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We show that an arbitrary relative phase can be extracted from a multiqubit two-component �MTC� en-
tangled state by local Hadamard transformations and measurements along a single basis only. In addition, how
to distinguish a MTC entangled state with an arbitrary entanglement degree and relative phase from a class of
multiqubit mixed states is discussed.
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Entanglement plays an important role in quantum infor-
mation processing and communication, such as quantum
computation, secret sharing, teleportation, and quantum key
distribution �1–3�. Over the last decade, characterizing or/
and quantifying entanglement has been recognized as one of
central tasks in quantum information science. Correspond-
ingly, there have been many efforts in this direction, for both
pure and mixed states as well as for bipartite and multipartite
systems. These include entanglement of formation �4�, en-
tanglement of distillation �5�, relative entropy of entangle-
ment �6�, negativity �7�, geometric measure of entanglement
�8�, and so on.

On the other hand, there is a strong current interest in the
detection of quantum entanglement. To verify whether a qu-
bit system is indeed prepared in a desired entangled state,
many methods for the entanglement detection have been pre-
sented. Among them, there are proposals based on the struc-
tural approximations �9�, the semidefinite program �10�, and
the entanglement witnesses �11–14�. In addition, the idea of
inferring quantum entanglement using a single measurement
basis has been proposed by Schelpe et al. recently �15�.

Quantum states can encode information �e.g., by ampli-
tude, phase, or both� that may only be extracted by analyzing
the states as a whole. Stimulated by the rapid development in
quantum communication and quantum cryptography, the
question of how to determine the actual state of a quantum
system has gained renewed interest. Recently, a large number
of significant schemes for diagnosing the states of a system
have been proposed based on the quantum tomography tech-
nique �i.e., reconstruction of the states by measuring enough
observables, given many copies of a quantum state� �16�.
However, for some solid state qubit systems, it is very diffi-
cult to implement quantum tomography since usually very
few, if not just one, observables can be measured.

In this work, we propose a method for extracting the rela-
tive phase of a n-qubit two-component entangled state with
the general form of

�p�i1i2 ¯ in� + ei��1 − p�ī1ī2 ¯ īn� , �1�

�where il , īl� �0,1	, īl=1− il, � is a relative phase, and 0
� p�1�. The method presented here operates essentially by
local Hadamard transformations and measurements along a

single basis �the z basis: �i� and �ī��. This work is of signifi-
cant interest because it provides a way to extract the relative

phase from the state �1� and therefore can be used to deter-
mine an arbitrary multiqubit two-component entangled state.
In addition, the extraction of the relative phase may have
other applications in quantum information theory and high
precision measurements �17,18�. In the following, we will
further show how to distinguish the states �1� with arbitrary
weighing factors �any entanglement degree� and relative
phases from a class of multiqubit mixed states.

Before our presentation, let us give a brief discussion on
the states �1�. For p=1/2 and n=2, the states �1� are reduced
to the well known Bell states; while for p=1/2 and n�2,
they are called Greenberger-Horne-Zeilinger �GHZ� states
�19�. The Bell or GHZ states play an important role in quan-
tum information processing and communication and are of
great interest in the foundations of quantum mechanics and
measurement theory �1,20–22�. Recently, there has been
much interest in generation and engineering of the Bell or
GHZ states and several methods have been proposed for
their generation in physical systems such as atoms, ions,
quantum dots, charge qubits, and flux qubits �23–31�. On the
other hand, for 0� p�1/2, the states �1� are partially �non-
maximally� entangled states, which may be caused by non-
exact control of operations or decoherence. As is well
known, a n-qubit maximally entangled state can be extracted
from a set of partially entangled states with the same form of
Eq. �1� by using entanglement purification protocol �32,33�.
And, quantum communication �e.g., teleportation and cryp-
tograph� based on partially entangled states of Eq. �1� have
been discussed recently �34–36�.

Now let us see how to extract the relative phase � of state
�1�. It can be shown that if a Hadamard transformation de-
scribed by �0�→ �1/�2���0�+ �1�� and �1�→ �1/�2���0�− �1��
is performed on each qubit, then state �1� becomes

2−n/2��p + ei��1 − p�

�xl	

�± ��xl	��

+ 2−n/2��p − ei��1 − p�

�yl	

�± ��yl	�� . �2�

Here, ��xl	�= �x1x2¯xn� and ��yl	�= �y1y2¯yn� are computa-
tional basis states of the n qubits �xl ,yl� �0,1	 ; l
=1,2 , . . . ,n�, and 
�xl	

�±��xl	�� �
�yl	
�±��yl	��� is a sum over

all possible basis states ��xl	� ���yl	�� each containing an even
�odd� number of “1.”s For instance, when n=4, 
�xl	
��±��xl	��= ± �0000�± �1100�± �1010�± ¯ ± �1111�. In Eq.
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�2�, the � signs for each term ��xl	� ���yl	�� depend on the
term �i1i2¯ in� involved in the original state �1�. That is, the
choice for the � sign or the � sign is determined by the
number of “1”s contained in the binary computational basis
state �i1i2¯ in� and the arrangement of “1”s in �i1i2¯ in�. It
should be mentioned that the choice for the � signs does not
affect the measurement results since all measurements
throughout this paper are made on individual qubits along
the z basis.

Equation �2� demonstrates that when the n qubits were
initially in the state �1�, if a measurement in z-basis is made
on each qubit after a Hadamard transformation on each qu-
bit, the probability of finding an even number of qubits in the
state �1� would be given by

peven = 1
2 + �p�1 − p� cos � . �3�

Result �3� shows that the relative phase � of the entangled
state �1� can be determined using the procedure described
above. Reasons for this are as follows. First, the value of p
can be obtained using a simple measurement in the z-basis
on each qubit alone, given many copies of the state �1�. Sec-
ond, the probability peven can be determined by measure-
ments in z-basis on each qubit after performing a Hadamard
transformation on each qubit. Therefore, one can determine
the form of a multiqubit two-component entangled state �1�,
with the prior knowledge that the qubit system is prepared in
a certain but unknown state belonging to a finite set of pos-
sible states �1�. Finally, it is noted that the state �1� is reduced
to a pure state of a single qubit when n=1. Hence, a pure
state �p�0�+ei��1− p�1� of a single qubit with arbitrary p and
� can be confirmed using the above procedure.

In what follows our purpose is to show how to distinguish
the entangled state �1� from a class of n-qubit mixed states:

�mix = p�i1i2 ¯ in��i1i2 ¯ in� + �1 − p��ī1ī2 ¯ īn��ī1ī2 ¯ īn� .
�4�

Note that for state �1� the probabilities of the n qubits being

in �i1i2¯ in� and �ī1ī2¯ īn� are given by p and 1− p, respec-
tively. However, the same results are obtained when the n
qubits are in the mixed state �4�. Hence, one needs to distin-
guish the state �1� from the mixed state �4� to make sure that
the n qubits are indeed prepared in the entangled state �1�.

It is straightforward to show that if a Hadamard transfor-
mation is performed on each qubit, then the density operator
�4� becomes

p

2n 

�xl�	

�± ��xl�	�� � 

�xl�	

�±��xl�	�� +
q

2n 

�yl�	

�± ��yl�	��

� 

�yl�	

�±��yl�	�� . �5�

Here, ��xl�	�= �x1�x2� . . .xn�� and ��yl�	�= �y1�y2�¯yn�� are computa-
tional basis states of the n qubits �xl� ,yl�� �0,1	 ; l
=1,2 , . . . ,n�, and 
�xl�	�±��xl�	�� �
�yl�	�±��yl�	��� is a sum over
all possible basis states. For instance, when n=3, 
�xl�	

��±��xl�	�� or 
�yl�	�±��yl�	��= ± �000�± �001�± �010�± �100�

± �011�± �101�± �110�± �111�. The � signs for each term
��xl�	� ���yl�	�� are determined by the number of “1”s and the
arrangement of “1”s in the basis state �i1i2¯ in� involved in
the density operator �4�.

Equation �5� shows clearly that for the mixed state �4�, if
each qubit is measured in z-basis after a Hadamard transfor-
mation on each qubit, the probability for an even number of
qubits being found in the state �1� would be 1/2. On the other
hand, as shown above, for the n-qubit initial state �1�, if the
same operation is performed on each qubit, the probability of
an even number of qubits being found in the state �1� is given
by Eq. �3�. Hence, in general, when peven�1/2, it can be
concluded that the n qubits are in the state �1�.

However, for the special case of �= ±	 /2, the entangled
state �1� also has peven=1/2. Namely, the following n-qubit
entangled state

�p�i1i2 ¯ in� + e±i	/2�1 − p�ī1ī2 ¯ īn� �6�

could not be distinguished from the mixed state �4� using the
procedures described above. However, we note that for this
special case, the above method for entanglement verification
based on single-basis measurement can still work. This is
because, by performing a local phase shift operation on any

one of the n qubits, described by �i�→ �i� , �ī�→ei	/2�ī�, state
�6� is transformed into

�p�i1i2 ¯ in� 
 �1 − p�ī1ī2 ¯ īn� , �7�

i.e., state �1� with �=	 or 0. State �7� can obviously be
distinguished from the mixed state �4� using the method de-
scribed above because for them one has peven

= 1
2 
�p�1− p��1/2 from Eq. �3�.
It should be noticed that the technique of distinguishing

the entangled state �1� from the mixed state �4� by local
operations and measurements on individual qubits was pre-
viously presented in the generation of entanglement of polar-
ized photons �for details, see Refs. �37–39��. However, we
point out that in this work we considered a general case, i.e.,
the n-qubit entangled state of Eq. �1� with arbitrary p and �
�0� p�1�. Namely, state �1� considered here could be
maximally-entangled states with p=1/2 and an arbitrary
relative phase �, or partially-entangled states with 0� p
�1/2 and an arbitrary relative phase �. The results pre-
sented above are valid for any qubit system. Our work re-
garding the distinction between the generic state �1� and the
mixed state �4� is a generalization of the previous work
�37–39� to a multiqubit two-component entangled state with
a general form, which is of great interest in both theory and
experiment by itself.

A single-qubit Hadamard transformation can be easily
achieved for many physical qubit systems. For examples, it
can be done by locally rotating the polarization of a photon,
by applying a 	 /2 microwave pulse resonant with the tran-
sition between the two lowest levels �the two logical states of
a qubit� �0� and �1� of a superconducting quantum interfer-
ence device �SQUID� �31�, or by applying a 	 /2 two-photon
Raman resonance pulse to the two lowest levels of an atom
with a �-type three-level structure.

As a matter of fact, based on �0�= �+ �+ �−� and �1�
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= �+ �− �−�, it is noted that Hadamard transformations are not
necessary for either extracting the relative phase � or veri-
fying the entangled state �1�, because the same results can be
obtained by measuring each qubit in the x basis ��� and ���,
instead of a Hadamard transformation followed by a mea-
surement in the z basis �0� and �1�. However, it should be
mentioned that the single-qubit Hadamard transformations
are needed for some important physical qubit systems, for
which usually only one natural measurement basis �the z
basis� is available. For instance, for superconducting charge
�flux� qubits, which are promising candidate for scalable
quantum information processing, it is very difficult to per-
form measurement in basis other than the charge �flux� de-
gree of freedom.

In summary, we have shown that an arbitrary relative
phase can be extracted from a multiqubit two-component
entangled state based on local single-qubit Hadamard trans-
formations and measurements along a single basis only. The

method is relatively easy to be realized because there is no
need for two-qubit operations and the qubits are allowed to
be well separated in space. The present work provides a way
to determine an arbitrary multiqubit two-component en-
tangled state through the extraction of the relative phase,
which is of great importance to quantum communication in
general and quantum key distributions in particular. In addi-
tion, extracting the phase may have other applications in
quantum information theory and high precision measure-
ments. Finally, a detailed discussion on distinguishing the
entangled state �1� �with an arbitrary entanglement degree
and relative phase� from a class of multiqubit mixed states
has been presented.
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