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The local field correction to the spontanous decay rate of an impurity source atom embedded in a disordered
dielectric is calculated to second order in the dielectric density. The result is found to differ from predictions
associated with both “virtual” and “real” cavity models of this decay process. However, if the contributions
from two dielectric atoms at the same position are included, the virtual cavity result is reproduced.
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I. INTRODUCTION

The problem of spontaneous emission from an atom em-
bedded inside a dielectric has attracted considerable interest
�1�. Most theoretical treatments of this problem follow a
macroscopic approach �2�. Based on different models of the
local environment of the embedded atom, they give different
types of local field corrections to the spontaneous decay rate
�0 of the impurity atom. The so-called virtual cavity model
gives a decay rate �virtual=�����+2� /3�2�0, assuming that a
virtual cavity surrounds the emitter, while the “real” cavity
model gives a rate �real=���3� / �2�+1��2�0, assuming that
an empty spherical cavity surrounds the emitter. The quantity
� is the permittivity of the dielectric, which is connected to
the microscopic polarizability � by the Lorentz-Lorenz rela-
tion �=1+N� / �1− 1

3N��, where N is the dielectric density.
Expansions for the decay rates in powers of N� yield
�real=�1+ 7

6N�+ 19
72�N��2+O�N��3��0 and �virtual=�1+ 7

6N�

+ 17
24�N��2+O�N��3��0. To first order in N�, the real and

virtual cavity models give identical results, but they differ
in higher order. To determine the validity range of these
macroscopic models, calculations using a somewhat more
fundamental approach are needed. Several attempts at such
microscopic models involve �i� a polariton approach for
crystals �3�, �ii� a Green’s function approach for crystals
�4� and disordered dielectrics �5�, and �iii� an amplitude
approach for disordered dielectrics �6,7�. In the polariton
method, the interaction between the vacuum radiation field
and the crystal atoms is solved exactly; the eigenmodes
of this system are the polaritons. The source atom then
decays by radiating polaritons. This polariton calculation
agrees with the virtual cavity result �3�. In the Green’s
function approach, the modification of the decay rate results
from scattering of radiation emitted from the source atom
by the dielectric, calculated to all orders in the dielectric
density. This calculation reproduces the virtual cavity
result with the source atom at an interstitial position and the
real cavity result with the source atom at a substitutional
position in the crystal �4�. For disordered dielectrics,
the Green’s function method gives the virtual cavity result
�5�. The amplitude method represents a direct calculation
of the modification of the decay rate as a perturbation
series in N� �6,7�. To first order in N�, the radiation emitted
by the source atom is scattered back to the source atom

by a single dielectric atom; the resultant decay rate
agrees with both virtual and real cavity models to first order
in N� �6�.

In this paper, the amplitude method is extended to second
order by including scattering events in which the radiation
emitted by the source atom is scattered back to the
source atom by a combined scattering from two dielectric
atoms. It will be seen that the result differs from those of
both the real and virtual cavity models; however, when
contributions to the decay rate originating from scattering
by two dielectric atoms located at the same physical point
are included, the calculation reverts to the virtual cavity
model.

II. CALCULATION OF SECOND-ORDER CONTRIBUTION

The source atom located at R=0 has a J=0 ground state
and a J=1 excited state, and the frequency separation of the
ground and excited states is denoted by �0. The uniformly
distributed dielectric atoms have J=0 ground states and
J=1 excited states, the frequency separation of the ground
and excited states being denoted by �. At t=0, the source
atom is excited to the m=0 excited state sublevel, the dielec-
tric atoms are all in their ground states, and there are no
photons in the field. The process we consider is radiation
emitted by the source atom that is scattered by two dielectric
atoms back to the source atom. It is assumed that
��−�0� /�0�1 but that ��−�0� / ��+�0��1 �rotating-wave
approximation �RWA��.

We use a multipolar Hamiltonian �8�. The free part is

H0 =
��0

2
	z + �

j
�

m=−1

1
��

2
	z

�j��m� + ��kak

† ak
, �1�

where 	z= ��2�	2�− �1�	1��, �2� and �1� are the m=0 excited-
and J=0 ground-state eigenkets of the source atom, respec-
tively, 	z

�j��m�= ��m��j�	m�− �g��j�	g�� is the population differ-
ence operator between excited state �J=1,m� and ground
state �J=0,g� of the dielectric atom j, and ak
 is the annihi-
lation operator for a photon having momentum k and polar-
ization 
. A summation convention is used, in which any
repeated symbol on the right-hand side of an equation is
summed over, unless it also appears on the left-hand side of
the equations.

PHYSICAL REVIEW A 72, 022104 �2005�

1050-2947/2005/72�2�/022104�6�/$23.00 ©2005 The American Physical Society022104-1

http://dx.doi.org/10.1103/PhysRevA.72.022104


The interaction part of the Hamiltonian is

V = − d0 ·
D�0�

�0
− d j ·

D�R j�
�0

, �2�

where d0 and d j are the dipole operators of the source atom
located at the origin and a dielectric atom located at position
R j, respectively. The operator D is the displacement field
having positive frequency component

D+�R� = i�0�
k,


� ��k

2�0V
�k

�
�ak
eik·R �3�

where V is the quantization volume and �k
�
� is a unit polar-

ization vector, with

�k
�1� = �cos �k cos �k�x̂ + �cos �k sin �k�ŷ − �sin �k�ẑ , �4�

�k
�2� = − �sin �k�x̂ + �cos �k�ŷ . �5�

In the RWA, one can write

V = �
k

�gk�	+ak − ak
†	−� + �

k,
,m
��gk
� �m�	+

�j��m�ak
eik·R

+ gk
� �m�*ak

† 	−

�j��m�e−ik·R� , �6�

gk = − i� �k

2��0V

��k

�
��0, �7�

gk
� = − i� �k

2��0V

���k

�
��m
* , �8�

where the 	± are raising and lowering operators for the
source atom and 	±

�j��m� are raising and lowering operators
between the excited state �J=1,m� and the ground state
�J=0,g� of dielectric atom j , 
 is the reduced matrix
element of the dipole operator d0, and 
� is that of
d j between ground- and excited-state manifolds.
The ��k

�
��±1= � ���k
�
��x± i��k

�
��y� /�2, ��k
�
��0= ��k

�
��z are
spherical components of the polarization vectors. The source
atom interacts only with the z component of the radiation
field.

The calculation proceeds as in Ref. �6�, with the addition
of terms that couple dielectric atoms to dielectric atoms via
the radiation field. After eliminating intermediate states in-
volving the radiation field, one arrives at

ḃ2 = − �b2 − �

�



�ei�tG0,mj

�R j,��bmj
�t� , �9a�

ḃmj
= − ��bmj

− �

�



�e−i�tGm,0�R j,�0�b2�t�

− ��Gmj,ms�
�R j − Rs,��bms�

�t� , �9b�

where �=2
2�0
3 /3�c3 and ��=2
�2�0

3 /3�c3 are �half�
the excited-state decay rate of the source and dielectric at-
oms, respectively, b2 is the state amplitude for the source
atom to be in state �2�= �J=1,m=0� and all dielectric
atoms in their ground states, and bmj

, is the state
amplitude for dielectric atom j to be in excited state
�J=1,m� and all other atoms in their ground states. We
have set b2�t−���b2�t� and bmj

�t−���bmj
�t� on the assump-

tion that �R0 /c , ��R0 /c�1, where R0 is the sample size.
The quantity Gmj,ms�

�R j −Rs ,�� is a propagator for scattering
from a dielectric atom in sublevel mj at position R j to one in
sublevel ms at position Rs given by

Gmj,ms�
�R,�� =

3

8�

1

��3

0

t

d�

−�

�

d�k�k
3e−i��k−���

�
 d�k��k
�
��mj

* ��k
�
��ms�

eik·R, �10�

while Gm,0�R j ,�� is a propagator for scattering from the
source atom to a dielectric atom in sublevel mj at position
R j. In what follows we ignore the difference between �0 and
�, consistent with the RWA.

In order to solve Eqs. �9a� and �9b�, we assume that b2
varies slowly on the time scale 1 /�. If bmj

=ymj
e−i�t, Eqs.

�9a� and �9b� are transformed to

ḃ2 = − �b2 − �

�



�G0,m�R j,�0�ymj

�t� , �11a�

��� − i��ymj
= − �

�



�Gm,0�R j,�0�b2�t�

− ��Gmj,ms�
�R j − Rs,�0�yms�

�t� . �11b�

The formal solution for ḃ2 is

ḃ2 = − �b2 + �

�



�G0,mj

�R j,�0�

�� 1

�� − i� + ��G
�

mj,ms�
�

�



�Gms�,0�Rs,�0�b2 �12�

where G is a 3N�3N matrix having matrix
elements Gmj,ms�

�R j −Rs ,�0�. This can be expanded as a
power series in N� with �=−4�
�2 /��. To second order,
one finds

ḃ2,0 = − �b2,0�1 + iN�
k0

3

6�N
G0,mj

�R j,�0�Gmj,0
�R j,�0� − �N��2
 k0

3

6�N
�2

G0,mj
�R j,�0�Gmj,ms�

�R j − Rs,�0�Gms�,0�Rs,�0�� ,

�13�
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where k0=�0 /c. The term linear in the density gives the first-
order local field correction ���1� /�=7N� /6 �6�, which
agrees with both the virtual and real cavity models to this
order.

We now calculate the second-order correction,

���2�

�
= − �N��2
 k0

3

6�N
�2

G0,mj
�R j,�0�

�Gmj,ms�
�R j − Rs,�0�Gms�,0�Rs,�0� . �14�

The sum over R j and Rs can be converted to integrals using
�→N�dR. In this manner, one finds

���2�

�
= − �N��2
 k0

3

6�
�2
 
 dR2dR1G0,mj

�R21,�0�

�Gmj,ms�
�R21,�0�Gms�,0�R1,�0� �15�

where R21=R2−R1. The next step is to evaluate the
Gmj,ms�

�R ,��. The details of the calculation are given in the
Appendix and one obtains

G11 = �4�h0�k0R�Y0,0�R̂� −
1

2
�4�

5
h2�k0R�Y2,0�R̂� ,

�16a�

G00 = �4�h0�k0R�Y0,0�R̂� +�4�

5
h2�k0R�Y2,0�R̂� ,

�16b�

G1,−1 = −
3

2
�8�

15
h2�k0R�Y2,−2�R̂� , �16c�

G−1,1 = −
3

2
�8�

15
h2�k0R�Y2,2�R̂� , �16d�

G1,0 = −
3

2
�4�

15
h2�k0R�Y2,−1�R̂� , �16e�

G−1,0 = −
3

2
�4�

15
h2�k0R�Y2,1�R̂� , �16f�

where Y�,m�R̂� is a spherical harmonic. The remaining
Gmj,ms�

’s are obtained using G−1,−1=G11, G0,−1=−G1,0, and
G0,1=−G−1,0. The spherical Hankel functions of the first
kind, h0�k0R� and h2�k0R�, conform to the appropriate bound-
ary conditions in which only outgoing scattered waves are
considered.

The calculation for ���2� /� is tedious, since it involves
contributions from nine terms. We will show how to calcu-
late one specific contribution, mj =1, ms�=1, and then give
the final results for the other components. Substituting Eqs.
�16a� and �16e� in Eq. �15�, we find

���2��1,1�
�

= �N��2
 k0
3

6�
�26�3/2

5

 
 dR1dR2h2�k0R2�Y2,1�R̂2�

�h0�k0R21�Y0,0�R̂21�h2�k0R1�Y2,−1�R̂1� − �N��2

�
 k0
3

6�
�23�3/2

5�5

 
 dR1dR2h2�k0R2�Y2,1�R̂2�

�h2�k0R21�Y2,0�R̂21�h2�k0R1�Y2,−1�R̂1� . �17�

To evaluate this, we expand the Hankel functions as �9�

hl�k0R21�Yl,m�R̂21� = il1+l2−l�− 1�l2+m���R2 − R1�

+�− 1�l��R1 − R2��

��4��2l + 1��2l1 + 1��2l2 + 1�

�
l1 l l2

0 0 0
�
 l1 l l2

m1 − m m2
�hl1

�k0R��

�jl2
�k0R��Y�1,m1

�R̂��Y�2,m2
�R̂�� �18�

where �…… � is a 3-j symbol, jl�x� is a spherical Bessel func-

tion, R��R�� is the larger �smaller� of R1 and R2, and � is
the Heaviside step function. When this expansion is used in
Eq. �17�, the angular integration selects out only l=2,0 and
m=1,−1,0 terms, such that

���2��1,1�
�

= −
�N��2

7



0

�

d�2�2
2


0

�2

d�1�1
2h2��2�h2��1�

�h2��2�j2��1� �19�

with �1=k0R1 , �2=k0R2. To evaluate the above integral, we
add a convergence factor e−��2, and eventually take the limit
�→0. The imaginary part of the integral diverges as �2→0,
but the real part is finite and gives the local field correction
to the decay rate. The result is

���2��1,1�
�

=
15

112
�N��2

and the corresponding results for the other terms are �10�

���2��− 1,− 1�
�

=
���2��1,1�

�
=

15

112
�N��2,

���2��0,0�
�

=
25

63
�N��2,

���2��0,1�
�

=
���2��1,0�

�
=

���2��− 1,0�
�

=
���2��0,− 1�

�

=
3

28
�N��2,
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���2��− 1,1�
�

=
���2��1,− 1�

�
= −

3

56
�N��2.

The total second-order correction to the decay rate is

���2�

�
= 2

���2��1,1�
�

+
���2��0,0�

�
+ 4

���2��0,1�
�

+ 2
���2��− 1,1�

�
=

71

72
�N��2. �20�

This result differs from both the virtual � 51
72�N��2� and real

� 19
72�N��2� cavity models.

Our result can be compared with Fleischhauer’s �5�. The
Fourier transform of Gm,m��R ,�0� is the tensor field propa-
gator F�0��q ,�� in his paper, differing only by prefactors.
The integral �15� can then be done in either coordinate or
momentum space. The momentum space integration gives a
different result from our coordinate space calculation above.
This surprising discrepancy can be explained by the way we

expand hl�k0R21�Yl,m�R̂21�. The expansion we used is valid
for R1�R2 or R2�R1, but is not defined for R1=R2. For a
well-behaved integral this will not make any difference since
R1=R2 contributes a set of measure zero. In the present case,
however, where the dipole-dipole interaction between dielec-
tric atoms diverges when one atom is on the top the other,
i.e., when R1=R2, the contribution from R1=R2 can be finite.

It is not easy to estimate this contribution in the original
form of the integral �17�. Instead, it proves useful to Fourier
transform just one of the Gm,m� in the integrand. As an ex-
ample, we consider the integral in the second term of Eq.
�17�,

I =
 
 dR2dR1h2�kR2�Y2,1�R̂2�h2�kR21�Y2,0�R̂21�h2�kR1�

�Y2,−1�R̂1� . �21�

We Fourier transform h2�kR21�Y2,0�R̂21�e−�R21, using a con-
vergence factor e−�R21 that is physically connected with the
boundary condition of outgoing spherical waves. Carrying
out the Fourier transform in Eq. �21�, we find

I = −
4�i

k3 
 
 dR2dR1h2�kR2�Y2,1�R̂2�h2�kR1�Y2,−1�R̂1�

�
 dp

�2��3

p2

k2 − p2 + i�
Y2,0�p̂�eip·�R2−R1�. �22�

The angular integrations can be done by expanding eip·R2 and
e−ip·R1 in terms of spherical harmonics and Bessel functions.
In this manner one obtains

I =
1

14
� 5

�

�4��3i

k3 

0

� 

0

�

dR2dR1R2
2R1

2h2�kR2�h2�kR1�

�

−�

� dp

�2��3

p4

k2 − p2 + i�
. �23�

We are interested only in the contribution in the region where
R1=R2. This contribution can be isolated by integrating R2

from R1−a to R1+a, and then integrating the resultant ex-
pression over p using the method of residues. In the limit that
both a and � tend to zero, one obtains the contribution �I
from the region R1=R2 as

Re��I� = lim
�→0

Re
− 1

7
�5�

2i

k3

0

�

dR2R2
2h2�kR2�h2�kR2�e−�R2�

=
− 5�5�

7k6 �24�

�the imaginary part of �I diverges�. The contribution from
the sphere R1=R2 is identical to that from R1=R2 since all
other points with R1�R2 on the sphere are regular and con-
tribute zero to the integral. The same calculation can be done
for the first integral in Eq. �17�. For this term, there is no
contribution from the region R1=R2 �no �-function-like term
is found� since h0�kR21� has a lower-order divergence at
R21=0 than does h2�kR21�.

Including contributions of the type �24�, we find

���2��0,0�
�

=
1

3
�N��2, �25�

���2��1,1�
�

=
���2��1,− 1�

�
=

7

48
�N��2,

���2��0,1�
�

=
���2��1,0�

�
=

���2��− 1,0�
�

=
���2��0,− 1�

�

=
1

12
�N��2,

���2��− 1,1�
�

=
���2��1,− 1�

�
= −

1

8
�N��2.

When these are summed the total ���2� /�= �17/24��N��2

agrees with the virtual cavity result.

III. DISCUSSION

The second-order contribution to the modified spontane-
ous emission rate of an impurity atom in a disordered dielec-
tric has been calculated using microscopic theory. Depending
on the manner in which overlapping atoms are treated, one
arrives at different results. If the �-function contributions at
R1=R2 are included, the virtual cavity model is recovered,
but if such terms are excluded, neither the real nor virtual
cavity model result is found. It seems to us somewhat of an
open question at this point as to whether or not such contri-
butions can be uniquely calculated once Eq. �12� is expanded
in a power series in the density. The reason for this is that the
expansion parameter is not small as interatomic distances
tend to zero. That the expansion can lead to divergences is
already evident if the integrations are carried out using a
different set of variables �10�. From physical considerations,
however, the decay rate does not diverge, even for interpar-
ticle spacings much less than a wavelength. In dealing with a
homogeneous dielectric, we have performed the ensemble
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average by integrating over all space assuming a constant
density. This averaging process includes configurations
where interparticle spacings are sufficiently small to invali-
date the expansion �13�. Nevertheless, the procedure has
yielded finite results for the change in the decay parameter.

Different experiments support both the real and virtual
cavity results �11�. The source atom in these experiments is
usually an impurity ion in a protective molecular cage. No
experiments of this nature have been carried out with impu-
rity atomic radiators in a dielectric that consists of a dense
atomic vapor. It may be possible to use an alkali-metal atom
as the source atom and rare-gas atoms as the dielectric at-
oms. With such a system, one could not make the rotating-
wave approximation used in this paper, but the physics is not
changed in any substantive manner. The key feature of the
alkali-metal–rare-gas system is the extremely small quench-
ing cross sections for rare-gas collisions to inelastically
change the electronic state of the alkali-metal atom �12�. Any
quenching cross sections would appear as a modification of
the decay rate that would mask the sought after effect. For
rare-gas pressures on the order of 100 atm, we estimate that
a change in the decay rate of order of 3% could be observed.
To increase the effect it is necessary to find radiator atoms
whose first excited state is radiatively coupled to the ground
state and dielectric atoms whose lowest excited state is about
0.2 eV above the energy of the excited state of the radiator.
In this limit, quenching will be negligible, but the detuning �
is decreased from that of the alkali-metal–rare-gas system by
a factor of 50. At the same time, it is necessary to achieve a
high pressure for the dielectric atoms. A possible system
would be Li radiators with a high-density sodium dielectric;
the energy mismatch of Li and Na is about 0.25 eV, giving a
correction factor to the lithium decay rate of 1.3�10−21N,
where N is the sodium dielectric density in units of
atoms/cm3.
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APPENDIX

In this appendix, we calculate explicitly G1,1�R ,�� given
in Eq. �10�. The other Gm,m��R ,�� are calculated in a similar

fashion. To carry out the angular integrations, one expands
eik·R as

eik·R = 4� �
m=−l

l

ilYlm
* �k̂�Ylm�R̂�jl�kR� , �A1�

and uses the fact that ��k
�
��1

*��k
�
��1= �1/2��1+cos2��

= ��4� /3��2Y00�k̂�+ �1/�5�Y20�k̂�� and the orthogonality of
the spherical harmonics, to obtain

G1,1�R,�� =
1

���3

0

t

d�

−�

�

d�k�k
3e−i��k−���
2Y00�R̂�j0�kR�

−
1
�5

Y20�R̂�j2�kR�� . �A2�

The spherical Bessel function can be written in terms of
spherical Hankel functions as jl�kR�= 1

2 �hl�kR�+hl
*�kR��,

transforming Eq. �A2� into

G1,1�R,�� =
1

2��



0

t

d�

−�

�

d�ke
−i��k−���

�
2Y00�R̂��h0�kR� + h0
*�kR��

−
1
�5

Y20�R̂��h2�kR� + h2
*�kR��� .

In the calculation we always make the Wigner-Weisskopf ap-
proximation. Differences between �, �0, and �k are ne-
glected except when they appear as exponential factors. In
integrating over �k, the hl

*�kR� terms give a contribution
proportional to ��R /c+�� while the hl�kR� terms give a con-
tribution proportional to ��R /c−��. We retain only the
��R /c−�� contributions since they correspond to the retarded
solution �outgoing spherical waves�. As a consequence, we
find

G1,1�R,�� = �4�h0�k0R�Y0,0�R̂� −
1

2
�4�

5
h2�k0R�Y2,0�R̂� .

�A3�
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