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Entanglement and the quantum-to-classical transition
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We analyze the quantum-to-classical transition (QCT) for coupled bipartite quantum systems for which the
position of one of the two subsystems is continuously monitored. We obtain the surprising result that the QCT
can emerge concomitantly with the presence of highly entangled states in the bipartite system. Furthermore, the
changing degree of entanglement is associated with the backaction of the measurement on the system and is
itself an indicator of the QCT. Our analysis elucidates the role of entanglement in von Neumann’s paradigm of
quantum measurements comprised of a system and a monitored measurement apparatus.
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The emergence of classical dynamics in a world funda-
mentally described by quantum mechanics remains a pro-
found issue in the foundations of physics. Recently, it has
been shown how such a quantum-to-classical transition
(QCT) arises through continuous weak measurement of an
evolving observable such that the dynamical measurement
record is well predicted by the classical equations of motion
[1]. This operational approach has significant relevance
given the proliferation of experiments in quantum control
based on continuous monitoring of individual and ensembles
of quantum systems [2]. Of particular interest are systems
with coupled degrees of freedom whose classical dynamics
can exhibit chaos [3,4], something not seen in closed quan-
tum systems. At the quantum level this coupling leads to
entanglement, which is typically responsible for the most
nonclassical phenomena. Here we study the entanglement
associated with the quantum states of continuously observed
bipartite systems whose dynamical measurement record fol-
lows classical trajectories. We find the surprising result
that the dynamical QCT emerges even if the entanglement
between degrees of freedom grows. This highlights the fact
that not all nonclassical features of a quantum system are
concomitant.

The QCT is achieved via continuous measurement
through a balancing of strong localization and weak mea-
surement backaction. According to Ehrenfest’s theorem, ex-
pectation values of quantum observables follow the classical
equations of motion if all correlation functions factorize.
Corrections to the classical dynamics arise through higher-
order cumulants of the relevant observables. Their effect can
be neglected when their extent is small compared to the size
of the phase space explored by the dynamics. Bhattacharya
and co-workers showed that in the limit of large actions (%
—0) continuous measurement can sufficiently limit the
growth of these cumulants [1]. In previous work [3,4], we
extended their analysis to bipartite systems in which only
one degree of freedom is observed. We found that the QCT
emerged when both subsystems were made sufficiently mac-
roscopic so that neither experienced strong backaction.
Backaction is distributed to the unobserved subsystem
through the entanglement generated between the degrees of
freedom. It thus appears that the QCT requires weak en-
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tanglement between the subsystems. Indeed, by Enhrenfest’s
theorem, separable pure states imply factorizable correlation
functions, a sufficient condition for classical dynamics. We
show here that that this is not necessary. The QCT in fact is
concomitant with increased entanglement between the sub-
systems. By relating the weak backaction condition to a
change in entanglement with time, we provide an alternative
condition for the QCT to the one derived by Bhattacharya et
al., useful for multipartite systems.

Consider a bipartite system, A+ 83, in which a continuous
weak measurement is performed on A, treated, without loss
of generality, as a position degree of freedom ¢g. The mea-
surement record is described by a quantum trajectory [5]
including the irreducible quantum backaction noise commen-
surate with the information gain-disturbance tradeoff. For
ideal measurements (which acquire all information that
leaves A+B), the state p=|¢){y| of the joint system is al-
ways pure, with the specific pure state differing according to
the corresponding measurement record. The degree of bipar-
tite entanglement can thus be obtained equivalently as the
entropy S(p4) or S(pg) for p 4=Trzp and p=Tr 4p. We work
with the linear entropy S=1-Tr(p%)=1-Tr(pg), which is
convenient to calculate and can be employed as an estimator
for other required entropy measures [6].

Consider how |¢) behaves under mappings that obey the
QCT. The stochastic evolution of the pure state for A+B is
given by

i

~H—kq- <q>)2}dt| ¥ +\2k(g - (g)dW| )

(1)

with measurement record dX={(g)dt+(8k)~">dW on A [7],
with k the strength (resolution) of the position measurement
and dW the Wiener noise. From Eq. (1), the evolution of the
reduced density operator for A is

dl¢>=[—

i
dpa== 3 Trs([H.pDdr + k(29p 4q - a*pa—pag’)dt

+\2k(gp 4+ pag - 2@hp)dW. (2)

The evolution of the marginal linear entropy obeys
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dS=-2Tr 4(padp 4)—Tr 4[(dp 4)*]. From Eq. (2) [and only
retaining terms to O(dt)], the evolution of the entanglement
for a given measurement strength & is

dSy=dS,— 8kTr \{[p (g —(g)]*}dt
— 42T [ (g — (g))JdW (3)

with dS, the term corresponding to measurement-free
(k=0) evolution.

To consider the QCT, we study the evolution of the mo-
ments of position and momentum of the measured subsystem
A. These equations of motion are

d(g) = (p)m)dt + 8KC, aW,

d(p) == (3,V)dt + 8kC,,dW (4)

with centroid coordinates {(g) and (p) and covariances C,,
=((ab)+(ba))/2—{a)b). The force —d,V acting on A is de-
rived from the potential V. Provided that the noise terms (due
to backaction) are sufficiently small and the measurement is
sufficiently strong to localize the state, these equations of
motion will closely follow the dynamics of the correspond-
ing classical system: the strong localization and weak noise
conditions require that the cumulants remain small compared
to the phase space explored by the classical equations of
motion [1].

In the regime of the QCT, the wave function remains
close to Gaussian [1]. In this limit (covariances are small),
the measurement terms in Eq. (3), which can be written in
terms of the covariances, become negligible, and the degree
of change in entanglement,

anf1- 30
ASk—Sltlp(l Sy (5)

caused by observation of A, approaches zero. Since AS, is
negligible only if the covariances, which are proportional to
the backaction noise terms in Eq. (4) become sufficiently
small, it quantifies the degree of backaction resulting from
the measurement of A with a given measurement strength k.
Hence AS;— 0, coupled with the localization condition dis-
cussed above, are sufficient conditions to ensure the QCT for
this bipartite system.

In the QCT, AS, must remain small, but no such restric-
tion applies to Sy(z) itself. For example, a quantum chaotic
system of A+ B may enhance the bipartite entanglement be-
tween A and B more rapidly than the measurement process
can diminish the entanglement, and therefore large bipartite
entanglement may be compatible with the QCT. The key
point is that the measured system will approximately follow
classical trajectories when the cumulants are a small fraction
of the total classical phase space measured by some charac-
teristic action. In contrast, entanglement depends on the
growth of these cumulants with respect to the absolute scale
of action, #. Thus as the action increases and one moves into
the classical domain where a macroscopic phase space is
explored, the relative size of the cumulants decreases while
the entanglement increases. In such a regime of large en-
tanglement, the QCT can be recovered if the condition of
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FIG. 1. (Color online) The normalized average linear entropy
increases as J is increased, keeping /y/J constant.

small change in entanglement AS;, is fulfilled along with the
strong localization condition. Thus entanglement can be used
to quantitatively identify the QCT in coupled systems.

The compatibility of large entanglement and the QCT for
the dynamics is illustrated by the following example. The
bipartite system A+8B we consider consists of a particle of
mass m in a harmonic trap of angular frequency w. The par-
ticle is coupled via an internal magnetic moment to a gradi-
ent magnetic field along its axis of motion z and a constant
transverse field along x. The corresponding Hamiltonian
governing the dynamics is

P’ 1
H="—+-mw*z*+ bzJ. +cl,, (6)

2m 2
which applies to various phenomena including the simplest
Jahn-Teller model [8], the Jaynes-Cummings model, or the
Tavis-Cummings model without the rotating wave approxi-
mation [9], and the motion of ultracold atoms in a magneto-
optical trap [10]. The classical Hamiltonian has the same
form as Eq. (6) with the z and p operators replaced by clas-
sical variables and the spin replaced by a classical magnetic
moment. The transverse magnetic field along x causes the
Hamiltonian to become nonintegrable and leads to chaotic
dynamics [11]. Previous studies showed that a continuous
position measurement resulted in quantum trajectories that
exhibit classical chaos when the actions associated with the
spin and harmonic motion are both large relative to # [3,4].
Here we analyze the behavior of entanglement in this limit.

We introduce initial states that are products of Gaussian
and spin coherent states |¢/(0))=|a)|6, ). We start with a
spin of J=200%, which puts us in the semiclassical regime.
We let ¢=0.5w and bAz=2.50 with Az=45z, where z,
=Vh/2mo. This results in a characteristic external action I,
=mwAz*=1000%. Classical trajectories are recovered for a
measurement strength of k=w/ 20z§ given these parameter
choices [4].

Figure 1 shows the evolution of the average normalized
linear entropy (Si)/Smax of 100 trajectories with S, =1
—1/(2J+1) and energy E=0.58E, (Ey=mw*Az?) for increas-
ing values of J, keeping the measurement strength k con-
stant. We scale Az up appropriately relative to z, in order to
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FIG. 2. (a) In the spin-% system, the measurement is strong
enough to resolve the two spinor components of the wave function
and thus remove the entanglement. (b) For larger actions even
though the wave-packet components are spatially distinguishable so
that the state is highly entangled, the same measurement is too weak
to resolve all the different wave packets and remove all the
entanglement.

keep the ratio I,/J constant in the classical limit. As both J
and I, are increased and the measured quantum trajectories
approach the classically predicted trajectories [4], the aver-
age entanglement increases. This indicates that in a regime
where classical trajectories emerge from the measured quan-
tum system, the underlying states are highly entangled.

This behavior can be understood by examining the mea-
sured state more closely. If we write the state |¢) in terms of
its spin components |m) in some basis as

J

By = 2 a,ldulm), 7)

m=-J

then we can relate the entanglement between spin and mo-
tion to the overlap between the spinor components in the
different spin states:

Se=1-2 |, a bl . (8)

m,n

If there is zero overlap between different spinor components,
then the only contributions to the sum are for m=n. In this
case, when in addition the «,, are all equal, the state is maxi-
mally entangled.

In order to understand the behavior in the classical limit,
we first consider the spin—% case studied in Ref. [3] with ¢
=0. The spinor components in the diabatic (|m,)) basis of an
initial spatially localized state move along two different har-
monic wells centered at +b so that their overlap reduces al-
most to zero [Fig. 2(a)]. At this point, the entanglement in-
creases to its maximum value, but falls back to zero when
the measurement eventually projects the state into one of the
two spin states. Thus in this example maximum entangle-
ment (zero overlap between wave packets) corresponds to a
measurement that perfectly distinguishes the spinor compo-
nents, resulting in a projective measurement with maximum
measurement backaction. The entanglement acts as a mea-
sure of the noise on the spin due to the position measure-
ment.

In the large action chaotic limit, the increase in S; with the
actions can be understood in a similar manner. The overall
extent of the initial state in position and momentum spreads
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as the 2J+1 spinor components move along different diaba-
tic potentials and are coupled by the transverse magnetic
field. As the spinor components spatially separate, their over-
lap decreases, leading to an increase in entanglement. At the
same time, the measurement acts to localize the state,
thereby damping out the tails of the spatial distribution and
preventing further spatial separation between the spinor com-
ponents. Whereas in the spin-% case, the measurement was
strong enough to eventually resolve the two spinor compo-
nents, for larger spin J, the same measurement strength can-
not distinguish between all 2J+1 components [Fig. 2(b)].
Thus the measurement does not project the state into a single
spin state and hence the entanglement does not decrease back
to zero. Instead, a quasisteady state is reached where some
nonoverlapping spinor components remain that lead to a
nonzero steady-state entanglement, but are indistinguishable
by the measurement. For a constant measurement strength &,
as the actions increase, more nonoverlapping spinor compo-
nents fit within the width of the measurement resolution, and
hence this steady-state entanglement increases as seen in Fig.
1.

Whereas the weak measurement does not remove all the
entanglement between spin and motion, it is sufficient to lo-
calize the state and damp the higher-order cumulants that
lead to “nonclassical” dynamics [3,4]. The connection be-
tween entanglement and the cumulants becomes clear in the
large action (classical) limit, where the measurement causes
the reduced state of the motional subsystem to remains ap-
proximately Gaussian. In that case the linear entropy can be
written solely in terms of the variances and covariance as
SGauss=1—7/2A. The quantity A=\rCZZCpp—C§p represents
the effective area of the “uncertainty bubble” of the Gaussian
distribution and its ratio to #/2 measures the number of
minimum uncertainty wave packets which fit within this area
and thus the dimension of the Hilbert space required to de-
scribe the marginal state. This ratio therefore determines the
effective rank of the reduced density operator, or Schmidt
number of the entangled state. From this equation it is clear
that even if the variances and covariances remain small rela-
tive to the fotal phase space of the dynamics, they may still
be large compared to 7, and the entanglement can be close to
maximal (S=1). In this way, one can simultaneously satisfy
the QCT conditions (covariance matrix remains bounded),
and obtain an evolution that results in a highly entangled
quantum state. This arises because the various J, components
are in principle distinguishable by a strong enough position
measurement alone. However, the QCT emerges precisely
because in practice the measurement is weak and hence can-
not induce strong quantum backaction.

The measurement backaction can be quantified by AS,.
Consider first the extreme quantum limit, J =%. In that case,
any measurement strong enough to localize the wave packet
in position will necessarily resolve the two spinor compo-
nents and cause maximum backaction, projecting the maxi-
mally entangled state on to one of the two spin states. This is
accompanied by a maximal change in degree of entangle-
ment AS; from its maximum value (corresponding to a
“Schrodinger cat” state) to zero (a product state). In contrast,
in the large action limit, the measurement is only weakly

014102-3



BRIEF REPORTS

1

0.8

7 0.6
E o
2]

<04

0.2

0

0 1 2 3 4 5
J x10*

FIG. 3. (Color online) AS,((maX), which is the upper bound on
AS), decreases as 1/VJ for a fixed measurement strength k.

projective (small backaction) on the spin system and corre-
spondingly, does not change the entanglement as much. If we
replace Sy by Spax=1-1/(2J+1) in Eq. (5), we obtain an
upper bound on AS). Figure 3 shows the steady-state behav-
ior of this upper bound as a function of the size of the spin
system. As the system is made more classical by increasing J
and [, keeping k fixed, the maximum value of AS) decreases
rapidly, indicating that the backaction due to the measure-
ment decreases, as is expected in the classical limit. On the
other hand, keeping the actions fixed, as k increases, AS;
increases, reflecting the larger backaction on the spin system
caused by a stronger measurement of the position. AS; is
thus a good quantitative measure of the small backaction
condition required for the QCT and provides an alternative to
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the covariance matrix conditions obtained in Ref. [4].

This treatment of the QCT for bipartite systems sheds new
light on the von Neumann paradigm of quantum measure-
ments [12], comprising a system B and apparatus A, fol-
lowed by observation of the apparatus. The standard para-
digm involves strong projective measurement, leading to
strong backaction of the system when there is large entangle-
ment between the two parts. Tracing over the system, quan-
tum interference effects between the different states of the
apparatus are removed, at which point they can be consid-
ered as classical alternatives. The treatment here extends this
paradigm to the regime of weak measurement on the
system—a general POVM (Positive Operator-Valued Mea-
sure). Our results show that although our goal is to achieve
weak backaction on the system (the opposite regime of the
standard von Neumann paradigm), we still require large en-
tanglement between the system and probe in order to achieve
a measurement record that evolves according to classical
equations of motion. These results underscore the subtle re-
lations between dynamics and states in defining the QCT
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