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The measurement of the Casimir force between a large gold coated sphere and single crystal silicon plate is
performed with an atomic force microscope. A rigorous statistical comparison of data with theory is done,
without use of the concept of root-mean-square deviation, and excellent agreement is obtained. The Casimir
force between metal and semiconductor is demonstrated to be qualitatively different than between two similar
or dissimilar metals, which opens opportunities for applications in nanotechnology.
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In this paper we present the results of the experimental
and theoretical investigation of the Casimir force acting be-
tween a gold coated sphere and a single crystal silicon plate.
The Casimir force is determined by the alteration of zero-
point oscillations of the electromagnetic field due to the pres-
ence of material boundaries �see the original paper �1� and
monographs �2–4��. The Casimir force is in fact the limiting
case of the van der Waals force when the separation between
the test bodies becomes large enough for retardation to be
included. Historically, most measurements of the Casimir
force were performed between dielectrics �see Ref. �5� for
review�, and anomalous behavior in silicon has been reported
�6�. In the last few years many precise experiments using
metallic test bodies have been done and the results were
compared with theory, taking into account different correc-
tions to the Casimir force �5,7–12�. The obtained results have
been found to be of prime importance in the physics of nano-
and micromechanical systems �13� and for testing predic-
tions of extra-dimensional models and other theoretical
schemes beyond the standard model �12�.

To gain a better insight of the role of the Casimir effect in
nanotechnology, it is important to understand the effect of
semiconductor test bodies. These materials are central to the
fabrication and design of nano- and microdevices and pro-
vide a wide variety of electrical properties that may influence
the Casimir force. Until now, however, no precise experi-
ments on the Casimir effect with semiconductor bodies have
been performed �see the discussion on the importance of this
subject in Ref. �14��. Below we demonstrate that the ratio of
the Casimir forces between Au and Si test bodies to that from
Au-Au decreases with the increase of separation. This is
qualitatively different from the case when Si is replaced with
some metal of lower conductivity than Au, where the same
ratio is practically constant or increases with separation. An-
other important point of this paper is the comparison be-
tween the measurement data and theory without the use of
the concept of the root-mean-square deviation widely em-
ployed in previous experiments on the Casimir effect. As was
shown in Ref. �15�, this approach may be inadequate when

the measured force rapidly changes with separation distance,
though no better approach was suggested.

One test body is a sphere attached to a cantilever of an
atomic force microscope �AFM�. The sphere is coated with
an Au layer of 105 nm thickness. The diameter of the sphere
was measured using a scanning electron microscope to be
2R=202.6±0.3 �m. The other test body is a 5�10 mm2

single crystal silicon Si�100� plate. The nominal resistivity
of the Si plate was 0.01–0.001 � cm. Using the four-probe
technique, we measured its resistivity to be �=0.0035
� cm. Note that for all frequencies contributing to the Ca-
simir force, this Si plate, unlike metals, has a large absorp-
tion typical of semiconductors �metallic resistivities are usu-
ally two or three orders of magnitude lower�. The Casimir
force acting between the Au sphere and Si plate was mea-
sured by means of the improved setup previously used in
Ref. �9� for two Au test bodies. The main improvements and
innovations implemented in this experiment are: We now use
a much higher vacuum 2�10−7 Torr �instead of 3�10−2

Torr in Ref. �9�� to maintain the chemical purity of the Si
surface, which oxidizes rapidly to SiO2. In addition, this
vacuum system is oil-free, consisting of oil-free mechanical
pumps, turbo pumps, and ion pumps to prevent contamina-
tion. To reduce the influence of mechanical noise during data
acquisition, only the ion pump is used to maintain the lowest
pressures.

A special passivation procedure is used to prepare the Si
surface. First nanostrip �a combination of H2O2 and H2SO4�
is used to clean the surface of organics and other contami-
nants. This oxidizes the surface. Then we use 49% HF to
etch SiO2 and hydrogen to terminate the surface. The termi-
nation is stable for more than two weeks under the vacuum
conditions described above �16�. The bottom of the Si plate
is coated with about 100 nm of Au and used for the electrical
contact. It was checked to be ohmic in nature. The above
steps were necessary to keep the residual potential difference
low, constant, and independent of separation distance.

The next improvement is the reduction of the uncertainty
in the determination of absolute separation distances z down
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to �z=0.8 nm �in comparison with 1 nm in Ref. �9��. To
achieve this aim, here we use a piezo capable of traveling a
distance of 6 �m from initial separation to contact of the two
surfaces �previously �9� the movement of the plate to large
separations was done mechanically and the piezo movement
was used only at short separations of less than 2 �m�. All
6 �m of piezo movement are calibrated interferometrically.
As a result, the error in the piezo calibration practically does
not contribute to �z. Then different dc voltages between
+0.2 to −0.4 V were applied to the plate and the electric
force was measured. The electric force measurement with
each voltage was repeated five times and the average value
was used to fit the exact electrostatic force-distance relation
�9� to determine the separation on contact of the two surfaces
z0. The resulting value, which is not zero due to the rough-
ness of surfaces, is z0=32.1±0.8 nm. The error in z0 com-
pletely determines the error �z of all measured absolute
separations z. The values of z are found independently, with-
out fitting to the theoretical expression for the Casimir force.

The same procedure also allowed an independent deter-
mination of the residual potential difference V0 at differ-
ent separations. The V0 was determined to be V0
=−0.114±0.002 V and independent of the separation. This
allowed us to confirm the absence of any contamination of
the Si surface and the absence of localized charges �the pres-
ence of localized charges would lead to dipole and other
multipolar electrostatic fields, resulting in a V0 that varies
with distance�. The high conductivity of the Si plate used is
important in preventing the formation of such charges.

Finally the Casimir force between the sphere and the plate
as a function of distance is measured. The sphere is kept
grounded while a compensating voltage corresponding to V0
is applied to the plate to cancel the residual electrostatic
force. The distance was varied from large to short separa-
tions by applying a continuous voltage to the piezo. The
force data Fexpt�zi� were collected at equal time intervals cor-
responding to separations zi having a step size of 0.17 nm.
This measurement was repeated for n=65 times.

We now turn to a determination of experimental errors
and precision. First the experimental points were analyzed
for the presence of so-called “outlying” results using the sta-
tistical criteria of Ref. �17�. It was found that none of the n
=65 sets of measurements are outlying and all of them can

be used in error analysis. To find the random error the mean
values of the measured force over all sets of measurements
F̄expt�zi� are calculated at all points zi �1� i�3164�. The
mean experimental force as a function of separation for the
distance range 62.33 to 600.04 nm is shown in Fig. 1. An
estimate for the variance of this mean sF̄�zi� is not uniform,
i.e., changes randomly when the separation changes less than
�z=0.8 nm. In this case, the best estimate for a variance is
calculated by a statistical procedure �18� in the theory of
repeated measurements �see Ref. �19� for details�. Then the
variance is approximately the same for all zi and equal to
sF̄=1.5 pN.

Using the Student’s t distribution with a number of de-
grees of freedom f =n−1=64 and choosing �=0.95 �the hy-
pothesis is true at 95% confidence�, we obtain p= �1+�� /2
=0.975 and tp�f�=2.00. Then for the confidence interval it

follows �F̄expt�z�−F�z����randFexpt�sF̄tp�f�	3.0 pN. Here
F�z� is the true value of the Casimir force at a separation z
�this exact value can only be approached with complete
knowledge of all possible corrections� and �randFexpt is the
random absolute error of force measurements in the present
experiment. It is almost two times smaller than the random
error in the experiment of Ref. �9� with two gold test bodies.

The systematic errors are the same as in the experiment
with two gold bodies �see the second paper in Ref. �9��. They
are given by the error in force calibration �0.82 pN�, by the
noise when the calibration voltage is applied to the cantilever
�0.55 pN�, by the instrumental sensitivity �0.31 pN�, and by
the restrictions on computer resolution of data �0.12 pN�.
The combined systematic error in Ref. �9� was, however,
overestimated. To obtain the best estimate for it, the differ-
ence between the experimental and true force values at each
separation is assumed to be distributed uniformly. The result-
ing systematic error �systFexpt	1.17 pN at 95% confidence
is given by the composition of N uniform distributions �17�
�in contrast with 2.7 pN obtained in Ref. �9��. The total ex-
perimental error of the Casimir force �totFexpt	3.33 pN at
95% confidence is obtained from Ref. �17� by combining the
above random and systematic errors. In Fig. 2 the relative

error �expt=�totFexpt / F̄expt is given by the solid curve as a
function of separation. It is equal to only 0.87% at the short-

FIG. 1. The mean measured Casimir force as a function of sepa-
ration between the Si plate and the Au sphere. FIG. 2. The total relative experimental �expt �solid curve� and

theoretical �theor �dashed curve� errors as a function of plate-sphere
separation.
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est separation of 62.33 nm and increases with an increase of
separation.

For separations used here, the thermal corrections at T
=300 K are not significant. As noted in Ref. �20�, in this case
one can use the Lifshitz formula at zero temperature �21�

Fc�z� =
	R

2




0

�

k�dk�

0

�

d��ln�1 − r�
�1�r�

�2�e−2zq�

+ ln�1 − r�
�1�r�

�2�e−2zq� . �1�

The reflection coefficients for two independent polarizations
are given by

r�
�p� =

�p��i��q − k�p�

�p��i��q + k�p� , r�
�p� =

k�p� − q

k�p� + q
, �2�

where q2�k�
2 +�2 /c2 , k�p�2

�k�
2 +�p��i���2 /c2, and �p����

is the dielectric permittivity of gold �p=1� and silicon
�p=2�.

�1��i�� was found �5� by means of the dispersion relation
from the imaginary part of �1���� obtained using the com-
plex refractive index from tables �22�. The same procedure
was used for single crystal Si. Since the optical properties of
Si at low frequencies depend on the concentration of charge
carriers, the tabulated data in Ref. �22�, obtained for a sample
of high resistivity �0=1000 � cm, should be adapted for the
silicon plate used in our experiment with a resistivity �
=0.0035 � cm. This is achieved �22� by adding the imagi-
nary part of the Drude dielectric function to the imaginary
part of the dielectric permittivity obtained using the data
from tables. In doing so the plasma frequency for Si at a
resistivity � is found from �p

Si=2�
 /�0��Si=6.37
�1014 rad/s, where 0 is the dielectric permittivity of
vacuum, �Si=1/�Si=10−13 s �22� is the Si relaxation time,
and �Si is the relaxation parameter �note that change of �p
even by a factor of 1.5 leads to less than a 1% change in the
Casimir force magnitudes within the entire separation re-
gion�. Within our range of characteristic frequences there are
only negligible differences in the values of �1��i�� found for
the sample of resistivity �, used in this experiment, as com-
pared to Si with much higher resistivity �0, as in the tables
�22�. Thus, the relatively high conductivity of our Si plate
plays an important role in avoiding charging but, at the same
time, the sample demonstrates the typical semiconductor fre-
quency dependence of �i�� within the frequency range con-
tributing to the force.

For comparison of the theoretical results with the experi-
ment, one should take into account the surface roughness
corrections. The topography of the Au coating on the sphere
and of the Si plate was measured using an AFM. It was
found that roughness is mostly represented by the stochasti-
cally distributed distortions with the typical heights 11–20
nm on the sphere and 0.3–0.6 nm on the Si plate. There are
also rare pointlike peaks on the sphere with the heights up
to 25 nm. Denoting by vk

�p� the fractions of the surface area
with roughness height hk

�p� �p=1 for a sphere and p=2 for
a plate�, one can find the zero roughness levels H0

�1�

	15.35 nm, H0
�2�	0.545 nm. In the additive approach the

theoretical Casimir force, including both finite conductivity

and surface roughness corrections, can be calculated as
�5,8,9,12�

Ftheor�zi� = �
k,j

vk
�1�v j

�2�Fc�z̃i� , �3�

where z̃i=zi+H0
�1�+H0

�2�−hk
�1�−hj

�2�, and the values of Fc are
obtained from Eq. �1�. As it was demonstrated in Refs.
�9,12�, for such values of roughness the diffraction-type con-
tributions �23,24� are negligible.

The two main errors in the theoretical Casimir force
�m

theor=��m�Ftheor / �Ftheor� are due to the use of the proximity
force theorem �m=1� and due to sample to sample variations
of the optical data �m=2�. As is concluded in Ref. �9�,
�1

theor�z /R and �2
theor	0.5% �the other errors contained in

the theoretical force due to the influence of patch potentials,
spatial dispersion, and the finite size of the plate were shown
�9,19� to be much smaller�. In the absence of exact informa-
tion, both random quantities are assumed to be distributed
uniformly �i.e., can take any value with equal probability
within the fixed intervals determined by the respective abso-
lute errors; this assumption is the most conservative because
the use of any other probability distribution rule leads to a
smaller combined error�. For this reason the resulting error
�0

theor at 95% confidence can be found once more from Ref.
�17�. Another type of error in the theoretical Casimir force
arises when one substitutes into Eqs. �1� and �3� the experi-
mental data for separations zi and sphere radius R. It is given
by �25� �3

theor	�R /R+3�z /z �here we do not use the addi-
tional fit �9� in order to decrease �z because the comparison
between theory and experiment is not based on the root-
mean-square deviation�.

To determine the total theoretical error of the Casimir
force computations �theor=�totFtheor / �Ftheor�, one should com-
bine the errors �0

theor and �3
theor. In doing so we take into

account that these errors are described by nonuniform and
uniform distributions, respectively. The quantity �theor as a
function of separation is plotted in Fig. 2 as a dashed curve.
Finally, combining the total experimental, �totFexpt, and the-
oretical, �totFtheor, errors in a conservative way, we obtain the
resulting absolute error ��z� for the difference Ftheor�z�
−Fexpt�z�.

FIG. 3. The 95% confidence intervals �solid curves� and the
differences between the theoretical and mean measured Casimir
forces vs plate-sphere separation.
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Now we are in a position to compare theory with the
experiment. In Fig. 3 the differences of the theoretical and
mean experimental Casimir forces �shown in Fig. 1� are plot-
ted. In the same figure the solid curves exhibit the confidence
interval �−��z� ,��z�� computed for any z at 95% confi-
dence. As is seen from Fig. 3, almost all differences between
the theoretical and experimental forces �not just 95% of them
as is required by the accepted confidence� are well within the
confidence interval, i.e., theory is in excellent agreement
with data �we do not plot the results at z�425 nm as the
force magnitudes there are less than ��z��. Quantitatively,
the rigorous measure of agreement between theory and ex-
periment is equal to ��z� / �Ftheor�. This quantity results in the
smallest value of 3.8% within the separation region from
75.8 to 81.5 nm. It is notable, however, that the actual dif-
ference between the theoretical and experimental force val-
ues are less than 1% of force magnitude within the separa-
tions from 62.33 to 69.98 nm. At the same time the rigorous
measure of agreement in this interval varies between 4.15%
and 3.9%.

To conclude, we have performed a measurement of the
Casimir force between large Au sphere and single crystal Si
plate with the experimental relative error equal to 0.87% at
the shortest separation. Data are found to be in excellent
agreement with theory demonstrating that this measurement
is both precise and accurate. At the same time, the uncertain-

ties in the measurement of surface separations do not permit
one to obtain the theoretical results of the same precision as
the experimental ones at separations less than 100 nm. The
case of metal-semiconductor test bodies appears to be quite
different from the case of dissimilar metals Au-Cu �12�
where no noticeable changes of the force magnitude were
found in comparison with the Au-Au system. Here the ratio
of the Casimir forces between Au and Si to Au-Au is 0.74 at
the shortest separation. At a separation of 200 nm, it is only
0.63. This reduction can be understood physically from
lower reflectivity of a semiconductor in comparison to a
metal. The distance dependence of the above ratio is ex-
plained by the fact that the force between Au-Au bodies de-
creases with the increase of separation distance more slowly
than between Au-Si bodies. We note that if our silicon plate
were to behave as a metal instead of a semiconductor, the
ratio under discussion would be practically constant or in-
crease with the increase of separation. This behavior of a
metal-semiconductor system in comparison with the case of
two metals opens opportunities for the modulation of the
Casimir force due to material properties in micro- and nano-
electromechanical systems.
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