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Quantum and classical operational complementarity for single systems
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We investigate duality relations between conjugate observables after measurements performed on a single
realization of the system. The application of standard inference methods implies the existence of duality
relations for single systems when using classical as well as quantum physics.
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I. INTRODUCTION

The concept of complementarity implies the existence of
mutually exclusive observables. The wave-particle duality
provides a classic illustration: If the path taken by the par-
ticle within a two-beam interferometer is observed, then the
interference is wiped out. In spite of its long history, it seems
that there are still many features of complementarity to be
discovered. For example, some recent and striking results
reveal that two observables can be complementary or not
depending on the measure of fluctuations adopted, comple-
mentarity is not a symmetric relation, there are observables
without complementary, and path measurements can increase
visibility in multipath interferometers [1].

Complementarity can have different meanings. For ex-
ample, we can distinguish between intrinsic and operational
versions. Intrinsic complementarity refers to the mutual rela-
tionship between the probability distributions of conjugate
observables, as suitably exemplified by standard position-
momentum uncertainty relations. Intrinsic complementarity
has no classical analog (classically there is no definite uni-
versal relationship between the statistics of different observ-
ables) and can only be observed by repeated measurements
performed in ensembles of systems (since it involves state-
ments about probability distributions).

On the other hand, operational complementarity emerges
when we try to observe two conjugate observables simulta-
neously in each and every run of the experiment under the
same experimental conditions. For example, for wave-
particle duality it is always understood that we are monitor-
ing the visibility of the interference at the same time that we
try to determine the path followed by the particle within the
interferometer. In principle, this idea differs from the intrin-
sic point of view since the determination of the intrinsic
statistics of incompatible observable requires mutually ex-
clusive measuring schemes. Nevertheless, care must be taken
since one can be tempted to infer from the outputs of mul-
tiple measurements the quantum state of the system and then
derive the intrinsic statistics [2]. An approach to operational
complementarity after multiple measurements avoiding state
reconstruction has been studied in Ref. [3], leading to opera-
tional duality relations more restrictive than the intrinsic
ones.
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In this Brief Report we examine the case of measurements
performed on single systems. We investigate whether there is
actually any kind of operational complementarity between
pairs of conjugate observables after measurements performed
on an single realization of the system. In this case comple-
mentarity will involve our degree of knowledge about two
conjugate properties rather than the dispersion of measured
data. A natural arena for the inference of system properties is
the Bayesian perspective, which can be naturally applied to
individual events in the sense of degrees of belief [4]. For the
sake of completeness we address this idea using both quan-
tum and classical physics in Secs. II and III, respectively.

II. QUANTUM CASE

The most general measurement is described by a positive
operator measure A(w), where w labels the outcomes [5].
Any inference about system properties must be derived ex-
clusively from w and A(w), which is the only information
accessible to the experimenter. A very natural procedure con-
sists in associating to every outcome w a quantum state p,,
depending only on w and A(w). This can be carried out in
different ways [3,6,7]. Following a Bayesian perspective p,,
becomes a superposition of all possible density matrices pq,
weighted by the conditional probability p(Q|w) of inferring
that the state of the system is p, when the outcome is w,

N
Pw=JdQP(Q|W)PQ=_JdQP(W|Q)PQa (1)
p(w)

where () are parameters indexing the density matrices and

pw|Q) =tlpoAw)],  p(w)= f dQp(w|M)po(Q), (2)

and we have used the Bayes’ rule

_ p(w|Q)po(Q)

pw) 7 G)

p(Qw)
assuming a uniform prior distribution py(Q)=N=(fdQ)".
The issue of uniform priors is not trivial, since it depends on
the parameters ) used [6]. Fortunately, this ambiguity does
not affect the main conclusions of this work.

For definiteness we focus on the most widely studied ex-
ample of complementarity: path-visibility complementarity
in two-beam interferometers. For two-dimensional systems
the most general A(w) is
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A(W) =Myt My, O, (4)

where o are the three Pauli matrices and u,, and u,, are real
coefficients satisfying

E,LLW=1, Ewﬂw=0’ MW>|"LW’ )

and we have assumed without loss of generality a discrete set
of outcomes w. On the other hand, the most general density
matrix p can be expressed as

1
P52=E(1+Q'0'), (6)
being
7 sin @ cos ¢
Q=|rsinfsing |, dQ=r’sinbdrdodep,  (7)

rcos 6

with 1=r=0, 7= 0=0, and 27m= ¢=0. The application of
Egs. (1)(7) leads to
A(w)
)- (8)

e gyomee] =50
=—1l+—u.  -ol=={1+
P\ T s, %) 75U T awa(w)

Next we examine the mutual relationship between the in-
ferred uncertainties of path and visibility. The path observ-
able can be represented by the operator o,, while the phase-
difference observable ¢ is represented by the operator o,
[8,9]. A suitable assessment of fluctuations for finite-dimen-
sional systems is provided by the certainties

C.= |<Uz> > Cy = |<0y> ) 9

representing the degree of certainty one can have concerning
the value of the corresponding observable [9]. They are
bounded, 1=C, =0, and satisfy the intrinsic duality rela-
tions [9] '

1
cC+C=<1, CC=<<

5 (10)

so that C, . cannot simultaneously reach their maximum
values.
When we apply this measure the quantum state p,, we get

1

Moy j
=3 7‘ . (11)

for j=y,z. The corresponding operational duality relations
are

1
CCy=< (12)

1
C§+Cz$— 50

Y28’
We can appreciate that the operational bounds are lower than
the intrinsic ones (10). This is natural since we are inferring
system properties from a single noisy simultaneous measure-
ment of incompatible observables. Compared to the case of
duality relations for multiple measurements [3], the bound
for the sum of certainties is essentially the same while for the
product the case of multiple measurements is more restric-
tive.
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In the next section we address this same issue from the
classical perspective. In order to simplify the comparison
between the quantum and the classical analyses we formulate
the quantum results in terms of Wigner functions.

Maybe the simplest approach to a phase-space formula-
tion of quantum mechanics for a two-dimensional system is
provided by a Wigner function defined on a discrete and
finite phase space made of 2X?2 points (m,s), with m,s
==1, formed by the product of the spectra of o, and o,
[8,10]. The Wigner-Weyl correspondence between opera-
tors A and functions W,(m,s) on this phase space is given
by [10]

Wa(m,s) =t[AA(m,s)], A= 22 Wa(m,s)A(m,s),

m,s

(13)
with
1 =
A(m,s):Z(l +\3a,,, - 0), (14)
where @, , are the four unit vectors,
1
a, = —=(ms,s,m), (15)
V3

so that mean values can be computed as phase-space aver-
ages:

trA= 2, Wy(m,s), t(AB) =22, W,(m,s)Wy(m,s).
m,s m,s
(16)
Incidentally, we note that the vectors e, ; define a positive
operator measure for minimal qubit tomography [11].
Denoting by Wiﬁ”(m,s) the Wigner function associated
with the quantum state (8) we get

WA(W)(m7 S)
> Wi (m,s)

’ ’
m.,s

w{;,f)(m,s)% 1+ (17)

where Wy,)(m,s) is the distribution associated to the opera-
tor A(w):

1 -
Wi (m,8) = 2 (pty + N3 - po)- (18)

It is worth noting that W(vf)(m,s) never takes negative values.
As can be seen in Egs. (17) and (18) the minimum value
would be reached at a given point (mg,s,) when m,/u,
=-a,, . leading to W(vf) (mg,$0)=0.163>0. Therefore
Wff)(m,s)>0, so it can be regarded as a true probability
distribution in phase space.

III. CLASSICAL CASE

In classical physics the state of the system is specified by
a probability distribution on the phase space. The question of
a proper phase space for the classical analog of two-dimen-
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sional systems is not straightforward. For simplicity we con-
sider the same phase space of the Wigner-Weyl formulation
of quantum physics for a two-dimensional system employed
above [10]. This choice of phase space might appear to be
somewhat exotic, but it allows a workable parametrization of
the classical states that would be rather impracticable with a
different phase space. This simplifies the comparison with
the quantum case without altering the essence of the conclu-
sions.

The classical inference is governed by exactly the same
equations (1)—(3), simply replacing density matrices by
phase-space distributions p;i— Wj(m,s) for j=w, (). Further-
more, the conditional statistics p(w|{)) can be always ex-
pressed as a suitable phase-space average in terms of some
function W,,(m,s):

pw|Q) = 2 Wo(m,s)W, (m,s). (19)

m,s

Therefore, the classical counterparts of Egs. (1)—(3) lead to,
taking into account Eq. (19),

W, (m,s) = ﬂEVV(m ,s")

v ) dQWa(m',s" ) Wq(m,s).

(20)

In order to proceed we must address the parametrization
of the classical states, which must be different from the
quantum one since the spaces of classical and quantum dis-
tributions do not coincide. The requirements that classical
distributions must satisfy are reality, normalization, and
non-negativeness. Normalization imposes that Wq(+,+)
+Wo(+,-)+Wq(—, +)+Wq(=,-)=1, so that reality, positiv-
ity, and normalization can be satisfied simultaneously in the
form

VWa(+, +) =cos Osin ¢, VWq(—,—)=cos fcos ¢,

VWq(=, +) =sin fcos ¢,

(21)

VWq(+,—) =sin @sin ¢,

with 7/2= 6, ¢, =0, and dQ)=cos 6 sin 6d0dpdp.
Using Eq. (21) in Eq. (20) and performing the 6, ¢, ¢
integration we get

1 W, (m,s)
W,,(m,s) = 6 142——mMmMmMmMM|. (22)

> W, (m',s")

’ r
m',s

This classical result closely resembles the quantum one
in Eq. (17) since W,(m,s) is the classical analog of
Wa(w)(m,s). In particular, this implies the existence of clas-

sical duality relations for single measurements. We can asses
the fluctuations by using the certainties

Cj=[o)l= | S W m W, (ms)|,  (23)

m,s

for j=y,z, being
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W(,"(m,s) = 5m,+ - 6}71,—’ W(rv(m’s) = 5.s,+ - 55,—' (24)
This leads to
(25)
where the distribution
. W, (m,s)
W, (m,s) = . (26)
E W, (m',s")

is normalized and positive because W, (m,s) is positive.

Therefore, the parametrization (21) can be used for Wim,s)
in Eq. (25), leading to

2 1
2, 2
C.+Cy = > CCy < 5 (27)
The equalities are reached when 6, ¢, o=0, 7/2—i.e., when
the measurement is of the form

W, (m,s) = &5, m05s,so’ (28)

which is an exact noiseless joint measurement of path and
interference (not allowed in the quantum domain).

Relations (27) are duality relations since they express the
way the certainty is distributed between two conjugate ob-
servables in such a way that they exclude maximum certainty
for both observables simultaneously, exactly in the same way
as occurs in quantum mechanics. Actually it can be can ap-
preciated that the bounds (27) are compatible with the quan-
tum intrinsic certainty relations (10) [even in the case in
relation (28)], being less restrictive than the quantum opera-
tional ones in relations (12). In other words, the classical
duality relations can violate the operational duality relations
(12) but not the intrinsic ones (10).

In this regard, let us show that the classically inferred
state is always compatible with quantum mechanics. With
the help of the Wigner-Weyl correspondence (13) outlined
above we can determine the operator pif) associated with the
classical state W,,(m,s) in Eq. (22):

A () )

+ m s (29)

where A©(w) is the operator associated with W, (m,s) via
the same relations (13) The similarity with Eq. (8) is mani-
fest. The operator p represents a legltimate quantum state
(i.e., it is a density matrix) since p( is Hermitian with unit
trace [granted by the Wigner- Weyl correspondence since
W, (m,s) is real] and positive p(”)>0 To demonstrate posi-
t1v1ty we note that for 2 X2 matrices p(°)>0 if and only if
tr{ (p,, ()2]<1 [12]. In our case the maximum tr[(p( )] is
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obtained when W, (m,s) %3, 6, leading to tr[(pif))z]
=2/3. Therefore, pff) >0.

IV. DISCUSSION

The Bayesian approach allows us to develop the idea of
operational complementarity for single systems suitably ex-
pressed by the operational duality relations (12) and (27). In
this case complementarity involves our amount of knowl-
edge about two conjugate system properties, rather than the
dispersion of recorded data.

Maybe surprisingly, within the Bayesian approach there
are no essential differences between the quantum and classi-
cal analysis. The key point for this classical-quantum simi-
larity is that the logic of the Bayesian inference is the same
in quantum and classical physics. The only difference is that
the state spaces are different (there are classical distributions
that cannot be the Wigner function of any legitimate quan-
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tum state [12,13] and quantum Wigner functions that are not
classically valid distributions).

The strategy of inference adopted is crucial in the classi-
cal case. For example, classical complementarity fades away
if we adopt a maximume-likelihood strategy, which stipulates
that the best estimate is the state that maximizes
p(w|Q)—i.e., the phase-space point for which W, (m,s)
takes the maximum value. Phase-space points carry full cer-
tainty for path and phase difference simultaneously C,=C,
=1 so that there is no room for duality relations. “

We think that these results are interesting since they may
open promising routes to analyze the relationship between
classical and quantum physics.
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