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We consider a single particle which is bound by a central potential and obeys the Dirac equation in d
dimensions. We first apply the asymptotic iteration method to recover the known exact solutions for the pure
Coulomb case. For a screened Coulomb potential and for a Coulomb plus linear potential with linear scalar
confinement, the method is used to obtain accurate approximate solutions for both eigenvalues and wave
functions.
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I. INTRODUCTION

The Dirac equation plays a fundamental role in relativistic
quantum mechanics. The equation can be solved exactly for
a very few potentials. An early and very detailed analysis of
the Dirac spectrum for central potentials has been given by
Rose and Newton �1�. The solution for the pure Coulomb
field is well known. Exact solutions are known for some
other specific cases, such as the Woods-Saxon potential �2�.
It is also possible to find classes of exact solutions under
very special conditions �3–7�. Unlike the corresponding
Schrödinger operator, the Dirac Hamiltonian is not bounded
below, and its spectrum cannot be defined variationally. In
spite of this it is still possible to find ways to use the varia-
tional idea, for example by a saddle-point analysis �8� and by
an analysis of the Schrödinger limit in the oscillator basis
�9�. Some progress has been made in the establishment of
comparison theorems for the Dirac equation without invok-
ing a variational assumption at all �10,11�, and this has al-
lowed spectral envelope methods to be used; however, at
present, such results apply only to node-free states. Theo-
rems of the Levinson type have now been proved for the
Dirac equation in two, three, and d dimensions �12–18�. So-
lutions of the Dirac equation with shape-invariant potentials
have been found by a variety of exact and approximate meth-
ods �19–29�. Meanwhile, numerical methods for solving the
Dirac equation are continually sought, such as a recent ap-
proach by a mapped Fourier grid method �30�. Effective non-
variational approximation methods therefore remain an im-
portant area for investigation.

In this paper we first consider the Dirac equation for cen-
tral potentials in d dimensions. This problem was formulated
some decades ago, by Joseph �31�. More recently, Jiang �32�,
for example, has studied the problem and has obtained a pair
of radial equations similar to the well-known case of three
dimensions; these equations can be solved exactly for the
pure Coulomb field. The d-dimensional angular momentum
problem for the Dirac equation has also been studied by
group-theoretical methods �33�. We use these results in Sec.
II. The main purpose of the present paper is to apply the
asymptotic iteration method �AIM� to these central-field

problems. The AIM was developed by the present authors
�34� for solving second-order linear differential equations,
including Schrödinger’s. Later the method has been applied
to a variety of problems �35–37�. In preparation for the Dirac
application, we first extend the method in Sec. III to treat
systems of homogeneous linear differential equations. In Sec.
IV the case of the Dirac Coulomb problem in d dimensions is
then treated and solved exactly. In Secs. V and VI we study
screened Coulomb problems, and also the linear plus Cou-
lomb potential. For the latter problem, the scalar linear part
must dominate the vector linear part in order for discrete
eigenvalues to exist �38,39�.

II. THE DIRAC EQUATION IN d DIMENSIONS

The Dirac equation for a central field in d dimensions can
be written with �=c=1 as

i
��

�t
= H�, H = �

j=1

d

� jpj + ��m + U�r�� + V�r� , �2.1�

where m is the mass of the particle, V�r� is a spherically
symmetric vector potential, U�r� is a spherically symmetric
scalar potential, and �� j� and � are the usual Dirac matrices
satisfying anticommutation relations �the identity matrix is
implied after the vector potential term V�r��. After some al-
gebraic calculations �details can be found for example in
�32��, one obtains the following first-order linear coupled
differential equations:

dG

dr
= −

kd

r
G + �E + m − V�r� + U�r��F , �2.2�

dF

dr
= − �E − m − V�r� − U�r��G +

kd

r
F . �2.3�

These are known as the radial Dirac equations in d dimen-
sions, where kd=��j+ �d−2� /2�, and �= ±1. We note that the
variable � is sometimes written �, as, for example, in the
book by Messiah �40�. As an example, we suppose that the
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particle is moving in a pure vector Coulomb field, that is to
say, V�r�=−A /r and U�r�=0. In this case Eqs. �2.2� and �2.3�
can be written as follows:

dG

dr
= −

kd

r
G + �m + E +

A

r
	F , �2.4�

dF

dr
= �m − E −

A

r
	G +

kd

r
F . �2.5�

First of all, we have to obtain some asymptotic forms for
G�r� and F�r� functions. At small r ,G�r� can be written as
the following Euler equation:

d2G

dr
= −

1

r

dG

dr
+ � kd

2 − A2

r2 	G . �2.6�

It is clear that the solution of Eq. �2.6� is G�r�=r�, where
�=
kd

2−A2. When a similar analysis at small r is made for
F�r�, one finds the same general results. At large r, we obtain
the following asymptotic differential equation for both G�r�
and F�r� :d2H�r� /dr2= �m2−E2�H�r�, where H�r� is either
G�r� or F�r�. We conclude that H�r��exp�−r
m2−E2�. We
therefore adopt the following representations for these radial
functions:

G�r� = 
m + Er�exp�− r
m2 − E2���1 + �2� , �2.7�

F�r� = 
m − Er�exp�− r
m2 − E2���1 − �2� . �2.8�

We now substitute these equations into Eqs. �2.4� and �2.5�
and use the notation r=r1	 to find

d�1

d	
= �1 −

a + �

	
	�1 − �b + kd

	
	�2, �2.9�

d�2

d	
= �b − kd

	
	�1 + �a − �

	
	�2, �2.10�

where r1=1/2
m2−E2, a=2EAr1, and b=2mAr1. It is pos-
sible, of course, to solve these equations by using a power
series method. However, we shall solve the equations by
means of the AIM, which was developed originally for
second-order linear differential equations. In the next sec-
tion, we extend the scope of the AIM to apply to first-order
linear coupled differential equations generally; then in Sec.
IV we apply the results obtained to the specific Dirac radial
equations �2.9� and �2.10� above.

III. ASYMPTOTIC ITERATION METHOD FOR FIRST-
ORDER LINEAR COUPLED DIFFERENTIAL

EQUATIONS

We consider the following first-order linear coupled dif-
ferential equations:

��1 = 
0�x��1 + s0�x��2, �3.1�

��2 = �0�x��1 + p0�x��2, �3.2�

where the prime represents the derivative with respect to x,
and 
0�x� ,s0�x� ,�0�x�, and p0�x� are sufficiently differen-

tiable in appropriate domains. If we differentiate Eqs. �3.1�
and �3.2� with respect to x, we find that

��1 = 
1�x��1 + s1�x��2, �3.3�

��2 = �1�x��1 + p1�x��2, �3.4�

where


1 = 
�0 + 
0
2 + s0�0,

s1 = s�0 + 
0s0 + s0p0,

�1 = ��0 + 
0�0 + p0�0,

p1 = p�0 + p0
2 + s0�0.

Similarly, if we calculate the �n+2�th derivative, n=1,2 ,…,
we have

�1
�n+2� = 
n+1�x��1 + sn+1�x��2, �3.5�

�2
�n+2� = �n+1�x��1 + pn+1�x��2, �3.6�

where


n+1 = 
�n + 
n
0 + sn�0,

sn+1 = s�n + 
ns0 + snp0,

�n+1 = ��n + �n
0 + pn�0,

pn+1 = p�n + �ns0 + pnp0.

From the ratio of the �n+2�th and �n+1�th derivatives of �1

we have

d

dx
ln��1

�n+1�� =
�1

�n+2�

�1
�n+1� =


n+1��1 + �sn+1/
n+1��2�

n��1 + �sn/
n��2�

.

�3.7�

An exactly similar result can be obtained for �2. However, to
solve the system given in Eqs. �3.1� and �3.2�, one of these
conditions is sufficient. We now introduce the “asymptotic”
aspect of the method. If we have, for sufficiently large n,

sn+1


n+1
=

sn


n
ª �, n = 1,2,3,… , �3.8�

then Eq. �3.7� reduces to �d /dx�ln��1
�n+1��=
n+1 /
n, which

yields

�1
�n+1��x� = C1exp��x 
n+1�t�


n�t�
dt	 = C1
nexp��x

���0

+ 
0�dt	 , �3.9�

where C1 is the integration constant. After substituting Eq.
�3.9� into �1

�n+1�=
n�x��1+sn�x��2, we get
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�1 + ��x��2 = C1exp��x

���0 + 
0�dt	 . �3.10�

Using Eqs. �3.2� and �3.10� , we can obtain the general so-
lution of �2�x� as follows:

�2�x� = exp��x

�p0 − �0��dt	C2 + C1�x

��0exp��t

�
0

− p0 + 2�0��d�	dt�� . �3.11�

Once we have obtained �2�x�, it is easy to find �1�x� by
using one of the coupled equations, or directly from Eq.
�3.10�.

IV. SOLUTION OF THE DIRAC COULOMB PROBLEM

We now turn back to our first principal application. If we
compare Eqs. �2.9� and �2.10� with Eqs. �3.1� and �3.2�, we
see that 
0�	�=1− �a+�� /	, s0�	�=−�b+kd� /	, �0�	�= �b
−kd� /	, and p0�	�= �a−�� /	. By using our iteration formulas
and the iteration termination condition given in Eq. �3.8�, we
find that a=� ,1+� ,2+� ,…; this means that a=n+�, where
n=0,1 ,2 ,…. In this case b satisfies the following relations:

n = 0, a = �, b = − kd,

n = 1, a = 1 + �, b = − kd, ± 
1 + 2� + kd
2,

n = 2, a = 2 + �, b =

− kd, ± 
3 + 2� + kd
2, ± 
4 + 4� + kd

2,

n = 3, a = 3 + �, b =

− kd, ± 
5 + 2� + kd
2, ± 
8 + 4� + kd

2, ± 
9 + 6� + kd
2.

In general we have, for a=n+�, that b
= ±
kd

2+s�2n−s�+2s�, where s=0,1 ,2 ,… ,n. We know
from Eqs. �2.9� and �2.10� that a=2EAr1, b=2mAr1, and r1
=1/2
m2−E2. When we use these equations, we find the
following two different expressions for the energy:

E = ±
m


1 + �A/�n + ���2
�4.1�

and

E = ± m
1 −
A2

kd
2 + s�2n − s� + 2s�

. �4.2�

But these expressions must be equal. From their equality, s
must be n or n+2�. We know that both n and s are integers,
but � is not an integer, so we find that s=n. In this case b
becomes b= ±
kd

2+n2+2n�, but when n=0, b must be −kd.
Thus the energy has the form

E = ± m�1 + � A

n + 
kd
2 − A2	2�−1/2

, �4.3�

where we use �=
kd
2−A2 and n=0,1 ,2 ,3 ,…. If we define

the principal quantum number as nr=n+ �kd�− �d−3� /2

=1,2 ,3 ,…, we recover the following well-known formula
for the Coulomb energy:

E = ± m�1 + � A

nr − �kd� + �d − 3�/2 + 
kd
2 − A2	2�−1/2

.

�4.4�

V. COULOMB WAVE FUNCTIONS

In this section we obtain the Coulomb eigenfunctions by
using Eqs. �3.14� and �3.11� . Equation �3.11� includes two
independent solutions for �2�x�. The first factor of the ex-
pression in Eq. �3.11� generally represents the physical solu-
tion, so we use this factor as the wave-function generator for
our model. If we rewrite this, we have

�2�x� = C2exp��x

�p0 − �0��dt	 , �5.1�

where C2 is an integration constant which can be determined
by normalization. If we use our iteration procedure, we find
the following results for �2:

�2�	� = 1, n = 0,

�2�	� = − �2� + 1��1 −
	

2� + 1
	, n = 1,

�2�	� = �2� + 1��2� + 2��1 −
2	

2� + 1

+
	2

�2� + 1��2� + 2�	, n = 2,

�2�	� = − �2� + 1��2� + 2��2� + 3��1 −
3	

2� + 1

+
3	2

�2� + 1��2� + 2�
−

	3

�2� + 1��2� + 2��2� + 3�	,

n = 3.

We see from these results that the general formula for �2�	�
can be written as follows:

�2�	� = �− 1�n �2� + n�!
�2��!

C21F1�− n,2� + 1,	� , �5.2�

where 1F1 is the confluent hypergeometric function; since the
first argument is a negative integer, the function is a polyno-
mial of degree n. We can now calculate �1�	�. For this task
we use Eq. �3.10�, but like �2�	�, the solution of Eq. �3.10�
has two parts. One of them is a polynomial and the other one
is an infinite series: we choose the polynomial solution. Thus
we find that �1�	�=−��	��2�	�, where ��	�=sn /
n. If we
calculate �1�	�, using the above equation, we find the fol-
lowing results:

�1�	� = 0, n = 0,
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�1�	� = �kd + b�, n = 1,

�1�	� = − �kd + b��2� + 1��1 −
	

2� + 1
	, n = 2,

�1�	� = �kd + b��2� + 1��2� + 2��1 −
2	

2� + 1

+
	2

�2� + 1��2� + 2�	, n = 3.

We conclude from these results that

�1�	� = �− 1�n+1�b + kd�
�2� + n − 1�!

�2��!
C21F1�1 − n,2� + 1,	� ,

�5.3�

where b=mA /
m2−E2. After obtaining �1 and �2, we can
recover the radial functions G�r� and F�r� in the well-known
form by using Eqs. �2.7� and �2.8�. Thus, we have the com-
plete solution of the Dirac equation for the Coulomb prob-
lem. In the next sections, we will discuss the solution of the
Dirac equation for a screened Coulomb potential and Cou-
lomb plus linear potential with a linear scalar confinement.

VI. DIRAC EQUATION FOR A SCREENED COULOMB
POTENTIAL IN THREE DIMENSIONS

In this section we will study a screened Coulomb poten-
tial in three dimensions. We use the Mehta and Patil potential
�41� which is suitable for large atoms. This potential is de-
fined by

V�r� = −
v1

r
+

v2


1 + 
r
, �6.1�

where v1=Z�, v2= �Z−1��, and 
=0.98�Z1/3, and �
�1/137.036 is the fine-structure constant. For this case, the
radial Dirac equations read

dG

dr
= −

k

r
G + �m + E +

v1

r
− W�r�	F , �6.2�

dF

dr
= �m − E −

v1

r
+ W�r�	G +

k

r
F , �6.3�

where W�r�=v2
 / �1+
r�. The asymptotic behaviors of F�r�
and G�r� are the same as for the pure Coulombic potential.
For this reason, G�r� and F�r� can be written as follows:

G�r� = r�exp�− r
m2 − E2���1 + �2� , �6.4�

F�r� = r�exp�− r
m2 − E2���1 − �2� , �6.5�

where �=
k2−v1
2. After substituting these forms into into

Eqs. �6.2� and �6.3�, we have

d�1

dr
= �m + � −

�

r
	�1 − �E − W�r� +

v1 + k

r
	�2, �6.6�

d�2

dr
= �E − W�r� +

v1 − k

	
	�1 + �� − m −

�

r
	�2, �6.7�

where �=
m2−E2. Now we can use the AIM procedure to
obtain the eigenvalues. In preparation for the iteration pro-
cess it helps first to remove the square-root expression in �.
We do this by the subsitutions

� =
m + E

m − E
, � =

2m�

1 + �2 , E = m� �2 − 1

�2 + 1
	 . �6.8�

If we use our iteration formulas and the iteration termination
condition given in Eq. �3.8�, we can construct the following
equation, which corresponds to Eq. �3.8�:

TABLE I. Ground-state eigenvalues E for the state k=−1, j
=1/2 �with spectral description 1s1/2� for the screened Coulomb
potential. The energies �E−1�me, where me=511.004 keV, are
shown, along with corresponding accurate numerical values for
comparison.

Z E �E−1�me Numerical

20 0.991560 −4.3129 −4.3157

30 0.979852 −10.2957 −10.2960

40 0.962675 −19.0732 −19.0732

50 0.939619 −30.8549 −30.8543

60 0.910139 −45.9193 −45.9189

70 0.873475 −64.6548 −64.6545

80 0.828543 −87.6152 −87.6148

TABLE II. Eigenvalues E of the Dirac Hamiltonian for the lin-
ear plus Coulomb vector potential V�r�=−A /r+B1r and a linear
scalar potential U�r�=B2r in three dimensions, where A=0.5, B2

=0.2, B1=0.1 The results are given in dimensionless units corre-
sponding to m=1. Accurate numerical results Enum are shown for
comparison; this accuracy was obtained with 20 iterations.

k n States E Enum

−1 0 1s1/2 1.25819 1.25819

−1 1 2s1/2 1.87575 1.87575

−1 2 3s1/2 2.29722 2.29722

1 0 1p1/2 1.70367 1.70367

1 1 2p1/2 2.15272 2.15272

1 2 3p1/2 2.51020 2.51029

−2 0 2p3/2 1.74683 1.74683

−2 1 3p3/2 2.19096 2.19096

−2 2 4p3/2 2.54480 2.54486

2 0 2d3/2 2.03889 2.03889

2 1 3d3/2 2.41193 2.41193

2 2 4d3/2 2.72766 2.72762

−3 0 3d5/2 2.04506 2.04506

−3 1 4d5/2 2.42019 2.42019

−3 2 5d5/2 2.73666 2.73665
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�r,�� = 
n+1sn − sn+1
n = 0. �6.9�

If the problem is exactly solvable, then �r ,��=��� is inde-
pendent of r and its vanishing gives us the exact results, as
with the pure Coulomb problem discussed in Sec. IV. In
cases that are not exactly solvable in closed form, �r ,��
depends on both r and �. We then solve the equation
�r0 ,��=0 for a suitable fixed r=r0 point, which choice af-
fects the convergence rate of the iteration �this choice is dis-
cussed in more detail in the next section�. For the problem at
hand we chose only one value, r0=2, which fixed choice led
to fast convergence in all cases. As the iteration number in-
creases, the eigenvalue estimates become more accurate. The
results for the ground-state energies �i.e., for 1s1/2� with m
=1 and various atomic numbers Z are presented in Table I.
These agree with the results obtained earlier in Ref. �10�.

VII. DIRAC EQUATION FOR THE COULOMB PLUS
LINEAR POTENTIAL WITH A LINEAR SCALAR TERM

As a further test of the method, we turn in this section to
a problem quite different from that of atomic physics: we
study the Dirac equation in three dimensions in the case that
the vectorial part of the potential is Coulomb plus linear, and
the scalar part is linear. We should like to point out that
exactly similar calculations can be carried out in arbitrary
dimensions d. For this problem the radial Dirac equation is
written as follows:

��� · p� + ��m + U�r�� + V�r��� = E� , �7.1�

where V�r�=−A /r+B1r and U�r�=B2r, A is positive, and
B2�B1. The correspoding radial Dirac equations become

dG

dr
= −

k

r
G + �m + E +

A

r
+ �B2 − B1�r	F , �7.2�

dF

dr
= �m − E −

A

r
+ �B2 + B1�r	G +

k

r
F , �7.3�

where k=��j+ 1
2

� and �= ±1. Before starting to calculate the
energy eigenvalues, we have to consider the asymptotic be-
havior of F�r� and G�r� at the boundaries. First we consider
small r. Since the Coulomb potential dominates in this re-
gion, the asymptotic behavior is the same as for the hydro-
genic problem: that is to say, F�r� and G�r� behave as r�,
where �=
k2−A2. At large r, we find that H��r���2�mB2

+EB1�r+ �B2
2−B1

2�r2�H�r�, where H�r� is G�r� or F�r�. Thus,
H�r��exp�−�r− 1

2�r2�, where �=
B2
2−B1

2 and �= �mB2

+EB1� /�. Thus we now write G�r� and F�r� in the following
way:

G�r� = r�exp�− �r −
1

2
�r2	��1 + �2� , �7.4�

FIG. 1. Dirac radial functions G�r� and F�r� ,r�0, in dimen-
sionless units for V�r�=−1/2r+0.1r, U�r�=0.2r, k=−2, j=3/2, n
=2. This state can be described by the spectroscopic convention as
3p3/2.

FIG. 2. Dirac spinor orbit (F�r� ,G�r�) ,r�0, in dimensionless
units for the same example as in Fig. 1.
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F�r� = r�exp�− �r −
1

2
�r2	��1 − �2� . �7.5�

After substituting Eqs. �7.4� and �7.5� into Eqs. �7.2� and
�7.3�, we find

d�1

dr
= �m + � + �� + B2�r −

�

r
	�1 − �E +

A + k

r
− B1r	�2,

�7.6�

d�2

dr
= �E +

A − k

r
− B1r	�1 + �� − m −

�

r
+ �� − B2�r	�2.

�7.7�

When we compare these equations with Eqs. �3.1� and �3.2�
we see that 
0�r�=m+�+ ��+B2�r−� /r, s0�r�=−E− �A
+k� /r+B1r, �0�r�=E+ �A−k� /r−B1r, and p0�r�=�−m
−� /r+ ��−B2�r. We now have to solve �E ,r�=0 at a suit-
able r0 point. Thus r0 is a parameter of the method. For the
present problem, we have found that any r0 satisfying 1
�r0�3 is satisfactory in the sense that the iteration se-
quence converges rapidly. For nonrelativistic problems, we
have found earlier that r0 can be chosen as the peak of a
simple scale-optimized trial function; the value of r0 found in
this way for the the ground state is also effective for the
excited states. However, since we do not have a suitable
variational principle for the Dirac case, the “scale” as repre-
sented by r0, is chosen by the convergence criterion. For the
specific example discussed here, we adopted the fixed value
r0=1.5 and we obtained E for A=1/2, B2=0.2, and B1=0.1.
The results are exhibited in Table II �the spectroscopic label-
ing is explained below�. When B2 is much bigger than B1,
the AIM gives us more accurate results for small iteration
numbers, but here, we calculate the energy eigenvalues for
rather close values of B2 and B1, in order to test the effec-
tiveness of the method.

For the Dirac equation with central potentials l is not a
good quantum number. However, a spectroscopic description
of the states is still possible if we adopt the following con-
vention �10�. We recall from Sec. II that �= ±1. Meanwhile,
the lower index �=0,1 ,2 ,… of the spherical harmonic Y�

m

appearing �40� in the upper two components of the Dirac
four-spinor is related to j by �= j+ 1

2�, and the parity of the
state is given by the formula P= �−1� j+�/2= �−1��. If the num-
ber n=1,2 ,3 ,… counts the eigenvalues for each given value
of k=��j+ 1

2
� we may then define the “principal quantum

number” for all central potentials as nr=n+�. The number �
can then be represented by the usual atomic symbol
�s , p ,d , f ,…�. With this convention we label a state by nrDj,
where D=s , p ,d , f ,…; In the nonrelativistic large-m limit,
this notation agrees with the usual Schrödinger description.

VIII. WAVE FUNCTIONS FOR THE LINEAR PLUS
COULOMB PROBLEM

It is possible to obtain approximate wave functions for the
potential with Coulombic vectorial and scalar linear parts.
We calculate the wave functions approximately by using the

AIM in the following way. As in Sec. IV, we use the first part
of Eq. �3.11� to generate the wave function. In this case, the
function ��r�w0�r� which appears in the wave-function gen-
erator cannot be integrated analytically at every iteration, so
instead of doing this, we first expand this function near r
=0 and then integrate the representation to give an approxi-
mation for �2�r�. Once we have �2�r�, it is straightforward to
obtain �1�r� by using �1�r�=−��r��2�r�. After obtaining
�1�r� and �2�r�, we can find G�r� and F�r� by using Eqs.
�7.4� and �7.5�. Below we give an example of these calcula-
tions. We choose the 3p3/2 state in Table II and find the
following corresponding wave functions:

G�r� � ��
k=0

15

akr
k	r0.866 025exp�− 2.419 65r − 0.086 602 5r2� ,

�8.1�

F�r� � ��
k=0

15

bkr
k	r0.866 025exp�− 2.419 65r − 0.086 602 5r2� ,

�8.2�

where the ak and bk coefficients are given in Table III. We
tabulate more coefficients than are needed, in order to dem-
onstrate the stability of the method. In Fig. 1 we show Car-
tesian plots of the radial functions G�r� and F�r�, and in Fig.
2 we exhibit the Dirac spinor orbit �38� defined by
(G�r� ,F�r�) ,r�0. The availability of the wave-function ap-
proximations makes these tasks straightforward.

IX. CONCLUSION

In this paper we have shown how the AIM can be used to
solve systems of two first-order linear differential equations.
In cases where the system represents an eigenvalue problem,

TABLE III. The coefficients ak and bk in Eqs. �8.1� and �8.2�.

k ak bk

0 1.7746 −0.22540

1 3.34842 −0.87777

2 2.58401 −1.16405

3 0.89712 −0.79148

4 −4.42384�10−2 −0.30087

5 −0.20572 −4.92821�10−2

6 −0.11569 1.18971�10−2

7 −3.99651�10−2 1.06347�10−2

8 −1.00424�10−2 3.82882�10−3

9 −1.95538�10−3 9.31883�10−4

10 −3.04816�10−4 1.71231�10−4

11 −3.87895�10−5 2.48733�10−5

12 −4.07966�10−6 2.92628�10−6

13 −3.57403�10−7 2.82781�10−7

14 −2.61991�10−8 2.26316�10−8

15 −1.61008�10−9 1.50639�10−9
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the method yields the eigenfunctions and the eigenvalues. If
the exact wave function may be factored in the form of an
asymptotic wave function multiplied by a polynomial, the
problem can be solved exactly. In other cases, an approxi-
mate solution is found by forcing the vanishing of a certain
function �r ,E� after a finite number of iterations at a fixed
expansion point r=r0. The range of values of r0 which all
lead to fast convergence is not narrow: for the problems dis-
cussed in this paper the range 1�r0�3 was satisfactory; for
highly excited states with Coulomb-like potentials, we have
found larger values to be better.

In this paper we report applications of the method to
bound states of the Dirac equation. First of all, as a test, the
known exact solutions of the Coulomb problem in d dimen-

sions were recovered. The method was then applied to find
the spectrum and wave functions for a screened Coulomb
potential, and also for a very different problem, namely, a
linear plus Coulomb potential with a scalar linear confining
term. In all cases the method yielded fast convergence to
accurate solutions.
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