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We present a split-beam neutron interferometric experiment to test the noncyclic geometric phase tied to the
spatial evolution of the system: The subjacent two-dimensional Hilbert space is spanned by the two possible
paths in the interferometer, and the evolution of the state is controlled by phase shifters and absorbers. A related
experiment was reported previously by Hasegawa et al. �Phys Rev A 53, 2486 �1996�� to verify the cyclic
spatial geometric phase. The interpretation of this experiment, namely to ascribe a geometric phase to this
particular state evolution, has met with severe criticism from Wagh �Phys. Rev A 59, 1715 �1999��. The
extension to a noncyclic evolution manifests the correctness of the interpretation of the previous experiment by
means of an explicit calculation of the noncyclic geometric phase in terms of paths on the Bloch-sphere.
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Reported by Pancharatnam �1� in the 1950s, a vast
amount of intellectual work has been put into the investiga-
tion of geometric phases. In particular, Berry showed in 1984
�2� that a geometric phase arises for the adiabatic evolution
of a quantum mechanical state, which triggered renewed in-
terest in this topic. The evolution of a system returning to its
initial state causes an additional phase factor connected only
to the path transversed in state space. There have been sev-
eral extensions in various directions �3–8� for pure states, but
also for the mixed state case �9–11�. Besides this theoretical
work, numerous experiments have been performed to verify
geometric phases using various types of quantum mechanical
systems, e.g., polarized photons �12� or NMR �13�. In addi-
tion, neutron interferometry has been established as a par-
ticularly suitable tool to study basic principles of quantum
mechanics �14–16�, providing explicit demonstrations
�17–20� and facilitating further studies �21� of geometric
phenomena.

There is no reason to consider only inherent quantum
properties such as spin and polarization for the emergence of
a geometric phase; one can also consider a subspace of the
momentum space of a particle and its geometry. On this issue
some authors of the present article performed an experiment
to test the spatial geometric phase �17�. The results are fully
consistent with the values predicted by theory, however,
there is an ambiguity in the interpretation as pointed out by
Wagh �22�. He concludes that in this setup the phase picked
up by a state during its evolution is merely a U�1� phase
factor stemming from the dynamics of the system and is not
due to the geometric nature of the subjacent Hilbert space.

In this paper we generalize the idea of the experiment in
�17� to resolve the ambiguity in the interpretation of this
antecedent neutron interferometry experiment. There the
geometric phase has been measured for a 2� �cyclic� rotation
of the Bloch vector representing the path state of the neutron.
In order to deny Wagh’s criticism, we have now measured

the geometric phase for a rotation by an angle in the intervall
�0, 2�� �noncyclic� and—to show the applicability of the
geometric phase concept—we have devised the path of the
state vector on the Bloch sphere to calculate the correspond-
ing surface area enclosed by the evolution path. In theory,
this surface area is proportional to the geometric phase,
which has been determined experimentally to confirm the
validity of our considerations and therefore the proper inter-
pretation in terms of a geometric phase.

For testing the spatial geometric phase we use a double-
loop interferometer �Fig. 1�, where the incident �unpolarized�
neutron beam ��� is split at the beam splitter BS1 into a
reflected beam ��r

0� and a transmitted beam ��t
0�.

The reflected beam ��r
0� is used as a reference with an

adjustable relative phase � to ��t
0� due to the phase shifter

PS1. The latter beam is defined to be in the state ��t
0���p�

before the beam splitter BS3, where �p� is the eigenstate to
the operator Pp��p��p� measuring the path. Behind BS3
there are two possible orthogonal paths �p� and �p�� span-
ning a two-dimensional Hilbert space, where �p� denotes the
state of the transmitted beam and �p�� the state of the re-
flected beam, respectively. Having a 50:50 beam splitter, ��t

0�
is transformed into a superposition of the basis vectors �p�
and �p��: ��t

0�� �q����p�+ �p��� /	2. The corresponding
projection operator Pq��q��q�= �1+ �p��p��+ �p���p�� /2 �and
also Pq� =1− Pq= �q���q��� measures the interference instead
of the paths.
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FIG. 1. �Color online� Experimental setup utilizing a double-
loop perfect-crystal neutron interferometer: One loop is used for the
state manipulation with a phase shifter �PS2� together with a beam
attenuator �A� and the other one provides a reference beam with
adjustable phase by use of the phase shifter �PS1�.
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The transmitted beam ��t
0� is subjected to further evolu-

tion in the second loop of the interferometer by use of beam
splitters �BS4, BS5, and BS6�, an absorber A with transmis-
sion coefficient T and a phase shifter �PS2� generating a
phase shift of ei�1 on the upper ��p��� and ei�2 on the lower
beam path ��p��, respectively, yielding the final state ��t�.
Thus, the evolution causing the spatial geometric phase can
be written as

��t
0�→

BS3 1
	2

��p�� + �p��→
AT 1

	2
��p�� + 	T�p��

→
PS2 1

	2
�ei�1�p�� + 	Tei�2�p�� � ��t� . �1�

The transformation of the reference beam ��r
0� is given by

��r
0��ei���r

0��ei��p��, which follows from the fact that the
path of ��r

0� coincides with the path of the beam reflected at
BS3 labeled by �p��.

In the last step, ��t� and the reference beam are recom-
bined at BS6 and detected in the forward beam at the detec-
tor DO. This recombination can be described by application
of the interference projection operator Pq= �q��q� to ��t�, as
well as to ��r

0�,

���t� � Pq�t = K�ei�1 + 	Tei�2��q� ,

ei����r� � Pqei���r
0� = Kei��q� , �2�

where K is some scaling constant.
The intensity I measured in the detector DO is propor-

tional to the modulus squared of the superposition ���t�
+ei����r�

I � ����t� + ei����r��2 = ���r���r� + ���t���t�

+ 2����r���t�� cos�� − �� , �3�

with ��arg���r ���t�. Explicitly, using Eq. �2� we obtain

� =
�1 + �2

2
+ arg�e−i

��
2 + 	Tei

��
2 � ,

=
�1 + �2

2
− arctan
tan���

2
��1 − 	T

1 + 	T
� , �4�

where ����2−�1. By varying � we can read off � as a
shift of the interference pattern.

For our purposes, a double-loop interferometer is inevi-
table, since we measure the phase shift generated in one
interferometer loop relative to the reference beam, in contrast
to a phase difference between two paths measured in usual
interferometric setups. Here, the relative phase difference �
between ���t� and ���r� provides information about the evo-
lution of the state ��t

0� in state space. The geometric phase
�g is defined as �g��−�d �6�, where �d denotes the dy-
namical part. In our setup �d stems from the phase shifter
PS2 and is given by a sum of the phase shifts �1 and �2
weighted with the transmission coefficicient T �17,22�, �d

= ��1+T�2� / �1+T�. It vanishes by an appropriate choice of
positive and negative phase shifts in accordance with the
transmission, i. e., �d=0 for −�1 /�2=T.

Note that the same evolution can also be implemented in
spin space by thinking of polarizers instead of beam splitters;
and magnetic fields instead of absorbers, and the second
phase-shifter PS2. The phase shift for such a setup differs
from � in Eq. �4� merely by a purely dynamical contribution
that is compensated in our experiment.

The result from Eq. �4� can also be obtained by purely
geometric considerations. Since we are dealing with a two-
level system corresponding to the possible paths of ��t

0� in
the second loop of the interferometer the state space is
equivalent to a sphere in R3, known as the Bloch sphere
�23–25�. From theory we know that the geometric phase �g
is given by the �oriented� surface area enclosed by the path
of the state vector on the Bloch sphere and is proportional to
the enclosed solid angle as seen from the origin of the
sphere.

To each point on the sphere there is a corresponding pro-
jection operator. As basis we choose �p���p�� and �p��p�,
represented as the north and the south pole of the sphere,
respectively �Fig. 2�. At the beam splitter BS3, the state ��t

0�
originating from the point �p��p� is projected to an equal
superposition of the upper and lower paths depicted as a
geodesic from the south pole to the equatorial line on the
Bloch sphere.1

The absorber with transmittivity T=tan2� /2, �
� �0,� /2�, changes the weights of the superposed basis
states �p� and �p��. The resulting state is encoded as a point
on the geodesic from the north pole to the equatorial line. In
particular, for no absorption ��=� /2 or T=1�, the state stays
on the equator. By inserting a beam block ��=0 or T=0�,
there is no contribution from �p� so that the state is pinned
onto the north pole.

The phase shifter PS2 induces a relative phase shift be-
tween the superposing states of ��=�2−�1. This corre-

1The particular point on the equator is arbitrary due to the arbi-
trary choice of the phases of the basis vectors

FIG. 2. �Color online� Paths on the Bloch sphere corresponding
to the evolution of the state ��t

0� �a� in the cyclic and �b� noncyclic
case. The enclosed solid angle as seen from the origin of the sphere
is proportional to the geometric phase observed in the experiment.
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sponds to an evolution along a circle of latitude on the Bloch
sphere with periodicity 2�. The recombination at BS5 fol-
lowed by the detection of the forward beam in DO is repre-
sented as a projection to the starting point on the equatorial
line, i.e., we have to close the curve associated with the
evolution of the state by a geodesic to the point �q��q� in
accordance to the results in �5�.

This evolution path is depicted in Figs. 2�a� and 2�b� for
cyclic and noncyclic evolution, respectively. For a relative
phase difference greater than � /2 we have to take the direc-
tion of the loops into account: In Fig. 2�b� the first loop is
transversed clockwise, whereas the second loop is trans-
versed counterclockwise yielding a positive or negative con-
tribution to the geometric phase, respectively.

With this representation we can numerically calculate the
solid angle 	 enclosed by the transversed path on the Bloch
sphere. The results obtained in this way for �g=−	 /2 �2�
are equal to the results based on Eq. �4�. This substantiates
the emergence of a geometric phase in this type of experi-
ment, contrary to other claims �22�.

As for the experimental demonstration, we have used the
double-loop perfect-crystal interferometer installed at the
S18 beamline at the high-flux reactor ILL, Grenoble �26�. A
schematic view of the setup is shown in Fig. 1. Before falling
onto the skew-symmetric interferometer, the incident neutron
beam is collimated and monochromatized by the 220-Bragg
reflection of a Si perfect crytal monochromator placed in the
thermal neutron guide H25. The wavelength is tuned to give
a mean value of 
0=2.715 Å. The beam cross section is
confined to 5�5 mm2 and by use of an isothermal box en-
closing the interferometer thermal environmental isolation is
achieved. As phase shifters, parallel-sided Al plates are used.
In fact, a 5-mm-thick plate is taken for the first phase shifter
�PS1� inserted in the former loop and plates of different
thicknesses �d1=0.5 mm and d2=4.1 mm� are used as the
second phase shifter �PS2�.

The different thicknesses together with a specific choice
of the absorber A are to eliminate a phase of unwanted dy-
namical origin. In each beam a positive phase shift �1,2
�d1,2 is induced by PS2 �14�. By a rotation of this phase
shifter through a �small� angle � about an axis perpendicular
to the interferometer, �1 and �2 change with opposite sign,
i.e., ��1�−d1�, while ��2�d2�. For the relative phase shift
��=�2−�1, between the two paths we have ��−�0� �d2

+d1��, where the constant �0, as determined by the initial
position of PS2, has been adjusted to the �0=2n�, n integer,
and can thus be neglected.

Furthermore, we have intended to set the transmission
coefficients Tj of each beam after PS2 and A as T2 /T1
=−��1 /��2=d1 /d2�0.122 so that the dynamical phase dif-
ference between two successive positions of PS2 vanishes.
For an appropriate adjustment of the transmission coeffi-
cient, we use a gadolinium solution as absorber, which is
tuned to exhibit a transmissivity of Tabs=0.118�5�. Taking
the absorption of the 0.5-mm Al phase shifter into account, a
ratio T2 /T1=0.120�5� is realized.

The phase shifts � of the sinusoidal intensity modulations
due to PS1 are determined at various points on the path
traced out by the state, corresponding to a noncyclic evolu-

tion. In practice, this is achieved by measuring the intensity
modulation by PS1 at various positions of the PS2 �17�. The
parameter of the evolution is the relative phase shift ��,
which was varied from −0.2� to 3.0�. The measured phase
shift is plotted as the function of �� in Fig. 3 together with
theoretically predicted curves: One �dotted curve� is obtained
by assuming an ideal situation of 100% visibility for all
loops, whereas the practically diminished visibility is taken
into account for the other �solid curve�. In particular, the two
subbeams from the second loop are only partially overlap-
ping �in space� with the reference beam at BS6 due to un-
equal spatial displacements caused by the unequal thick-
nesses of the plates of PS2. These nonoverlapping parts do
not contribute to the interference pattern that in turn induces
a flattening of the measured curve relative to the ideal curve.
Other, however minor, contributions to this flattening are
from inhomogenous phase distributions and transmission co-
efficients leading to an incoherent superposition of states.
Averaging over such a state distribution gives rise to addi-
tional damping terms e−i in each beam, i.e., ��
=arg�	T1e−1ei�1 +	T2e−2ei�2� in contrast to � in Eq. �4�,
which can also be explained in terms of a mixed state geo-
metric phase �10�.

All the mentioned influences are subsumed in the fit co-
efficient C=0.57�2� obtained from a least-squares fit �solid
line� to the measured data using the function arg�	T1e−is1��

+C	T2eis2��� with s1,2=d1,2 / �d1+d2�,2 which is a version of
Eq. �4� adapted to the experimental situation. These experi-
mental factors do not invalidate the discussion on the van-
ishing dynamical phase: The deviation of the experimentally
determined �solid� curve from the ideal �dotted� curve is due
to the measurement circumstances in the neutron interferom-
eter. The remaining contribution of the dynamical phase due
to the slightly different ratios of −��1 /��2 and T2 /T1 can be

2The terms s1,2 are due to �1,2� �d1,2�= �d1,2�� / �d1+d2� with
�=�� / �d1+d2�.

FIG. 3. �Color online� Observed phase shift � for a noncyclic
evolution of the state vector parameterized by the relative phase
shift ��. The dotted line indicates the theoretical prediction for the
geometric phase assuming hundred percent visibility, whereas the
solid line takes the diminished visibility into account. For a cyclic
evolution ���=2�� we obtain �g=−0.684�48� radians for the
transmission ratio T2 /T1=0.120�5�.
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calculated to yield �d=−0.009�26� at ��=2�.
One can recognize the increase of the measured phase

shift � in Fig. 3 due to the positively oriented surface on the
Bloch sphere �c.f. Fig. 2�b�� followed by a decrease due to
the counterclockwise transversed loop yielding a negative
phase contribution. This behavior clearly exhibits the geo-
metric nature of the measured phase. For a cyclic evolution
���=2�� the measured phase is −0.684�48�, which is in a
good agreement with the analytical value −0.683 of the geo-
metric phase for a ratio −�1 /�2=T2 /T1=0.5/4.1.

Another indication for a measurement of a noncyclic geo-
metric phase is the varying amplitude of the interference
fringes dependent on �� �22�. However, for the absorption
ratio T2 /T1=0.122, these differences are at the detection
limit. Measurements of other T values are of interest and
detailed results of such measurements will be published in a
forthcoming publication.

In summary, we have shown that one can ascribe a geo-
metric phase not only to spin evolutions of neutrons, but also

to evolutions in the spatial degrees of freedom of neutrons in
an interferometric setup. This equivalence is evident from
the description of both cases via state vectors in a two di-
mensional Hilbert space. However, there have been argu-
ments against the experimental verification in �17�, which we
believe can be settled in favor of a geometric phase appear-
ing in the setup described above. The twofold calculations of
the geometric phase either in terms of a shift in the interfer-
ence fringes or via surface integrals in an abstract state space
allows for a geometric interpretation of the obtained phase
shift. The experiments exhibit a shift of the interference pat-
tern that reflects these theoretical predictions up to influences
due to the different visibilities in the different beams.
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