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We analyze the interaction of a two-level superconducting quantum interference device �SQUID� qubit with
a classical microwave pulse. The rf-SQUID is characterized by an asymmetric double well potential that gives
rise to diagonal matrix elements. The diagonal matrix elements are accounted for in the interaction of the
microwave pulse with the SQUID. We present analytical results that correctly describe the system’s dynamics.
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Solid state systems that make use of the Josephson effect
are potential candidates for carrying out quantum computa-
tions �1,2�. A particular scheme of such systems is based on
magnetic flux states in superconducting quantum interfer-
ence devices �SQUIDs� �3–25�. In some of these schemes
�4–7,10–14,23�, the SQUID qubit, which is the basic ele-
ment of a SQUID quantum computer, is based on a two-level
system manipulated by external fields. The interaction of
two-level SQUID qubits with both classical �5,14� and quan-
tized �6,7,10–13,23� fields has been analyzed theoretically.

In this work we study the interaction of a two-level
SQUID qubit with a classical microwave pulsed field. The
rf-SQUID is characterized by an asymmetric double well po-
tential. The asymmetry of the potential gives rise to diagonal
matrix elements that should be accounted for in the interac-
tion of the SQUID with the microwave pulse. The main ap-
proximation that we make is that the dynamical behavior of
the system can be well described by the evolution of the two
levels of the SQUID qubit. We include the diagonal matrix
elements in the analysis of the interaction of the SQUID
qubit with the microwave pulse and present analytical re-
sults, within a generalized rotating wave approximation. This
inclusion is found to be important for the correct description
of the system’s dynamics.

Our model consists of a rf-SQUID which interacts with a
microwave field. The rf-SQUID is made of a superconduct-
ing ring interrupted by a Josephson tunnel junction. The
SQUID Hamiltonian is given by �26�

H0 = −
�2

2m

�2

�x2 + V�x� , �1�

with the potential of the SQUID being

V�x� =
1

2
m�LC

2 �x − x��2 −
1

4�2m�LC
2 � cos�2�x� , �2�

where x=� /�0, m=C�0
2, �LC=1/�LC, �=2�LIc /�0, and

x�=�x /�0. Here, � is the total magnetic flux in the ring, L is
the ring inductance, �x is an externally applied magnetic flux

to the SQUID, Ic is the critical current of the junction, C is
the junction capacitance, and �0=h /2e is the flux quantum.
We describe a realistic SQUID system and use the same
parameters as in the work of Zhou et al. �8,14�, i.e.,
L=100 pH, C=40 fF, and Ic=3.95 �A, leading to �LC=5
�1011 rad/s and �=1.2. We also take x�=−0.501. The form
of the potential for these parameters is asymmetric, and is
shown in Fig. 1. The first two eigenenergies of the system are
also indicated in the same figure. These have been obtained
by solving the time-independent Schrödinger equation,
using the Hamiltonian H0 with the above parameters. The
values of the two lowest energies of the system are
��0=7.819 84 meV and ��1=7.901 83 meV �24�.

The interaction between the SQUID and microwave
pulse, which is considered as linearly polarized electromag-
netic field with their magnetic field perpendicular to the
plane of the SQUID ring, is described by the time-dependent
potential

Vint�x,t� = m�LC
2 �x − x��	f�t�cos��t� . �3�

Here, 	, is the field amplitude �in units of �x /�0�, f�t� is the
dimensionless pulse envelope and � is the field angular fre-
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FIG. 1. The potential energy �solid curve� and the lowest two
eigenenergies �0�, �1� �horizontal lines� of the SQUID, in eV. The
arrow-headed line denotes the coupling of the microwave field.
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quency. The dynamics of the system is governed by the time-
dependent Schrödinger equation i��� /�t��
�= �H0+Vint��
�.
If the angular frequency of the microwave field is chosen
near resonant with the transition �0�↔ �1� the dynamics
of the system is governed by the interaction of the two
lower states of the SQUID with the microwave pulse. This
is usually referred to as the two-level system approximation.
Then, the state vector of the system is expanded only in
the two lowest eigenvectors of the Hamiltonian �1� as
�
�t��=a0�t��0�+a1�t��1�. Substituting the Hamiltonian
H0+Vint and the state vector into the time-dependent
Schrödinger equation we obtain a system of ordinary
coupled differential equations for the expansion amplitudes
a0�t� and a1�t� as

i
d

dt
a0�t� = ��0 + �00f�t�cos��t��a0�t� + �f�t�cos��t�a1�t� ,

�4�

i
d

dt
a1�t� = �f�t�cos��t�a0�t� + ��1 + �11f�t�cos��t��a1�t� ,

�5�

where �=x01m�LC
2 	 /�, �00= �x00−x��m�LC

2 	 /�, �11

= �x11−x��m�LC
2 	 /�, with xjk= �j�x�k� and j ,k=0,1. This sys-

tem of differential equations must be solved in order to ob-
tain the dynamics of the SQUID. For the system under study
the matrix elements have the values x00=−6.568 75�10−1,
x11=−3.491 41�10−1, and x01=4.418 71�10−4. We note
that x00,x11 are nonzero due to the asymmetry of the poten-
tial of the SQUID.

Equations �4� and �5� are similar to those used for the
description of a two-level molecule with permanent dipoles
interacting with a laser field �27,28�. We follow a method
used in molecular physics �28� and obtain an analytic solu-
tion of Eqs. �4� and �5�. We make the following change of
variables

bj�t� = aj�t�exp	i
� jt + � j j�
0

t

dt�f�t��cos��t���, j = 0,1,

�6�

and obtain from Eqs. �4� and �5�,

i
d

dt
b0�t� = �f�t�cos��t�

�exp
− i��1 − �0�t − id�
0

t

dt�f�t��cos��t���b1�t� ,

�7�

i
d

dt
b1�t� = �f�t�cos��t�

�exp
i��1 − �0�t + id�
0

t

dt�f�t��cos��t���b0�t� ,

�8�

with d=�11−�00. The integral �0
t dt�f�t��cos��t�� can be

written as

�
0

t

dt�f�t��cos��t�� =
f�t�
�

sin��t� −
1

�
�

0

t

dt�
df�t��

dt�
sin��t�� .

�9�

The second term on the right-hand side of Eq. �9� can be
omitted if the duration of the microwave pulse is much larger
than 1/�. Then, Eqs. �7� and �8� can be approximated by

i
d

dt
b0�t� = �f�t�cos��t�

�exp
− i��1 − �0�t − i
d

�
f�t�sin��t��b1�t� ,

�10�

i
d

dt
b1�t� = �f�t�cos��t�

�exp
i��1 − �0�t + i
d

�
f�t�sin��t��b0�t� .

�11�

Using the relation exp�ix sin ��=�n=−
 Jn�x�exp�in��, where

Jn�·� is the nth order ordinary Bessel function, Eqs. �10� and
�11� are written as

i
d

dt
b0�t� =

�

2
f�t� �

n=−



Jn
 d

�
f�t��e−i��1−�0�t+i�t−in�tb1�t�

+
�

2
f�t� �

n=−



Jn
 d

�
f�t��e−i��1−�0�t−i�t−in�tb1�t� ,

�12�

i
d

dt
b1�t� =

�

2
f�t� �

n=−



Jn
 d

�
f�t��ei��1−�0�t+i�t+in�tb0�t�

+
�

2
f�t� �

n=−



Jn
 d

�
f�t��ei��1−�0�t−i�t+in�tb0�t� .

�13�

As the angular frequency of the microwave field is chosen
near resonant with the transition �0�↔ �1�, i.e., �1−�0��,
then in the realistic limit that ��� only the term with
n=0 is significant in the first �second� sum and the term with
n=−2 is significant in the second �first� sum of Eq. �12�
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�Eq. �13��. The rest of the terms in the sums are highly off-
resonant and can be omitted. This approximation is analo-
gous to the rotating wave approximation in laser-matter in-
teraction �29�. Under this approximation Eqs. �12� and �13�
become

i
d

dt
b0�t� =

1

2
K�t�e−i�tb1�t� , �14�

i
d

dt
b1�t� =

1

2
K�t�ei�tb0�t� , �15�

where

K�t� = �f�t�	J0
 d

�
f�t�� + J2
 d

�
f�t�� , �16�

and �=�1−�0−�. We note that in the derivation of Eqs.
�14� and �15� we used the relation J−2�·�=J2�·�. The param-
eter K�t� is the interaction parameter between the microwave
field and the rf-SQUID �the generalized time-dependent Rabi
frequency� that depends on the Rabi frequency �, the pulse
envelope f�t�, but also on the difference of the interaction
parameters arising from the diagonal matrix elements, d, and
on the angular frequency of the applied microwave pulse, �.
In the limit that d→0 then K�t�=�f�t� which is the form of
the interaction parameter if the diagonal matrix elements
x00,x11 are omitted. We note that the same limit also holds if
d /��1. If, however, this is not the case then K�t� is better
approximated by Eq. �16�.

We are particularly interested in the case of exact reso-
nance of the microwave field with the �0�↔ �1� transition,
i.e., the case that �=0. Then, the analytic solution of Eqs.
�14� and �15� are

b0�t� = cos
1

2
�

0

t

dt�K�t���b0�0� − i sin
1

2
�

0

t

dt�K�t���b1�0� ,

�17�

b1�t� = − i sin
1

2
�

0

t

dt�K�t���b0�0�

+ cos
1

2
�

0

t

dt�K�t���b1�0� . �18�

If the system is initially in state �0� then b0�0�=1 and
b1�0�=0. The probability for the system to be in state �0� or
�1�, Pn�t�= �an�t��2= �bn�t��2, with n=0,1 are in this case

P0�t� = cos2
1

2
�

0

t

dt�K�t��� , �19�

P1�t� = sin2
1

2
�

0

t

dt�K�t��� . �20�

In the case of a rectangular microwave pulse of duration T,
then f�t�=1 for 0� t�T and zero elsewhere. Then, if
0� t�T the probabilities become

P0�t� = cos2�1

2
�	J0
 d

�
� + J2
 d

�
�t� , �21�

P1�t� = sin2�1

2
�	J0
 d

�
� + J2
 d

�
�t� . �22�

If the microwave pulse duration is chosen as

Tinv =
�

�	J0
 d

�
� + J2
 d

�
� , �23�

then P0�Tinv�=0 and P1�Tinv�=1 so after the application of
the microwave pulse the system is in state �1�. We assess the
analytical results of Eq. �23� by comparing them with the
results of numerical solution of Eqs. �4� and �5�. For the
numerical solution a fourth-order Runge-Kutta method was
used. The numerical and analytical results are shown in Fig.
2. It is clear that the analytical results reproduce the numeri-
cal results. For reasons of comparison we plot in the same
figure the analytical result for d=0, i.e., the analytical result
if the diagonal matrix elements x00,x11 are omitted, which
gives Tinv� =� /�. The latter result cannot reproduce the nu-
merical results and the difference between numerical and the
analytical results of Tinv� becomes larger as the field ampli-
tude increases.

In summary, we have studied the dynamical behavior of
the interaction of a two-level SQUID qubit with a classical
microwave pulse. The SQUID system is described by an
asymmetric double well potential. This gives rise to diagonal
matrix elements that should be included in the equations of
motion, for the proper study of the interaction of the SQUID
system with the microwave pulse. Including only the two

FIG. 2. The minimum microwave pulse duration �in ns� for the
complete transition of the system from the initial state �0� to state �1�
as a function of the normalized field amplitude 	. With circles we
represent the results of the numerical solution of Eqs. �4� and �5�.
With solid curve we represent the analytical results of Tinv and with
dashed curve the analytical results of Tinv� .
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relevant levels that compose the SQUID qubit in an expan-
sion of the system’s wave fuction, we present analytical re-
sults for the time evolution of the interaction of a two-level
SQUID system with a classical microwave pulse. The ana-
lytical results are found to be in good agreement with the
results of numerical simulations for realistic parameters of
the system.
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