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The nonlinear optical response obtained from a model system of a quantum phase gate is investigated. The
model system consists of a thin infinite atomic layer of two-level atoms placed in front of a perfect reflecting
mirror. The optical response obtained from the model system is semiclassically analyzed using the finite
difference time domain method with the optical Bloch equations. It is shown that a nonlinear phase shift of �

is achieved when the atomic layer is placed at an antinode of the input field. This result is consistent with the
theoretical result obtained from a one-dimensional atom model �H. F. Hofmann, K. Kojima, S. Takeuchi, and
K. Sasaki, J. Opt. B: Quantum Semiclassical Opt. 5, 218 �2003��. The dependence of the nonlinear phase shift
on the position of the atomic layer is also studied in detail.
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I. INTRODUCTION

The realization of quantum devices for photonic quantum
information processing is attracting a great deal of attention.
Quantum phase gates �QPGs�, which coherently modulate
the phase of a signal photon according to a control photon,
are thought to be the most essential of such devices because
arbitrary unitary operation on photonic qubits can be physi-
cally realized using QPGs and simple linear optical elements
�1�. Several ideas have been proposed to realize QPGs using
linear optics and postevent selection �2–5�, however, the low
efficiency of those schemes is a critical problem.

One alternative approach is to utilize single-atom nonlin-
earity. Turchette et al. observed a phase shift of � /12 with
very weak c.w. light input using single atoms passing
through a high-Q microcavity �6�. Based on this experiment,
we have proposed a QPG device using a single atom con-
fined in a one-sided cavity �7�. We have shown, using semi-
classical analysis, that a nonlinear phase shift of � can be
obtained from our QPG device for an input light field on
resonance �7�, if the phase relaxation time is longer than the
spontaneous decay time �8�. The change of quantum state of
the photons has also been investigated using a fully
quantum-mechanical treatment �9,10�, and the efficiency of
the QPG device has been analyzed in terms of quantum state
fidelity �11�. An extended investigation has recently been
performed analytically by another group �12�.

However, there is a limitation in the previous analyses
�7–11�. These analyses are based on the theoretical model
called the one-dimensional atom �1D atom�, in which the
cavity field is adiabatically eliminated under the bad cavity
condition �7�. This means that the effect of the device struc-
ture, i.e., the position of a two-level atom in the cavity, on
the nonlinear phase shift cannot be analyzed. However, to

realize a QPG device, the relation between the position of
atoms and the amount of phase shift must be fully investi-
gated.

In this paper, we investigate the above-mentioned issue
using a numerical calculation of the optical Bloch equations
with the finite difference time domain �FDTD� method �13�.
As a first step, we investigate the optical response obtained
from a model system in which a thin infinite atomic layer of
two-level atoms is placed in front of a perfectly reflecting
mirror. The atomic layer therefore sits in a standing wave
formed in front of the mirror. We find that a nonlinear phase
shift of � can be obtained when the atomic layer is placed at
an antinode of the standing wave. The dependence of the
phase shift on the incident photon number is consistent with
that previously reported using the 1D atom model �7�. We
also find that the result can be well explained by destructive
interference between the incident field and the field emitted
from the atomic layer. We also study in detail the dependence
of the nonlinear phase shift on the position of an atomic
layer.

This paper is organized as follows. In Sec. II, we formu-
late the dynamics of the optical Bloch equations coupled
with the FDTD method. In Sec. III, we analyze the effects of
the position of an atomic layer on the nonlinear optical re-
sponse. In Sec. IV, we summarize our results.

II. MODEL SYSTEM AND NUMERICAL SETUP

Figure 1 illustrates a thin infinite atomic layer, under the
assumption that the atoms are stationary and uniformly dis-
tributed and do not interact with each other. When a plane
wave is perpendicularly incident on the atomic layer, light
emitted from the atomic layer propagates in the same plane
wave mode as the incident wave owing to interference of the
light emitted from each atom �14�. This system can then be
reduced to a one-dimensional input-output system, and the
dynamics of this system can be analyzed using one-
dimensional Maxwell’s equations �13�.

The one-dimensional Maxwell’s equations with a dipole
current jz, resulting from the above reduction, are given by
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Note that the usual four Maxwell’s equations can be reduced
to the above two equations in our one-dimensional system
because only the electromagnetic fields orthogonal to the x
axis are allowed and thus the divergences of the electric field
and the magnetic field are always zero. Since the dipole cur-
rent is due to the induced polarization Pz of atoms, it can be
expressed in terms of the dynamics of the polarization,

jz = �Pz/�t , �2�

showing how the emitted light from the atoms in the atomic
layer is coupled to Maxwell’s equations through the dipole
current jz.

The dynamics of atoms in the atomic layer can be de-
scribed by the optical Bloch equations of the driven two-
level atom. For a two-level atom with a ground state �g� and
an excited state �e�, the Bloch equations can be expressed in
terms of the complex dipole operators �̂−= �g��e� and �̂+

= �e��g�, and the inversion operator �̂z= ��e��e�− �g��g�� /2 as
�15�

d

dt
��̂−� = �− �� − i�0���̂−� − i2���̂z� , �3a�

d

dt
��̂+� = �− �� + i�0���̂+� + i2���̂z� , �3b�

d

dt
��̂z� = − 2��	��̂z� +

1

2

 − i����̂−� − ��̂+�� , �3c�

where �� is the dipole decay rate due to spontaneous emis-
sion, �0 is the resonant frequency between the two atomic
levels, and � is the Rabi frequency given by

� =
degEz�xa,t�

	
, �4�

where deg is the dipole moment of the atom and xa denotes
the position of the atomic layer.

The dipole current jz shown in Eq. �2� can now be de-
scribed using the density of polarized atoms in the atomic
layer Natom, the dipole moment of the atoms deg, and the
expectation values of the dipole operators �̂− and �̂+, giving

jz�x,t� = Natomdeg
�x − xa�
d

dt
���̂−� + ��̂+�� . �5�

Equation �5� describes coherent dipole emission from two-
level atoms. Equations �1� and �3� can be numerically solved
by transforming them into finite difference equations. In par-
ticular, Maxwell’s equations �Eq. �1�� can be solved using the
FDTD method �13�.

In the FDTD calculation, Maxwell’s equations �Eq. �1��
are transformed into spatiotemporally finite difference equa-
tions that obey the Yee algorithm �16�, Ez�k�x ,n�t�
�En�k� and Hy�k�x ,n�t��Hn�k�, where k and n denote the
grid number and time step used for the FDTD calculation,
respectively. The Bloch equations �Eq. �3�� are also trans-
formed into finite difference equations in the time domain.
The integration of the Maxwell-Bloch equations from the nth
step to the n+1-th step is carefully performed stepwise: First
we integrate Eq. �1a� except the term of −jz /�0 using the
FDTD algorithm, and obtain the set of electric fields En+1� �k�
for each grid number k. Then at the grid number ka, where
the atomic layer is set, we integrate the Bloch equations �Eq.
�3�� driven only by the electric field En+1� �ka�, and obtain the
difference values of ���̂−�n+1− ��̂−�n� /�t and ���̂+�n+1

− ��̂+�n� /�t. Then, we calculate the dipole current jz using
the difference equation of Eq. �5� and obtain the electric field
En+1�k�=En+1� �k�− jz�k� /�0 for each grid number k. Finally,
we integrate Eq. �1b� with En+1�k� using the FDTD algo-
rithm, and obtain the magnetic fields Hn+1�k� for each grid
number k. The initial state n=0 is that for which all the
electromagnetic fields are zero, E0=H0=0, and the two-level
atom is in the ground state ���̂−� , ��̂+� , ��̂z��= �0,0 ,−1/2�.
Throughout the numerical calculations, the expectation val-
ues of the dipole operators in the Bloch equations �Eq. �3��
are replaced with the real number parameters ��̂x�= ���̂−�
+ ��̂+�� /2 and ��̂y�= i���̂−�− ��̂+�� /2.

Figure 2 shows the input-output field calculated by the
one-dimensional FDTD method in the absence of an atomic
layer. A right-traveling input field in the form of a continuous
wave is initially radiated from a source and is then reflected
by a perfect reflecting mirror set at one end of the boundary
domain �17�. The reflected light propagates to the opposite
end of the boundary domain, at which we use Mur’s first-
order absorbing boundary condition to eliminate the back-
reflection into the computational domain. On the left-hand
side of the source, we can obtain an output field that consists
only of the reflected component. Note that the notch appear-
ing at the source is not due to the numerical calculation error
but due to a phase lag between the output field of the trav-
eling wave and the standing wave. This is thereforec gener-

FIG. 1. Schematic of a one-dimensional Maxwell-Bloch system
with reflection geometry. A plane wave is perpendicularly incident
on a thin infinite atomic layer. The emitted light from the atomic
layer then propagates in the same plane wave mode as the incident
wave. This system can therefore be reduced to a one-dimensional
input-output system with negligible output losses.
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ally observed in the system with reflection geometry that we
now consider.

For comparison with the theoretical results in Refs. �7,8�,
we introduce the input photon number nin normalized by the
dipole decay rate ��, defined as

nin =
S̄A

	���

, �6�

where A is the atomic cross section and S̄ is the time-

averaged Poynting vector component given by S̄=EzHy.
Equation �6� shows that a mean photon number of nin is
incident on the atomic layer during the dipole damping life-
time �=1/��. The phase shift �nin� for a given nin can then
be estimated by comparing the output field for the presence
of an atomic layer to the output field obtained in the absence
of an atomic layer �18�.

In the following FDTD calculation, a cell size of �x
=7.5�10−9 m and a time step of �t=2.499288�10−17 s are
used. The frequency of the input field is set to be �=2�
�3.5458�1014 s−1, which corresponds to a wavelength of
�=8.45�10−7 m. For the atomic parameters, the resonant
transition frequency is the same as the frequency of input
field �0=� and the dipole moment is set to deg=8.0
�10−28 C m �19�. The spontaneous emission rate is then
2�� =8.9542�1010 s−1, which is calculated by

2�� =
�deg�2�0

3

��0	c3 , �7�

where we assume that all the atoms in the atomic layer are
oriented to the same direction as the polarization of the input
field. The thickness of the atomic layer is equal to one cell of
�x.

In order to compare our result to the nonlinear optical
response obtained from the 1D atom model �7�, the value of
the density of polarized atoms Natom has to be carefully cho-

sen. This can be done by using the density of polarized atoms
given by the atomic cross section A of a single atom,

Natom =
1

A�x
with A =

�0
2

2�
, �8�

where �0 is the transition wavelength between the two
atomic levels. In our case, the density of the polarized atoms
is set to Natom=1.172�1021 m−3. With Eq. �8�, the dipole
emission obtained from Eq. �5� can be considered that ob-
tained from a single atom.

III. RESULTS OF NUMERICAL CALCULATION

Here we analyze the nonlinear optical response obtained
from an atomic layer placed in a standing wave. First, in Sec.
III A, we consider the case where the atomic layer is placed
at an antinode of a standing wave. Then, in Sec. III B, we
consider the case where the atomic layer is displaced from an
antinode. Finally, in Sec. III C, we analyze in detail the de-
pendence of the phase shift for a low input photon number
on the position of the atomic layer.

A. Nonlinear optical response from an atomic layer placed at
an antinode

The simplest case to consider is where an atomic layer is
placed at an antinode of a standing wave. Figure 3 shows the
effect of the input field strength on the nonlinear optical re-
sponse obtained from an atomic layer, where the atomic
layer is placed at the antinode of the standing wave closest to
the mirror. As shown in Fig. 2, the output field is to the left
of the source, which is set around a distance of 11 wave-

FIG. 2. Input-output field with a perfect mirror calculated by the
one-dimensional FDTD method �without an atomic layer�. The
electric-field profile at the simulation time of t=1.247615
�10−10 s is shown. A right-traveling input field is initially radiated
from a source and then reflected by the mirror placed at the one end
of the boundary domain. At the opposite end of the boundary do-
main we use Mur’s first-order absorbing boundary condition. The
output field can be obtained from the output region that consists
only of the reflection component.

FIG. 3. Effect of input field strength on the nonlinear optical
response obtained from an atomic layer for �a� nin=0.0036, �b� nin

=0.057, �c� nin=0.36, and �d� nin=3.6�105. For all data, the
electric-field profiles at the simulation time of t=2.499204
�10−10 s are shown. The atomic layer is placed at the antinode of a
standing wave closest to the mirror of the boundary domain. In
order to clearly show the output and the electric field at the atomic
layer, we omit the range from 2.75 to 10.25 on the horizontal axis.
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lengths from the mirror. Figure 3�a� shows the optical re-
sponse for an input photon number of nin=0.0036. By com-
paring the output field obtained from the atomic layer �solid
line� to the output field in the absence of the atomic layer
�dotted line�, we find that a phase shift of � appears. Figure
3�b� shows the optical response for nin=0.057. For an in-
crease of the input photon number to nin=0.057, the output
field obtained from the atomic layer decreases, but the phase
shift remains �. However, for a further increase of the input
photon number to nin=0.36, shown in Fig. 3�c�, the phase
shift becomes zero and the output field obtained from the
atomic layer increases. For a larger input photon number of
nin=3.6�105, as can be seen in Fig. 3�d�, the output field
obtained from the atomic layer is the same as the output field
obtained in the absence of the atomic layer �20�.

The phase shift of � shown in Fig. 3�a� can be explained
by interference between the input field and coherent dipole
emission from the atomic layer �see Fig. 4�. On resonance,
the dipole emission is in antiphase with the local field at the
atomic layer �14�. The transmission component �gray arrows
in Fig. 4� is therefore attenuated by the destructive interfer-
ence between the input field and the phase-flipped dipole
emission. In particular, in the limit of low input photon num-
ber �nin→0�, the transmission component completely van-
ishes and the atomic layer then acts as a perfect reflecting
mirror. This can be seen in the electric field between the
atomic layer and the mirror in Fig. 3�a�. As a result, there is
an optical path difference of 2� /4 between the output field
obtained from the atomic layer and the output field in the
absence of the atomic layer, and a phase shift of � appears,
corresponding to the optical path difference.

As the input photon number increases, however, the di-
pole emission from the atomic layer decreases owing to satu-
ration of the atoms. The transmission component then does
not completely vanish. The output field obtained from the
atomic layer therefore consists both of the reflection compo-
nent of dipole emission and the transmission component re-

flected by the mirror. When the reflected transmission com-
ponent dominates the reflection component of dipole
emission, a nonlinear phase change from a phase shift of �
to a phase shift of zero occurs, as can be seen in Figs. 3�b�
and 3�c�. In the limit of large input photon number �nin

→��, atoms are completely saturated and the effect of dipole
emission is negligibly small, as seen in Fig. 3�d�.

In order to identify this dependence of the nonlinear phase
shift and the output field strength on nin, it is useful to sepa-
rate the output field into a phase shift �nin� and a coherent
output photon number nout. The output photon number nout is
obtained from Eq. �6� by using the electromagnetic fields at
the output field. Figure 5�a� shows the dependence of the
nonlinear phase shift �nin� on nin. For nin lower than 1/4,
the phase shift is �. When nin is 1 /4, the phase shift sud-
denly becomes zero and remains zero for nin larger than 1/4.
This phase switching at nin=1/4 is consistent with the theo-
retical result obtained from the 1D atom model in Ref. �7�.

Figure 5�b� shows the dependence of the output photon
ratio nout /nin on nin. In the limit of low input photon number
�nin→0�, the output field consists only of the reflection com-
ponent of dipole emission, and nout /nin approaches one,
though this is not shown in Fig. 5�b�. As nin increases, the
reflected transmission component increases and nout /nin de-
creases. For nin lower than 1/4, the phase-flipped dipole
emission still dominates the reflected transmission compo-
nent. When nin is 1 /4, the amplitudes of the reflected trans-
mission component and the phase-flipped dipole emission
are exactly equal, and the coherent output is totally elimi-
nated by the destructive interference between these two com-
ponents. As a result, nout /nin becomes zero �21�. For a further

FIG. 4. Schematic of the interference between the input field
and dipole emission from the atomic layer. The atomic layer is
placed at a distance � /4 from the mirror of the end of the boundary
domain. The dipole emission from the atomic layer is then in an-
tiphase with the input field. The transmission component �gray ar-
rows� is therefore attenuated by the destructive interference be-
tween the input field and the phase-flipped dipole emission.

FIG. 5. �a� Nonlinear phase shift and �b� coherent output photon
ratio nout /nin obtained for an atomic layer placed at an antinode. For
all data, the calculation step is 107. The solid lines are guides for the
reader’s eye.
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increase of input photon number �nin�1/4�, however, the
reflected transmission component dominates the dipole emis-
sion, and nout /nin increases. In the limit of large input photon
number �nin→��, nout /nin approaches one, where the output
field consists only of the reflected transmission component.

B. Effects of atomic layer position on the nonlinear
optical response

We now consider the case when an atomic layer is dis-
placed from an antinode of a standing wave. Figure 6�a�
shows the dependence of the nonlinear phase shift �nin� on
input photon number nin. As shown in the inset in Fig. 6�a�,
the atomic layer is displaced from an antinode at intervals of
� /16. For comparison, the nonlinear phase shift with the
atomic layer at the antinode, which is shown in Fig. 5�a�, is
also plotted as circles ���. For each position of the atomic
layer, �nin� is larger for the lower input photon number.
Specifically, for nin=0.01, the phase shifts for positions near
the antinode �� and �� decrease to ��0.01���150°. The
further the position of the atomic layer is displaced from the
antinode, the smaller is the absolute value of the phase shift
��0.01��. As nin increases, �nin� gently decreases to zero, in
contrast to the phase shift for the antinode. For the atomic
layer placed at the node ���, �nin� is always zero. Thus
�nin� strongly depends on the position of the atomic layer.
We will consider in detail the mechanism of this dependence
in Sec. III C.

Figure 6�b� shows the dependence of the output photon
ratio nout /nin on nin. For each position of the atomic layer,

except at the node, nout /nin increases to one for both small
and large nin. However, it is interesting to note that nout /nin
for low input photon number is almost the same for each
position of the atomic layer. A remarkable effect of atomic
layer position on nout /nin can be seen around nin=1/4. Spe-
cifically, nout /nin increases as the distance between the
atomic layer and the antinode increases. This recovery of
coherent output results from a decrease of the destructive
interference effect in the output field, as discussed in Sec.
III A.

As the examples in Figs. 6�a� and 6�b� show, a large phase
shift and high output efficiency can be obtained for low input
photon number �nin�1�. In particular, for applications to
nonlinear optical devices such as QPGs, the phase shift ob-
tained for low input photon number is important because the
maximal conditional phase shift obtained by varying nin is
equal to the phase shift for low input photon number. In the
following section, we discuss in detail the dependence of the
phase shift for low input photon number on the atomic layer
position.

C. Dependence of the phase shift for low input photon
number on the atomic layer position

As shown in Fig. 6, a phase shift of � is obtained for the
atomic layer placed at the antinode, and it decreases as the
displacement of the atomic layer from the antinode increases,
becoming zero at the node. This result cannot be easily ex-
plained by the local field strength of a standing wave in the
absence of an atomic layer. In the case when the atomic layer
is placed at an antinode, as discussed in Sec. III A, the dipole
emission from the atomic layer completely destructively in-
terferes with the input field, and the transmission component
is then negligibly small. However, as the atomic layer is
displaced from the antinode, the transmission component
cannot completely vanish, and we therefore take into account
the reabsorption-reemission process of atoms induced by the
transmission component reflected by a perfect mirror. Here
we clarify the effect of this reabsorption-reemission process
on the phase shift by comparing the result in Fig. 6�a� to the
phase shift obtained from the dipole emission dependent
only on the local field strength of the standing wave, that is,
the phase shift without the reabsorption-reemission process.

Figure 7 shows the phase shift ��nin�� for a low input
photon number of nin=0.0036 as a function of atomic layer
position. The atomic layer is displaced from an antinode at
intervals of � /32. The dotted line is �� obtained theoreti-
cally from the output field without reabsorption-reemission
of atoms. �� is obtained by using the complex amplitude Ein
of the input field and the local electric-field strength �
=cos�2�x /�� of the standing wave �x=0 at the antinode�, as

�� = arg� Eout

Eempty
�

with Eout = − �Eine
−i
 − �Ein − �Ein� , �9a�

Eempty = − Ein, �9b�

where the first term of the right-hand side in Eq. �9a� is the
reflection component of dipole emission and the second term

FIG. 6. �a� Nonlinear phase shift and �b� coherent output photon
ratio nout /nin obtained for an atomic layer displaced from an antin-
ode. The positions of the atomic layer are described by the distance
from the antinode of the standing wave closest to the mirror �the
minus sign denotes that the atomic layer is displaced towards to the
mirror�. For all data, the calculation step is 107. The solid lines are
guides for the reader’s eye.
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is the transmission component reflected by the mirror �see
Fig. 4�. Eempty is the output field obtained in the absence of
the atomic layer, and 
 denotes the phase lag of the optical
path difference between the atomic layer and the mirror,
given by 
=2�� /2+2�xa /��. As can be seen in Fig. 7, at the
antinode and the node where reabsorption-reemission is neg-
ligible, the phase shifts ��0.0036�� and �� are equal. How-
ever, at points other than at the antinode and the node,
��0.0036�� is always larger than ��, though the shape of the
function �� is similar to ��0.0036��. The phase difference
between ��0.0036�� and �� is largest at the middle point of
the antinode and the node, where the phase difference is
�15°. Thus the phase shift for low input photon number is
strongly modified by the reabsorption-reemission process of
atoms, which cannot be explained only by the local field
strength of the standing wave in the absence of the atomic
layer.

In general, theoretical analysis of the phase shift with
reabsorption-reemission is complicated because the reemis-
sion component is also reflected by the mirror and induces
subsequent reemission. This kind of autoregressive problem
may be approximately solved by using a self-consistent field,
i.e., the mean field approximation. However, the FDTD
method with the optical Bloch equations can automatically
calculate the reabsorption-reemission process, even for a sys-

tem with a complex device structure. FDTD analysis is
therefore useful for analyzing the effects of atomic layer po-
sition on the optical response obtained from devices based on
1D atom nonlinearity.

IV. CONCLUSION

Using the finite difference time domain method with the
optical Bloch equations, we have investigated the nonlinear
optical response obtained from a thin infinite atomic layer
placed in front of a perfect reflecting mirror. We found that a
nonlinear phase shift of � appears when the atomic layer is
placed at an antinode of a standing wave. This is consistent
with the nonlinear optical response calculated using a 1D
atom model �7�. We also analyzed the effect of the position
of the atomic layer on the nonlinear phase shift. As the dis-
tance between the positions of the atomic layer and an anti-
node increases, the nonlinear phase shift decreases. In par-
ticular, the phase shift obtained for low input photon number
�nin�1� strongly depends on the interference modified by
the reabsorption-reemission process of atoms rather than the
local field strength at the atomic layer. We also found that the
output photon ratio nout /nin for low input photon number nin
is almost independent of the displacement of the atomic layer
from an antinode.

In this analysis, we investigated the nonlinear optical re-
sponse to a coherent c.w. input field in order to compare with
the results in previous works �7,8�. However, it is easy to
expand the analysis to a system driven by a pulsed input
field. It may then be interesting to consider the implications
of our results for the nonlinear optical response to one- and
two-photon wave functions discussed in Refs. �9,10�. FDTD
calculations of higher dimensions and for a cavity structure
may help to evaluate the performance of optical devices.
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