the limit of large �.
Finally, the total Bethe-logarithm-type contribution to the

g factor is a sum of calculated terms:

g3
�1� = g3A

�1� + g3B
�1� + g3C

�1� + g3D
�1� + g3E

�1� + g3F
�1�. �50�

The complete one-loop self-energy correction to the bound-
electron g factor is then

g�1� =
�

�
�1 +

�Z��2

6n2 +
�Z��4

n3 �32

9
ln��Z��−2� +

73

54
−

5

24n

−
8

9
ln k0 −

8

3
ln k3�� , �51�

in full agreement with the former result in Eq. �12� of Ref.
�20�.

IV. TWO-LOOP CONTRIBUTION

The derivation of the two-loop corrections to the bound-
electron g factor is performed in full analogy to the one-loop
calculations. The total two-loop correction of the order
�� /��2�Z��4 can be separated into four parts:

g�2� = g1
�2� + g2

�2� + g3
�2� + g4

�2�. �52�

The first part g1
�2� is a form-factor contribution. The second

part g2
�2� is an additional high-energy contribution not ac-

counted for by the form factors. The third part arises from a
contribution in which one of the two virtual photons is of
low energy. The second photon effectively modifies the ver-
tex, which can be accounted for by the anomalous magnetic
moment. The fourth contribution g4

�2� involves the closed fer-
mion loops and is called the vacuum polarization part.

We start with the form-factor contribution. The two-loop
anomalous magnetic moment correction is obtained from the
corresponding one-loop contribution, Eq. �20�:

g1A
�2� = 2F2

�2��0��1 +
�Z��2

6n2 + �3

2
−

5

24n
	 �Z��4

n3 � . �53�

The one-loop anomalous magnetic moment in the modified
Dirac-Coulomb Hamiltonian �10� leads to the energy shift

�E1B = �F2
�1��0��2��− e

2m
��� · B�

1

�E − H��
ie

2m
�� · E��

+ 2� ie

2m
�� · E�

1

�E − H��
ie

2m
�� · E�

1

�E − H��
�− e��� · A��

+ � ie

2m
�� · E�

1

�E − H��
�− e��� · A�

1

�E − H��
ie

2m
�� · E��

− �− e�� · A� �� ie

2m
�� · E�

1

�E − H��2

ie

2m
�� · E��

− 2� ie

2m
�� · E����− e��� · A�

1

�E − H��2

ie

2m
�� · E��� .

�54�

The corresponding correction to the g factor is
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g1B
�2� = −

2

3
�F2

�1��0��2 �Z��4

n3 . �55�

The other contributions due to the two-loop form factors are
immediately obtained from the corresponding one-loop ex-
pressions in Eqs. �22�, �24�, and �26�:

g1C
�2� = − �F1�

�2��0� + 2F2�
�2��0���4�Z��d�r�� , �56�

g1D
�2� = 2�3 − 8��F1�

�2��0��4�Z��d�r�� , �57�

g1E
�2� = − �1 − 4��F1�

�2��0��4�Z��d�r�� . �58�

The second-order corrections involving the slope of the one-
loop form factors and the one-loop anomalous magnetic mo-
ment vanish. It becomes clear if we notice that the coupling
of the anomalous magnetic moment to the magnetic field, as
obtained from the Hamiltonian �16�, is

�V =
e�

8m3�p2�ijBij + 2pk�kiBijpj − 2m
V�

r
�ijrjBikrk�

�59�

and, for S states,

�V =
d − 2

d

e�

4m2�ijBij� p�2

2m
−

Z��

r1−2�� . �60�

All other possible two-loop corrections, which involve one-
loop form factors, are of higher order in the Z� expansion.
Therefore, the total form-factor contribution is given by the
sum

g1
�2� = g1A

�2� + g1B
�2� + g1C

�2� + g1D
�2� + g1E

�2�. �61�

The second part of Eq. �52� is a high-energy correction
that is not accounted for by the form factors. This contribu-
tion is induced by the effective Hamiltonian �H in Eq. �17�,
with E being the electric Coulomb field. The corresponding
correction to the g factor is

g2
�2� = 4�2

d
��2� + ��2�	�4�Z��d�r��

= �−
5

9�
+

5455

972
+

833

1296
�2 −

31

9
�2 ln 2 +

31

6
��3�	

��4�Z��d�r�� . �62�

The third part of Eq. �52�, g3
�2�, is obtained from the for-

mulas for the one-loop Bethe-logarithm corrections. The
overall coefficients in these formulas are modified by the
presence of the anomalous magnetic moment �, in accor-
dance with the corresponding terms in the effective Hamil-
tonian �16�. The resulting corrections to the Hamiltonian de-
scribing the interaction with the magnetic field are given by
�for S states�

�A
�2�H =

e�

8m3 �p2�ijBij + 2pk�kiBijpj� = ��
�d − 2�

d
� p2

8m3e�ijBij ,

�63a�

�B
�2�H = �2���−

d − 2

d

e

8m2V�ijBij	 , �63b�

�C
�2�H = �2��

e2

8m2�ijEjBikrk, �63c�

�D
�2�H = �2���−

e

4m2�ijEipj	 −
e

4m
LijBij , �63d�

�E
�2�H = ����−

e

4m
�ijrkB,k

ij	 −
e

4m
LijBij , �63e�

�F
�2�H = �2��

1

8m2

V�

r
�ijLij −

e

4m
LijBij . �63f�

The resulting two-loop corrections to the g factor are

g3A
�2� = ��

�d − 2�
d

�g3A
�1�, �64a�

g3B
�2� = 2�g3B

�1�, �64b�

g3C
�2� = 2�g3C

�1�, �64c�

g3D
�2� = 2�g3D

�1� , �64d�

g3E
�2� = �g3E

�1�, �64e�

g3F
�2� = 2�g3F

�1�. �64f�

The total two-loop Bethe-logarithm contribution is

g3
�2� = g3A

�2� + g3B
�2� + g3C

�2� + g3D
�2� + g3E

�2� + g3F
�2�. �65�

The last part of Eq. �52�, g4
�2�, involves the vacuum-

polarization correction. The contribution of the diagrams
with the closed fermion loop on the self-energy photon is
accounted for by the corresponding parts of the electromag-
netic form factors F1, F2, and �, �. The two-loop vacuum
polarization correction can be obtained from the correction
due to F1�

�2��0� by the replacement

F1�
�2��0� → v�2� = ��

�
	2�−

82

81
	1

4
. �66�

The corresponding contribution to the g factor is

g4A
�2� = − ��

�
	282

81
�4�Z��d�r�� . �67�

The mixed self-energy and vacuum-polarization correction
can be obtained in a similar way by the replacement

F2�
�2��0� → F2

�2��0�v�1� = F2
�2��0�

�

�
�−

1

15
	 . �68�

The corresponding contribution to the g factor is
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g4B
�2� = ��

�
	2 1

15
�4�Z��d�r�� . �69�

The total vacuum-polarization contribution beyond the one
accounted for by the form factors and �, � is

g4
�2� = g4A

�2� + g4B
�2�. �70�

Finally, the complete two-loop correction to the bound-
electron g factor is given by the sum of four parts in Eq. �52�,
which yields

g�2� = ��

�
	2 �Z��4

n3 �28

9
ln��Z��−2� +

258917

19440
−

4

9
ln k0

−
8

3
ln k3 +

113

810
�2 −

379

90
�2 ln 2 +

379

60
��3�

+
1

n
�−

985

1728
−

5

144
�2 +

5

24
�2 ln 2 −

5

16
��3��� .

�71�

The numerical values for ln k0 and ln k3 for the first seven S
states are

ln k0�1S� = 2.984 128 556, ln k3�1S� = 3.272 806 545,

�72a�

ln k0�2S� = 2.811 769 893, ln k3�2S� = 3.546 018 666,

�72b�

ln k0�3S� = 2.767 663 612, ln k3�3S� = 3.881 960 979,

�72c�

ln k0�4S� = 2.749 811 840, ln k3�4S� = 4.178 190 961,

�72d�

ln k0�5S� = 2.740 823 727, ln k3�5S� = 4.433 243 558,

�72e�

ln k0�6S� = 2.735 664 206, ln k3�6S� = 4.654 608 237,

�72f�

ln k0�7S� = 2.732 429 129, ln k3�7S� = 4.849 173 615,

�72g�

The total numerical value of the nonlogarithmic term in Eq.
�71� for the 1S state is −16.436 842. All terms involving the
closed fermion loop contribute −3.278 177 to this result, with
the dominant contribution originating from the two-loop
vacuum-polarization correction g4A

�2�.

V. RESULTS AND DISCUSSION

In Table I, we collect all contributions available for the 1S
bound-electron g factor in three specific hydrogenlike ions
which are important from an experimental point of view. For
two of them, carbon and oxygen, accurate experimental re-
sults are presently available �4,5�, whereas the experiment on
calcium is planned for the future �27�.

The errors of the point-nucleus Dirac value and of the free
part of the one-loop QED correction indicated in the table
originate from the uncertainty of the fine-structure constant,
�−1=137.035 999 11�46� �2�. The finite-nuclear-size correc-
tion was reevaluated in this work using the most recent val-

TABLE I. Individual contributions to the 1s bound-electron g factor. The abbreviations used are as follows: “h.o.” stands for a higher-
order contribution, “SE” for the self-energy correction, “VP-EL” for the electric-loop vacuum-polarization correction, “VP-ML” for the
magnetic-loop vacuum-polarization correction, and “TW” indicates the results obtained in this work. �r2�1/2 is the root-mean-square nuclear
charge radius.

12C5+ 16O7+ 40Ca19+ Ref.

�r2�1/2�fm� 2.4703 �22� 2.7013 �55� 3.4764 �10� �28�
Dirac value �point nucleus� 1.998 721 354 39 �1� 1.997 726 003 06 �2� 1.985 723 203 7 �1�
Finite nuclear size 0.000 000 000 41 0.000 000 001 55 �1� 0.000 000 113 0 �1�
One-loop QED �Z ��0 0.002 322 819 47 �1� 0.002 322 819 47 �1� 0.002 322 819 5

�Z ��2 0.000 000 742 16 0.000 001 319 40 0.000 008 246 2 �31�
�Z ��4 0.000 000 093 42 0.000 000 240 07 0.000 002 510 6 �20�

h.o., SE 0.000 000 008 28 0.000 000 034 43 �1� 0.000 003 107 7 �2� �10,20�
h.o., VP-EL 0.000 000 000 56 0.000 000 002 24 0.000 000 172 7 �30�
h.o., VP-ML 0.000 000 000 04 0.000 000 000 16 0.000 000 014 6 �13�

�two-loop QED �Z ��0 −0.000 003 515 10 −0.000 003 515 10 −0.000 003 515 1 �2�
�Z ��2 −0.000 000 001 12 −0.000 000 002 00 −0.000 000 012 5 �31�
�Z ��4 0.000 000 000 06 0.000 000 000 08 −0.000 000 010 9 TW

h.o. 0.000 000 000 00 �3� 0.000 000 000 00 �11� 0.000 000 000 0 �100�
Recoil m /M 0.000 000 087 70 0.000 000 117 07 0.000 000 297 3 �16�

h.o. −0.000 000 000 08 −0.000 000 000 10 −0.000 000 000 3 �15�
Total 2.001 041 590 18 �3� 2.000 047 020 32 �11� 1.988 056 946 6 �100�
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ues for the root-mean-square �rms� nuclear radii �28�. The
error ascribed to this correction originates both from the un-
certainty of the rms radius and from the estimated model
dependence for the nuclear-charge distribution.

The one-loop QED correction up to the order of �Z��4 is
given by the sum of the self-energy part �Eq. �51�� and the
vacuum-polarization part �29�:

gVP
�1� =

�

�
�Z��4�−

16

15
	 . �73�

The higher-order one-loop self-energy correction was in-
ferred from the results of the all-order numerical calculation
�10,11�. For carbon and oxygen, the results presented in the
table were obtained in Ref. �20� by an extrapolation of the
numerical results �10� for Z�8, after subtracting the known
terms of the Z� expansion. The one-loop vacuum-
polarization correction consists of two parts: the electric-loop
contribution that is due to the vacuum-polarization insertion
into the electron line and the magnetic-loop contribution,
which corresponds to the insertion of the vacuum-
polarization loop into the interaction with the external mag-
netic field. The values for the higher-order electric-loop con-
tribution presented in the table were inferred from the all-
order numerical results of Ref. �30�, whereas the magnetic-
loop contribution was taken from the recent evaluation �13�.

The �Z��0 and �Z��2 parts of the two- and more-loop
QED correction comprise the two-, three-, and four-loop
contributions to the free-electron g factor, multiplied by a
kinematic factor of the electron �31�. The �Z��4 part of the
two-loop QED contribution was derived in the present work.
The uncertainty due to higher-order two-loop contributions
was estimated as

gh.o.
�2� = 2gh.o.

�1� g�2���Z��2�
g�1���Z��2�

, �74�

where gh.o.
�n� is the n-loop higher-order QED contribution and

g�n���Z��2� is the n-loop �Z��2 QED contribution.
The nuclear recoil correction to first order in the mass

ratio m /M but to all order in Z� was calculated in Refs.
�14,16�. The leading recoil corrections to order �m /M�2 and
�m /M were derived in Refs. �32,33� for a nuclear spin I
=1/2 and recently generalized for an arbitrary nuclear spin
in Ref. �15�.

Based on the data presented in Table I, we conclude that
our evaluation of the one- and two-loop QED corrections to
order �Z��4 improves the accuracy of the theoretical predic-
tion for carbon by an order of magnitude, as compared to the
previous compilation �10�. The resulting QED contribution
to order �Z��4 turns out to be rather small for carbon and
oxygen, as a result of a cancellation between the logarithmic
and nonlogarithmic parts of this correction �see Eq. �71��.
For calcium, to the contrary, the numerical contribution of
the two-loop �Z��4 correction is large and of the same order
as the �Z��2 correction. This indicates that the perturbative
Z�-expansion approach is no longer effective in this region
of Z, and a direct all-order numerical evaluation would be
highly desirable.

It is remarkable that among different sources of the theo-
retical uncertainty for calcium, the error due to the higher-
order two-loop QED correction is by far the dominant one.
This means that, if the prospective experimental investiga-
tion of the bound-electron g factor in calcium is performed
on the same level of accuracy as for carbon—namely
10−9—a comparison of the theoretical and experimental re-
sults would allow one to identify the contribution of the non-
perturbative �in Z�� two-loop QED effects with a 10% accu-
racy.

The comparison of the theoretical and experimental re-
sults for the 1S bound-electron g factor in carbon and oxygen
yields the presently most accurate method for determination
of the electron mass �2�. Based on the theoretical g factor
values presented in Table I, we obtain the following values
for the electron mass derived from the experiments on car-
bon �4� and oxygen �5� �in atomic mass units�:

m�12C5+� = 0.000 548 579 909 32�29� , �75�

m�16O7+� = 0.000 548 579 909 60�41� . �76�

The uncertainty of these results originates from the experi-
mental value for the ratio of the electronic Larmor precession
frequency and the cyclotron frequency of the ion in the trap;
the uncertainty due to the theoretical prediction is more than
by an order of magnitude smaller and thus negligible.
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APPENDIX A: ELECTROMAGNETIC FORM FACTORS

We consider the form factors defined by

�
 → �
 = F1�q2��
 +
i

2m
F2�q2�� i

2
	�q” ,�
� , �A1�

where q is the outgoing photon momentum. The form factors
are expanded in � up to second order,

F1�q2� = 1 + F1
�1��q2� + F1

�2��q2� ,

F2�q2� = F2
�1��q2� + F2

�2��q2� , �A2�

where the superscript corresponds to the loop order—i.e., to
the power of �. They have recently been calculated analyti-
cally by Bonciani, Mastrolia, and Remiddi in �34�. The re-
sults for the form factors expanded into powers of q2 up to q4

read �in D=4−2��

F1
�1��q2� =

�

�
�q2�−

1

8
−

1

6�
−

1

2
�	

+ q4�−
11

240
−

1

40�
−

5

48
�	� , �A3a�
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F2
�1��q2� =

�

�
�1

2
+ 2� + q2� 1

12
+

5

12
�	 + q4� 1

60
+

11

120
�	� ,

�A3b�

F1
�2��q2� = ��

�
	2�q2��−

1099

1296
+

77

144
��2�	

VP
−

47

576

+ 3��2�ln 2 −
175

144
��2� −

3

4
��3��

+ q4��−
491

1440
+

5

24
��2�	

VP
+

1721

12960
+

1

72�2

+
1

48�
+

11

10
��2�ln 2 −

14731

28800
��2� −

11

40
��3��� ,

�A3c�

F2
�2��q2� = ��

�
	2��119

36
− 2��2�	

VP
−

31

16
− 3��2�ln 2 +

5

2
��2�

+
3

4
��3� + q2��311

216
−

7

8
��2�	

VP
−

77

80
−

1

12�

−
23

10
��2�ln 2 +

61

40
��2� +

23

40
��3��

+ q4�� 533

1080
−

3

10
��2�	

VP
−

1637

5040
−

19

720�

−
15

14
��2�ln 2 +

689

1050
��2� +

15

56
��3��� . �A3d�

The subscript VP denotes the contribution to the two-loop
form factors which involves a closed fermion loop.

APPENDIX B: THE LOW-ENERGY LIMIT OF THE
SCATTERING AMPLITUDE

In this section we describe the evaluation of the low-
energy limit of the spin-dependent part of the scattering am-
plitude that gives rise to the effective Hamiltonian �17�. The
scattering amplitude under consideration is schematically de-
picted in Fig. 1, where the leftmost graph is the “tree” dia-
gram and the remaining graphs represent the tree diagram
“dressed” by a self-energy photon. The two-loop diagrams
are not shown explicitly; they can be obtained from the one-
photon ones in a standard way. Each graph contains two
interactions with the external field, one of which is the inter-
action with the homogeneous magnetic field �a �i vertex� and
the other is the interaction with the Coulomb field of the
nucleus �a �0 vertex�. From the one- and two-loop scattering
amplitudes we additionally subtract a tree amplitude with the

vertices modified by the electromagnetic form factors F1 and
F2. This procedure removes the part that is already accounted
for by the Hamiltonian �16� and leads to a simple polynomial
expression for the resulting amplitude.

In order to extract the spin-dependent part of the scatter-
ing amplitude, we construct the projection operator. Let us
first consider a general nonrelativistic operator Q:

Q = Q0 + Qi�i. �B1�

The spin-dependent part of Q can be retrieved by the follow-
ing projection operator:

Qi =
1

2
Tr�Q�i� . �B2�

In d dimensions, the nonrelativistic expansion of the Hamil-
tonian involves �ij = ��i ,� j� / �2i�. The extension of the spin-
projection operator to an arbitrary number of dimensions is

Qij =
1

4
Tr�Q�ij� , �B3�

with Q=Qij�ij. We assume here the following properties of
the trace to hold:

Tr��ij� = 0,

Tr�I� = 2,

Tr��ij�kl� = 2��ik� jl − � jk�il� . �B4�

We now consider the operator Q sandwiched between the
positive-energy solutions of the free Dirac equation normal-
ized by ūu=1. The following identity holds:

ū�pf,sf�Qu�pi,si� = Tr�Qu�pi,si�ū�pf,sf�� . �B5�

Since our aim is to calculate the low-energy limit of the
amplitude only, we can use an approximate form for u�p ,s�:

u�p,s� � ���s�
1

2
�� · p���s� � , �B6�

where � is a nonrelativistic spinor. Using a replacement that
extracts the spin dependence,

��si��+�sf� →
�ij

4
, �B7�

the projection operator becomes �in units m=1�

u�pi,si�ū�pf,sf� →
1

4��ij , −
1

2
�ij�� · p� f

1

2
�� · p� i�

ij , −
1

4
�� · p� i�

ij�� · p� f
�

�
1

16
�p” i + 1��ij�p” f + 1� . �B8�

Therefore,

Qij =
1

16
Tr��p” f + 1�Q�p” i + 1��ij� . �B9�

FIG. 1. Feynman diagrams representing the scattering amplitude
of a free electron on both the Coulomb and the magnetic field, at the
tree and one-loop levels.
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We now turn to the scattering amplitude of the free elec-
tron on the Coulomb and magnetic fields. The spin-
dependent part of this amplitude is written as

Q = Q
��eA0�q1�eA
�q2����, �B10�

where q1 and q2 denote the exchange momenta. The ampli-
tude corresponding to the tree diagram in Fig. 1 is given by

Q0

�� =

1

16
Tr��p” f + 1��0 1

p” i + q”2 − 1
�
�p” i + 1����

+ �p” f + 1��
 1

p” i + q”1 − 1
�0�p” i + 1����� , �B11�

where the momenta pi and pf are on the mass shell and the
exchange momenta are spatial, q1

0=q2
0=0.

As an example of one-photon contributions, we give an
expression for the rightmost diagram in Fig. 1:

Q1

�� = − ie2
 dDk

�2��D

1

k2

1

16
Tr��p” f + 1���

�
1

p” f − k” − 1
�0 1

p” i + q”2 − k” − 1
�
 1

p” i − k” − 1

����p” i + 1����� + �symmetrization� . �B12�

The other one- and two-loop contributions are obtained in
an analogous way. From the resulting amplitude we subtract
the tree amplitude QF


�� with vertices �� replaced by ��:

QF

�� =

1

16
Tr��p” f + 1��0�q1�

1

p” i + q”2 − 1
�
�q2��p” i + 1����

+ �p” f + 1��
�q2�
1

p” i + q”1 − 1
�0�q1��p” i + 1����� ,

�B13�

where �� is defined in Eq. �A1�. The final expression for the
total amplitude Q
�� is obtained by the expansion in small

momenta p� i and p� f and the subsequent integration over the
loop momenta. The result for Q
�� can be written in the form

Q
�� =
1

2
��F
�� + �G
��� , �B14�

where the functions F
�� and G
�� are orthogonal to q2

 �due

to the gauge invariance� and antisymmetric in � ,�. Their
explicit expressions are

F
�� = q1

�q1

�q2
� − q1

�q2
�� + q1q2�g
�q1

� − g
�q1
�� ,

G
�� = q1
2�g
�q2

� − g
�q2
�� . �B15�

The results for the coefficient functions � and � have been
obtained with the help of the symbolic program FORM �35�
and read

� = −
�

4�

2

3�
+ � �

4�
	2��2528

81
−

169

54
�2	

VP
−

283

10
+

169

120
�2

−
4

15
�2 ln 2 +

2

5
��3� −

16

3�
� , �B16�

� =
�

4�
�1 +

2

3�
	 + � �

4�
	2��2674

81
−

91

27
�2	

VP

−
152

15
+

319

45
�2 −

68

5
�2 ln 2 +

102

5
��3� +

4

3�
� ,

�B17�

where the subscript VP denotes the contribution involving a
closed fermion loop. The effective local operator Q in Eq.
�B10� becomes

Q =
1

2
��F
�� + �G
���eA0�q1�eA
�q2����

→
e2

2m
�2�ijBik� jEk� + �ijBij�kEk�� , �B18�

which corresponds to the effective Hamiltonian in Eq. �17�.
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