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We consider propagation of a two-level atom coupled to one electromagnetic mode of a high-Q cavity. The
atomic center-of-mass motion is treated quantum mechanically and we use a standing wave shape for the
mode. The periodicity of the Hamiltonian leads to a spectrum consisting of bands and gaps, which is studied
from a Floquet point of view. Based on the band theory, we introduce a set of effective mass parameters that
approximately describe the effect of the cavity on the atomic motion, with the emphasis on one associated with
the group velocity and on another one that coincides with the conventional effective mass. Propagation of
initially Gaussian wave packets is also studied using numerical simulations and the mass parameters extracted
thereof are compared with those predicted by the Floquet theory. Scattering and transmission of the wave
packet against the cavity are further analyzed, and the constraints for the effective mass approach to be valid
are discussed in detail.
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I. INTRODUCTION

Cavity quantum electrodynamics �QED� �1� has experi-
enced tremendous progress during the last decades. In ex-
periments where atoms interact with a cavity field, the life-
times of both the cavity and atomic states can be made rather
long, up to tens of milliseconds. This makes it possible to
carry out several operations on the combined system before
decoherence plays an influential role. It is also possible to
single out a unique atomic transition to interact with only
one cavity mode, implying that only two atomic states �↑ �
and �↓ � together with one electromagnetic mode �n� need to
be taken into account, while other atomic states and modes
are neglected. In such situations, the Jaynes–Cummings �JC�
model �2,3� has proven to be remarkably well suited for de-
scribing the coherent interaction. Cavity QED has thus be-
come one of the candidates for implementing quantum infor-
mation processing, see for example �4–7�, and it has also
turned out to be a very useful tool for studying purely quan-
tum mechanical phenomena, such as sub-Poissonian Fock
states �8� and Schrödinger cat states �9�.

The simple JC model is not, however, always valid. For
example, if the atoms’ kinetic energy is of the same order of
magnitude as the atom-cavity interaction energy, the dynam-
ics are significantly changed �10,11�. Thus, for very cold
atoms, the kinetic energy term for the atomic center-of-mass
motion must be treated quantum mechanically. In the stan-
dard JC model, the atom is either assumed to stay still rela-
tive to the cavity mode, or to have a large kinetic energy; in
both cases, the atomic motion is described classically and the
kinetic-energy term may be excluded from the Hamiltonian.
Another simplification of the JC model is that the spatial
shape of the cavity mode is not taken into account and it is
assumed constant. This is, of course, not always valid, since
an atom traversing a cavity will see a mode that varies with

respect to the atomic position. The mode variation is given
by the particular shape of the electric field and is, therefore,
space dependent. The proper approach in such a case is to
introduce an atom-field coupling that is position dependent
g�x�= d̄ · Ē�x� /�, where d̄ is the dipole moment of the atomic

transition and Ē�x� is the electric field of the cavity mode
involved. For a smooth coupling and small velocities, the
atoms see the cavity mode as an effective potential which is,
in the adiabatic limit, given by ±��2 /4+g2�x�, here, � is the
atom-cavity detuning. Consequently, the atom experiences an
effective force from the potential and it may, for instance, be
reflected or transmitted by the cavity �12–14� or even trapped
inside it �15–21�. The situation in which the atom experi-
ences both an effective cavity potential and an external po-
tential has also been discussed �22�. Today, it is possible to
trap ions inside cavities even using external traps �23�, which
open up new possibilities for realizing certain desirable sys-
tems.

The shape of the cavity mode depends on the boundaries
of the cavity, the most commonly considered being Gaussian,
standing wave, travelling waves in ring cavities, and
whispering-gallery modes. We consider here a standing wave
mode with a wave number q ,g�x�=g0cos�qx�, where g0 is
the scaled strength of the coupling. For such a system, an
extended JC model including the atomic center-of-mass mo-
tion and a standing wave coupling has been studied in a large
number of papers, here we just mention a few. The dynamics
have been analyzed in, for example, �24–33�, while in
�30–33�, approximation methods are used, such as Raman–
Nath, Bragg, tight binding, or large detuning. In the Raman–
Nath approximation, the kinetic energy term is neglected,
and this has been assumed in Refs. �34–36�, where effects
from various measurements on the field or the atom have
been studied.

Clearly, with a standing wave coupling, the Hamiltonian
is periodic with period �=2� /q. The spectra of periodic
Hamiltonians are known to consist of allowed energies in
forms of bands, separated by forbidden gaps. They are most*Electronic address: jolarson@kth.se
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commonly treated using the Floquet theory, which has been
done, for example, in Refs. �24,27,31�. An interesting obser-
vation is that the Brillouin zone is now twice as wide as in
the usual case for one-dimensional periodic Hamiltonians.
This derives from the fact that the two atomic levels are
coupled to the motion, in contrast to electrons in solid crys-
tals where electronic spin flips are not coupled to the lattice
potential. In an atom-cavity system, every time the atom ab-
sorbs or emits a photon and gets a momentum “kick”, its
internal state �± � is also changed. Hence, in the rotating
wave approximation, an emission �absorption� must take
place between two absorptions �emissions�. The symmetry of
the system is, therefore, generated by displacement of one-
half of the spatial period accompanied by an atomic inver-
sion �performing this twice yields the spatial periodicity of
the Hamiltonian�, which renders the Brillouin zone �in mo-
mentum space� twice as wide.

In solid-state physics, it has proved useful to describe an
electron propagating within a periodic structure in terms of a
dispersion relation E=E��k� where k is called the quasi-
momentum of the state and � is an index for the electronic
band; in this picture, the electron is considered to move
freely, with its propagation characteristics defined by the dis-
persion relations. Here, as below, we set Planck’s constant
�=1. If the electronic wave function is represented by a
�Gaussian� wave packet centered around �quasi-� momentum
k0, its propagation velocity, i.e., group velocity, is given by
vg=�E��k� /�k�k=k0

. Thus, the velocity of the electron is no
longer determined by its original mass, such that v=k /m, but
by a renormalized mass defined as m1=k /vg, which depends
on the dominant quasi-momentum of the state. As the tan-
gent of the dispersion curve gives the group velocity, which
is related to the free-space velocity through the ration m /m1,
the curvature determines the amount of spreading of the
Gaussian wave packet and, likewise, it defines another mass
parameter m2= � �2E

�k2 �−1
. In this paper, we study the dynamics

of a two-level atom interacting with a standing wave cavity
mode and discuss the effect of masses m1 and m2, replacing
the original free mass of the atom.

In ordinary QED, the assignment of mass to electrons is
an essential part of the renormalization program, where the
mass may be considered to be shifted by the presence of the
zero-point energy of the vacuum; the fact that formally infi-
nite entities are manipulated does not invalidate the general
picture. Likewise, one may expect that the presence of a
finite energy in the field may give its own contribution to the
renormalized quantities; in particular, the mass. This quantity
is usually considered to be too small to have any observable
consequences. In a cavity, on the other hand, the coupling of
an atom to the cavity modes is enhanced, and it may be
possible to interrogate the effect of the field on the mass.

In most setups for atom-cavity QED experiments, the
atom is prepared in some initial state outside the cavity and
is then allowed to propagate through the cavity field. Pro-
vided that the photonic wavelength � is small compared with
the cavity length, the system can be treated approximately as
periodic, and the results of the Floquet theory are applicable.
If, for instance, the atom is prepared with a kinetic energy
that lies in a forbidden energy gap, it cannot enter the cavity

but must be reflected from it, possibly with a flipped internal
atom-field state �± �, as will be shown below. When the ki-
netic energy falls within the allowed energy bands, the atom
will traverse the cavity with a �group� velocity vg=k /m1. We
also simulate wave packet propagation in these situations
using the split operator method. The results obtained from
the Floquet theory and the wave packet propagations are
compared. Since the mass parameters m1 and m2 depend on
the effective coupling g0

�n, where n is the photon number, a
measurement of m1 or m2 also yields indirectly the photon
number inside the cavity. The reflection and transmission of
atoms against the cavity may also be used for state prepara-
tion or “Stern-Gerlach” type of measurements between dif-
ferent internal orthogonal states.

The paper is outlined as follows: First, in Sec. II, the
Hamiltonian describing the dynamics is introduced and
solved numerically for the eigenenergies and eigenstates in
accordance with the Floquet theory. The bare and dressed
states of the system are presented and analytic approxima-
tions for the lowest band are obtained. The more illustrative
approach of wave packet simulations is considered in Sec. III
and the effective masses m1 and m2 are defined. Both the
propagation of Gaussian bare and Gaussian dressed states are
discussed and, in order to get a deeper understanding of these
two cases, we analyze the comparison between bare and
dressed states. The masses m1 and m2 are extracted numeri-
cally and compared between bare and dressed states wave
packet propagation and also with the masses obtained from
the Floquet theory. Further, it is shown with simulations how
atoms may be reflected or transmitted by the cavity mode
and we discuss possible applications for state preparation
and state measurements. Finally, in Sec. IV we conclude with
a discussion of the results and possibilities to observe the
mass in realistic experiments.

II. THE FLOQUET APPROACH

We describe the atom-cavity system with a Jaynes-
Cummings model �2� that takes into account two atomic lev-
els, coupled to a single-field mode in the rotating wave and
dipole approximations; two essential parameters are the
atom-field coupling g0 and the detuning � between the
atomic transition frequency � and mode frequency �. More-
over, the field mode is assumed to be a standing wave along
the cavity axis x, and the parallel atomic motion is quantized.
The spectrum of the Hamiltonian is obtained using the Flo-
quet theory, and it has a band structure with Brillouin zones
twice as wide as for one-level particals �24,27,31�. The ef-
fects of the band and band gaps will be discussed in Sec. III,
where we consider physically realistic situations.

A. Jaynes–Cummings model for a moving atom

The JC model �2� describes the interaction between a two-
level atom and a single-field mode. As mentioned in Sec. I
above, the atomic center-of-mass motion has been ignored
and the parameters are assumed to be independent of the
atomic position in the original JC model; these conditions are
not, however, always satisfied in realistic atom-cavity experi-
ment. As the atom traverses the cavity, the shape of the cou-
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pling will be governed by the cavity mode structure. For a
standing wave mode, with wave number q=2� /�, the mode
is a given by g�x�=g0cos�qx�. In most studies and experi-
ments, the atomic velocity is large enough that it can be
described classically; thus, its energy merely adds a c num-
ber to the Hamiltonian. In such situations, assuming the atom
to be pointlike, the position operator x can be replaced by the
classical center-of-mass position moving with the velocity v,
i.e., x=vt, see �37–40�. For cold atoms, however, the center
of mass motion must be considered quantum mechanically
�10,11�, and the kinetic energy operator term must be in-
cluded in the original Hamiltonian. In many of the studies
where the kinetic-energy term is included, however, the sys-
tem is simplified by adiabatic elimination of the excited state
in the limit of large detuning �41,42�.

The extended JC Hamiltonian, with standing wave mode
structure and quantized atomic motion, becomes

H =
P2

2m
+

1

2
��̃�3 + �g̃�X��a�+ + a†�−� . �1�

Here, the tilde notation ��� indicates the original dimen-
sional variables. Also, m is the atomic “free” mass, P and X
are the momentum and position operators, a and a† boson
annihilation and creation operators for the cavity mode, and
the �-operators are the Pauli matrices acting on the internal
two states of the atom. Note that we only consider quantized
motion in one dimension along the cavity axis. The coupling
will be taken as g̃�X�=2g̃0cos�q̃X�. The evolution Hamil-
tonian is written in the interaction picture with respect to the

“free Hamiltonian” H0=��� 1
2�3+a†a+ 1

2
� and �̃=�−� is

the atom-cavity detuning.
Since the Hamiltonian has been given in the rotating wave

approximation, the total number of excitations in the system
N=a†a+ 1

2�3 is a conserved quantity and the dynamics there-
fore split up into separated decoupled subsystems for each
number of excitations. In the joint Hilbert space of the inter-
nal atomic state and the cavity mode, we define the basis
states as

� + � = 	1

0

 = �↑,n − 1�

�− � = 	0

1

 = �↓,n� , �2�

where the atomic states �↑ � and �↓ � are the atomic upper
state and lower states of the transition, and �n� are the cavity
mode Fock states. Using this basis and scaled parameters, the
Hamiltonian assumes the form

H = −
1

2

�2

�x2 + 	 �
2

�ng�x�
�ng�x� − �

2


 , �3�

where, after introducing a characteristic time and length
scale Ts and Xs, the scaled parameters are expressed in terms
of the old ones according to

g = Tsg̃, � = Ts�̃ = Ts�� − ��, x =
X

Xs
, q = q̃Xs, Ts

=
mXs

2

�
, �4�

and n is the photon number. We will take the photon momen-
tum q̃ to define the characteristic length scale as Xs=1/ q̃. We
shall consistently indicate q in all equations below, but use
the numerical value q=1 in all of the figures in accordance
with the chosen length scale. In this way, momenta k will be
given in units of q and the relevant parameters of the model
are g0 /q2 and � /q2. In most of the following analysis, we
will assume the atom to be initially in its ground state �↓ �
and the mode to contain one single photon. We should em-
phasize that the Hamiltonian �3� then becomes identical to
the one describing a two-level atom interacting with a clas-
sical standing wave field. Therefore, our model may not only
be used for describing atom-cavity QED dynamics, but also
the interaction between two-level atoms and classical fields,
for example, if the cavity is driven by a classical source or
the field is given by a laser beam. More general situations of
the quantized field could be considered in a straightforward
generalization, but in this paper we only discuss the basic
features and keep the model as simple as possible.

An interesting observation is that for zero detuning �=0,
the unitary operator

U =
1
�2
	1 1

1 − 1

 �5�

decouples the system into two ordinary one-dimensional
Schrödinger equations with potentials V±�x�= ±2 cos�qx�;
these equations are known as Mathieu equations �43�.

Due to the spatial periodicity � of the cavity mode, the
operator

T = ei�p, �6�

with �=2� /q, commutes with the Hamiltonian �3�; this sym-
metry property is the background for the Floquet theory. An-
other, slightly less obvious symmetry is associated with the
operator

I = �3ei
�
2

p �7�

that also commutes with the Hamiltonian �24�. This is a
“half-period” displacement combined with an atomic inver-
sion and it includes the first symmetry operation since T
= I2. Consequently, the first Brillouin zone is within −q	k
	q, and not within ±q /2, as implied by T alone. Physically
this derives from the fact that every absorption or emission
of a photon flips the internal state �± �→ �
 �, while after
absorption + emission �or vice versa� the internal atomic
state remains unchanged. The center-of-mass momentum in
the two-step process will either be the same or shifted by
±2q, depending on the direction of the emitted/absorbed pho-
tons. Note that the first Brillouin zone has occasionally been
defined to extend within − q

2 	k�
q
2 , which produces two sets

of dispersion curves, one for each internal state �± �, see Refs.
�24,44�.
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B. Energy band structure

The natural basis for writing out the system Hamiltonian
in a matrix notation is provided by the bare states

���k�� = ��k + q��− �  even

�k + q�� + �  odd,
� �8�

which are energy eigenstates of the system in the absence of
interaction, with their energies given by E= 1

2m �k+q�2− �
−1� �

2 . The quasimomentum k is limited here to the first
Brillouin zone −q	k�q and the integer index  denotes the
Brillouin zone or, equivalently, the energy band. Thus, the
physical momenta of the bare states have well-defined values
k+q and, in particular, the internal �−� state with zero mo-
mentum is given by ��0�0�� while the �+ � state, by ��−1�q��.

The energy eigenstates of the interacting Hamiltonian
given by Eq. �3�,

H����k�� = E��k�����k��, � = 1,2,3,… , �9�

are called dressed states and they can be expressed as linear
combinations of the bare states

����k�� = 
=−�

�

c
� �k����k�� . �10�

Each dressed state is assigned to some energy band �Bril-
louin zone� �, which is numbered 1, 2, 3, … for increasing
energy, and is also indexed with a continuous variable k,
which is now called the quasi-momentum; the entire quan-
tum states contain all momenta k+q. The functional depen-
dence of the energy eigenvalue on the quasi-momentum
E��k� is called the dispersion curve, assigned to each Bril-
louin zone. The dressed states for each quasi-momentum are
obtained by solving the secular equation given by the infinite
matrix Hamiltonian

H�k� = �
� � � � � �

… �k−2q�2

2 − �
2

g0 0 0 0 …

… g0
�k−q�2

2 + �
2

g0 0 0 …

… 0 g0
k2

2 − �
2 g0 0 …

… 0 0 g0
�k+q�2

2 + �
2

g0 …

… 0 0 0 g0
�k+2q�2

2 − �
2

…

� � � � � �

� . �11�

The eigenvalues and eigenvectors of this infinite Hamil-
tonian are not known in the general case, but approximate
analytical results may be found, see Refs. �30–33�. For ex-
ample, one interesting approximation, related to the Raman–
Nath limit, is when the q2-terms are neglected and it may be
solved analytically. Here, we will not discuss these approxi-
mations, but first solve the problem numerically and then
make different perturbative expansions for the eigenvalues.

In order to solve the problem numerically, the Hamil-
tonian has to be truncated at some dimension n. For small k
and relatively low bands, this n should be chosen odd, in
order to be consistent with coupling to equal number of
states in both “directions” from a given initial state. For n
=1, we obtain the bare eigenenergy, for n=3, the bare state
��0

k� couples to the states ��±1
k � and so on. In Figs. 1�a�–1�d�

we show the lowest-lying bands for the first Brillouin zone,
obtained numerically with n=201, for the parameters �a� �
=0, �b� �=1, and �c� and �d� �=−1. In �d� the coupling is 20
times as large, making the bare and dressed energies differ
significantly. On the y axis, the dressed bands are labelled

with the corresponding dominant -value that the bare
eigenenergies would have had in the limit of weak coupling,
and diamonds indicate a bare lower state �−� energies and
crosses bare states �+ � energies. When adding the coupling,
the crossings become “avoided”. Note how the gap size de-
creases with the band index �, indicating that the state is
more weakly coupled to far-away lying states. The crossings
between even-even  or odd-odd  are called Bragg reso-
nances and between odd-even or even-odd  Doppleron
resonances �27�.

In Fig. 2, we illustrate how the presence of the periodic
interaction couples the momentum eigenstates �bare states�
into dressed states. In Fig. 2�a�, the coefficients for the first
four dressed states ��=1,2,3,4� are plotted as a function of 
for zero quasi-momentum k=0. Note that the solutions are
either odd or even in , and that only the first one is not
“degenerate” since all other are centered around a crossing.
Figure 2�b� shows the same coefficients for a nonzero-quasi-
momentum k0=q /4, and the solutions are no longer symmet-
ric around =0. Note that, if any of the coefficients c

� �for
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each �� in Eq. �10� has an absolute value close to unity, the
presence of the periodic coupling only modifies the proper-
ties of a bare state without too much coupling to other bare
states; this is usually the case away from the crossings.

C. Extraction of the effective parameters

We now look for an analytical expression for the energy
eigenvalues of the Hamiltonian �11� and for the dispersion
curves. Denoting the bare-state energies by

E�k� =
�k + q�2

2
− �− 1��

2
, �12�

the energy eigenvalue equation H���=E��� �for a predefined
k� can be written as a recursion equation

Ec + g�c+1 + c−1� = Ec. �13�

This equation naturally has an infinite number of solutions
corresponding to different bands. Truncation of the recursion
symmetrically around some index � and elimination of the
expansion coefficients c yields a continued fractionlike ex-
pression:

E = E� +
g2

E − E�−1 −
g2

E − E�−2 +
g2

…

+
g2

E − E�+1 −
g2

E − E�+2 +
g2

…

, �14�

which has a form of an iteration equation. We assume that
this equation is most applicable in the region where one bare
state dominates the dressed state and the truncation of the
Hamiltonian �11� or, equivalently, of the recursion equation
�13� is performed symmetrically around this state. Note that
the truncation of the Hamiltonian is also an effective expan-
sion in the coupling constant g0 since for a small coupling
each base state only couples to a few neighboring bare states,
while for a large coupling many bare states are required to
represent a dressed state. This is not, however, true in the
vicinity of level crossings where two bare states couple with
each other even over many intermediate states.

We illustrate the truncation error with

��g0,�;k,n� = �E�k� − En�k�� , �15�

where E�k� represents the exact dispersion curve and En�k� is
the one obtained from a truncated n�n Hamiltonian. We
emphasize that the error depends only on the parameters g0
and � due to the chosen length scale; in physical units they
both contain the photon wave number since g0� g̃0 / q̃2 and

���̃ / q̃2. As already mentioned, we use q=1 throughout the
paper.

Figure 3 illustrates ��g0 ,� ;n� as function of g0 and �, for
k=0. An almost identical plot of the error is obtained for k
=q /4, therefore, it is omitted. The error increases for large
couplings, which is easily understood since a large coupling
means that the initial bare state will couple more strongly to
other bare states and the chosen dimension of the Hamil-
tonian must be higher. It is also seen that the increasing
detuning �, which makes the diagonal elements in the
Hamiltonian larger, yields smaller errors.

The number of g0
2-terms included in the continued fraction

�14� is related to the truncated size of the Hamiltonian as
�n−1� /2. Taking any initial value of E and iterating Eq. �14�,
it is expected that the iteration converges to some eigenvalue
E��k� close to the initial value of E. For example, for mod-
erate couplings and away from crossings, starting with E
coinciding with a bare energy eigenvalue, the iteration is
supposed to converge with the corresponding dressed energy
eigenenvalue. Thus, analytical approximate results are ob-
tainable by truncating the continued fraction to some �n
−1� /2 terms and iterate it j times. From numerical investi-
gations of the validity of these two approximations, we draw
the conclusion that for certain ranges of the parameters, es-
pecially for small couplings g0 and large detunings ��1, the
order of approximation does not need to be very high away
from crossings. It has turned out that truncating the Hamil-

FIG. 1. The lowest lying bands �solid lines� of the Hamiltonian
given by Eq. �3� for the first Bril- louin zone. The dressed energy
bands are marked on the y axis with the dominant bare state index
. Crosses shows the bare energy bands for excited states �+ � and
diamonds bands for ground bare states �−�. In the last figure �d�, the
coupling is so strong that the bare and dressed energies starts differ
considerable. The parameters are given on top of each figure.

EFFECTIVE MASS IN CAVITY QED PHYSICAL REVIEW A 72, 013814 �2005�

013814-5



tonian to a 5�5 matrix and iterating the continued fraction
�14� twice gives an eigenenergy, which is valid for a large
range of parameters. Having an analytical expression for the

energy, we can easily calculate the mass parameters. Below
we will give only the analytic expression for the case when
k�0, but the same procedure could be carried out for other
cases as well. Since we have assumed �k��q, we expand the
eigenenergy around k=0, but we will also expand the result
in powers of g0

2. The result obtained becomes

E�1��k� � − �
2 −

4g0
2

q2 + 2�
+

4�7q2 − 2��g0
4

q2�q2 + 2��
+ O�g0

6�

+ � 1
2 −

16q2g0
2

�q2 + 2��3

+
4�111q6 − 46�q4 − 28�2q2 − 8�3�g0

4

q4�q2 + 2��5 + O�g0
6��k2

+ O�k4� . �16�

FIG. 2. The expansion coefficients c
� for the

four lowest dressed states �=1, 2, 3, 4, Eq. �10�,
of bare states  for �a� k=0 and �b� k=1/4. Black
bars corresponds to even ’s with ground state
atom, and white bars to odd ’s with excited
atom. The coefficients are symmetric around 
=0 only for k0=0. The parameters are in both
plots the same as for Fig. 1: �=0 and g0=0.05.

FIG. 3. Error estimate ��g0 ,� ;n� for n=5, as defined in Eq.
�15�. The quasi-momentum k=0. The errors for the k=1/4 case is
almost identical.
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III. PROPAGATION OF WAVE PACKETS

In this section, we analyze the propagation of Gaussian
dressed and Gaussian bare states using the effective mass
parameters and compare the results with wave function
simulations. We also discuss the physical difference between
the initial bare and dressed states.

The propagation of an initial Gaussian state can be under-
stood in terms of effective parameters, such as the group
velocity and the effective mass, which depend on the disper-
sion curve and are evaluated at the dominant quasi-
momentum k0 of the wave packet. We assume that the wave
packet inside the cavity is initially described by a Gaussian
momentum wave function

��k� =
1

�4 2��k
2
e−

�k − k0�2

4�k
2 , �17�

where �k is the width of the momentum distribution and it is
related to the initial width of the position distribution accord-
ing to �k=1/ �2��x�, when the initial state is a minimum
uncertainty state. Within its range, the energy of the dressed
states �belonging to the band �� can be expanded as

E�k� � E�k0� + vg�k0��k − k0� +
1

2

1

m*�k0�
�k − k0�2 = E0

+
1

2m0�k0�
k0

2 +
1

m1�k0�
k0�k − k0� +

1

2m2�k0�
�k − k0�2,

�18�

with E0=E�k=0�. We have chosen to use mass parameters
for each term in the expansion. Note that, for a free particle,
this is merely an expansion of the energy term E= 1

2mk2

around k0, and all the mass parameters mi coincide with the
natural mass of the particle.

The three mass parameters in Eq. �18� can now be given
the following interpretations: m0 yields the energy of a
dressed eigenstate as E�k0�−E0= 1

2m0
k0

2 and, hence, it defines
the phase velocity of the dressed state as vp=E0 /k0

= 1
2m0

k0 ,m1 defines m1-quasi-momentum relation as k0

=m1vg, and m2 determines the mass associated with the
wave-packet spreading. Note that, even though we do not
consider the case here, m2 coincides with the conventional
effective mass m* that determines the acceleration caused by
an external force acting on the particle wave packet. The first
mass parameter m0 is, however, nonphysical since its value
depends on the choice of zero energy level. It may, however,
affect some interference experiment, but we do not consider
it here, since it is not expected to effect the propagation.
Equation �16� can be used to deduce approximate values for
m1 and m2 near zero momentum.

A. Propagation of Gaussian dressed states

By Gaussian dressed states, we mean wave packets cen-
tered around the quasi-momentum k0, where each wave com-
ponent belongs to the same energy band of the interacting
Hamiltonian,

����t�� = �
−�

�

��k�����k��e−iE��k�tdk . �19�

In principle, the integral should be limited to the first Bril-
louin zone �or to any one Brillouin zone�; in this expression,
it is assumed that k0 is sufficiently far from its boundaries so
that the momentum distribution ��k� is negligible outside the
zone.

With the use of the expansion of the dressed states in
terms of bare states, Eq. �10�, and of the integral equality

�
−�

�

��k�ei�kx−E��k�t�dk �
1

�4 2�� 1

2�k
+

i�kt

m2
�2

�e−
�x − vgt�2

4� 1

4�k
2

+ it
2m2

�ei�k0x−E�k0�t�,

�20�

�the approximate value derives from neglecting higher terms
in Eq. �18��, the Gaussian dressed states evolve in time as

����t�� =
1

�4 2�� 1
2�k

+
i�kt

m2
�2

e−
�x − vgt�2

4� 1

4�k
2

+ it
2m2

� ����k0�� �21�

�18� and has the time-dependent width �x�t�= � 1
2�k

+
i�kt

m2
�.

Here, we have further assumed that the expansion coeffi-
cients c

� �k� remain constant within the Gaussian momentum
distribution. Inclusion of a correction term c

� �k��c
� �k0�

+d
� �k0��k−k0� gives rise to an additional term in the inte-

gral, but it still has a Gaussian envelope moving with the
same group velocity. In Figs. 4�a� and 4�b�, we show the
propagation of initial Gaussian dressed and bare states. The
dressed state stays approximately Gaussian throughout the
evolution, while the initial bare state splits up in three main
subpackets corresponding to the bare states �k0 ,−� , �k0−q ,
+ � and �k0+q , + �. In order to prepare the initial dressed
states, the coupling amplitude is taken to be time dependent
g0�t� and is turned on adiabatically from g0=0 up to the final
value g0�t�=g0. In that way, the state remains dressed during
the turn-on assuming an adiabatic switch on. As g0�t� has
reached the final value g0, the wave packet has already
broadened, so after the preparation process we no longer
have �x=1/ �2�k�. The numerical method used for wave-
packet simulations will be discussed in Sec. III C.

B. Comparison between bare and dressed states

While in most experimental situations an atom enters a
cavity in a well-defined bare state, the mass parameters de-
fined above characterize a dressed state and are not directly
applicable. We introduce therefore the overlap �often called
fidelity� between bare and dressed states

F�,�k� = ���
k ���

k��2, �22�

which is the same as the absolute square of the coefficients
c

� in Eq. �10� For a relative small coupling and away from
crossings, it is clear which bare state ��

k � has the largest
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overlap with a given dressed state ���
k�. However, near cross-

ings, two bare states will become important, but still it is
easy to decide which ones. Note that, given a quasi-
momentum k, the crossings depend on the parameter �, and
the fidelity will change drastically around some particular
value on �, see Fig. 1. For example, picking k=q /4 and �
=0, the largest overlap with the dressed state with �=1 is
assumed to be with the =0 bare state, assuming a small
coupling g0, while roughly for −3q2 /4	�	−q2 /4 the larg-
est overlap is expected for the =−1 bare state.

In Fig. 5, we display the coefficients m / �m2� and vg

=k0 /m1 as function of g0 and �. In Figs. 5�a� and 5�b�,
1 / �m2� is shown for k=0 and k0=1/4, respectively, and in
Fig. 5�c� the group velocity is plotted for k=1/4.

From Fig. 5, it is clear that 1 / �m2� differs considerably
from the unperturbed value m=1. It is now of interest to see
how well the corresponding bare and dressed states overlap
for the same parameter ranges. We calculate the overlaps

F�=1,=0�k=0� and F�=1,=0�k=q /4� for the two examples.
The results are plotted in Figs. 6�a� and 6�b�. As justified
earlier, a small coupling increases the overlap. Note that
there are ranges where the masses m1 �or vg� and m2 are
shifted significantly from the free mass m and still the over-
lap is large, meaning that an initial Gaussian bare state
should evolve approximately freely with mass parameters m1
and m2. In the wave-packet simulations below, it will be
shown that the shifted masses can be observed also for
propagating bare states.

C. State propagation simulations

Independently of the chosen basis �bare or dressed states�,
the time evolution of the atom-cavity system is governed by
a time-independent Hamiltonian H= p2 / �2m�+V�x�; with an
initial state ���t=0�� it is written as

���t�� = e−iHt���t = 0�� . �23�

For an x-dependent potential V�x�, we find, in general, that
the kinetic energy term of the Hamiltonian does not com-
mute with the potential. The exponential can therefore not be
separated into one momentum exponential and one spatial
exponential. However, if the time of propagation �t is chosen
to be sufficiently small, the error of splitting up the exponen-
tial becomes negligible

���t + �t�� � e−i p2

2m
�te−iV�x��t���t�� . �24�

This is called the split operator method, see Refs. �45–47�,
and the procedure goes as follows: Starting with some state
���0�� in the x-representation, we multiply it by the expo-
nential exp(−iV�x��t), we then take the Fourier transform of
the state and obtain it in the p-representation, and then we
multiply it by exp�−ip2�t / �2m��, and finally transform it
back to the x-representation with the inverse Fourier trans-
form, which gives us ����t��. Repeating this N times, we
obtain ���t��, for t=N�t.

For the system considered here, the kinetic and potential
terms are

Ekin =
p2

2
	1 0

0 1



V�x� = 	 �
2 g�x�

g�x� − �
2


 . �25�

If the atom is initially in a bare state corresponding to the
internal state �−�, the wave function is

���t = 0�� = � 0

� dk��k��k� � �26�

while, for an initial dressed state, it is given by Eq. �19� for
t=0.

D. Propagation within the cavity

For a given k0, the properties of the dispersion curve, and
hence of the mass parameters, depend on the physical param-

FIG. 4. The evolution of �a� an initial Gaussian dressed state and
�b� an initial Gaussian bare state. The dressed state stays localized
around an average position, while the bare state clearly splits up.
The three subpackets in �b� correspond to the bare states �−,k0� , �
+ ,k0−q� and �+ ,k0+q�, which is also seen in the inset showing the
final momentum distribution ��k ����2. The parameters are the same
in both plots, g0=0.001,�=0,x0=0,k0=1/4, and �k

2=1/10 000,
and in �b� the atom is initially in its lower state. The contour bar
shows relative values.
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eters of the system. From Eq. �16�, it is expected that effects
are largest for �=0 as long as k0 is far from a crossing, and
thus we choose �=0 in the analysis below. Furthermore, we
choose to calculate the quantities for k0=0 and k0=q /4 in the
lowest band �=1.

We will, in this subsection, show numerical simulations
and calculations of the effective parameters for a Gaussian
wave packet inside a cavity, but first we investigate the evo-
lution of a bare Gaussian wave packet that is prepared inside
the cavity with a momentum k0=q /2, corresponding to a
gap. At an energy gap, the dispersion curve has a vanishing
first-order derivative. Hence, if the wave packet has a large
overlap with the corresponding dressed states, its group ve-
locity is close to zero. In the weak coupling limit, the time-
dependent bare state can be expressed in terms of dressed
states approximately as

���t,k0 = 0.5�� �
1
�2

�e−iE�=1t��1�k0 = q/2��

+ e−iE�=2t��2�k0 = q/2��� , �27�

and using that the gap size is approximately 2g0 it follows

���t,k0 = q/2�� �
1
�2

�eig0t��1�k0 = q/2��

+ e−ig0t��2�k0 = q/2���e−iE0t. �28�

Thus, the bare state wave packet is supposed to oscillate

between upper and lower states �± �. Figure 7 shows the evo-
lution of such a prepared state. The upper figure shows the
wave packets in the x-representation for upper, lower, and
combined internal states, while the lower plot displays the
momentum packets.

When the atom propagates inside an infinite cavity, it
should be possible to describe the atomic wave packet as a
freely evolving particle with effective mass parameters de-
fined in Eq. �18�, which will be analyzed next. The time of
flight tf between x0 and xf is given by

tf =
xf − x0

vg
=

m1

m

�xf − x0�
vinitial

, �29�

where vinitial is the velocity of the atom in absence of the
cavity interaction. We will simulate propagation of both bare
and dressed wave packets. In the simulation of bare state
propagation we use averages, for the atomic state of interest,

that is for the wave packet of the ground state, �x�=
�−�x�−�

�−�−� , in

other words, we select the wave packet of the ground state
�−� and normalize it and then calculate the averages. Physi-
cally, that assumes that a projective measurement is carried
out on the lower state before that position measurement is
done. For the dressed states, the averages are calculated for
the whole atomic wave packet and no projective measure-
ment is assumed. We propagate the initial wave packet from
a certain �x0� for a time tf and calculate the final average
position �xf�, and deduce the propagation velocity v

FIG. 5. The scale mass parameters 1 / �m2� and vg=k0 /m1 as functions of g0 and �. The first two plots �a� and �b� show 1/ �m2� for k
=0 and k=q /4, respectively, and �c� the group velocity vg for k=q /4, where the unperturbed velocity �g0=0� should be v0=1/4. The result
derives from numerical diagonalization of the matrix �11� and numerical calculation of the coefficients of the dis- persion curve around the
point k of interest. The bare energies of states =0,−1 cross for �=kq−q2 /2 and the dominant bare states of the lowest band changes. This
leads to a drastic change in the effective parameters, as seen in the figures.
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=
�xf�−�x0�

tf
, which should coincide with the group velocity vg

=k0 /m1. We use the parameters of one of the previous ex-
amples, �=0,�x

2=2500 and k0=q /4, but vary the coupling
strength g0; the final time is taken to be tf =1000. During the
adiabatic preparation, the dressed wave packet will already
broaden when its initial width is no longer �x

2=2500, but this
is not expected to affect the group velocity. In Fig. 8, we
compare propagation velocities for dressed and bare states
with the group velocity obtained from the Floquet theory.
The three curves coincide rather well, but, for the case of
initial bare state, the agreement is good only for the lower
initial state �−�, as described above. The whole atomic wave
packet, containing both upper and lower atomic states, gives
a value �xf� different from the one using just one atomic
state. Thus, we emphasize again that, extracting the propaga-
tion velocity with the bare states assumes that the position
measurement is carried out for the atom in its lower state, in
other words, some of the outcomes will fail, namely when
the atom is measured while being excited. The slight differ-
ence between the dressed state propagation and the Floquet
theory might be due to the nonadiabatic generation of the
initial dressed state.

This scheme clearly gives a good measure of the group
velocity and from that it is possible to calculate the mass m1.

The mass parameter m2, enters the wave-packet dynamics
through the broadening of the Gaussian dressed state accord-
ing to

FIG. 6. The variation of the overlap �a� F1,0�0� and �b�
F1,0�q /4�, as defined in Eq. �22�, with respect to g0 and �=0. For
positive k, a huge change in the overlap occurs when �=kq−q2 /2,
which was also seen in the previous figure of the mass parameters.
For such �, the corresponding quasi- momentum k is located at a
gap, and as � changes more, the lowest dressed states �=1 will
have a larger overlap with bare states with = ±1 rather than 
=0. This can be clearly under- stood from Figs. 1�b� and 1�c�. The
photon momentum q, which was used to define the characteristic
length scale, is, as earlier 1.

FIG. 7. The evolution of an initial Gaussian bare wave packet
prepared inside the cavity with �x

2=500 and k0=1/2, corresponding
to a quasi-momentum of the first forbidden energy gap. The
upper plot shows the wave packets of the ground, excited and total
�ground plus excited� atomic state in the x- representation. The
lower figure displays the wave packet of the ground and excited
atomic state in the momentum k-representation. It is clear that
we have a spreading in x and also a small drift of the lower
atomic wave packet. The population “Rabi” oscillates between
the two states with a period TR�� /g0, corresponding to the 2�
divided by the energy gap size 2g0 in first order. The remaining
parameters are �=0 and g0=0.05. The contour bars give the
relative values.
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�x
2�t� = �x2� =

1

4�k
2 + ��k

m2
�2

t2. �30�

Initial Gaussian bare states do not, however, remain Guas-
sian but split into several wave packets, corresponding to a
number of dressed states. In Fig. 4�b�, the initial bare state
splits into three main wave packets and, even though the two
outer ones may be small, they contribute significantly to the
variance since they are far from the center packet. Thus, for
the calculation of the bare state variance, the packets in the
tails �x��150, which mostly corresponds to excited atomic
states, are excluded when �x2� is calculated. In Fig. 9, the

mass m2 is displayed as function of g0. The time of propa-
gation is tf =10, and the mass is obtained by a least-squares
fit of Eq. �30�, knowing �x

2�t� and t. Note that when we
prepare the Gaussian dressed states by an adiabatic turn on of
the coupling amplitude, Eq. �30� is valid, but the mass m2 is
not constant during the turn on, which must be taken into
account. This is carried out by assuming a constant coupling
amplitude, adjusted by introducing an effective turn-on time
teff. Thus Eq. �30� becomes

�x
2�t� =

1

4�k
2 + ��k

m2
�2

�teff + t�2, �31�

where the mass m2 is now constant during the turn-on pro-
cess. In lowest order, the mass m2 behaves as �g0

2, according
to Eq. �16�, which is indicated in Fig. 9 and confirmed by a
polynomial fit to the data, where the dominant coefficient is
the one of g0

2.
The measurements of the masses proposed in this subsec-

tion may be used for state preparation. The masses are func-
tions of g0 ,�, and q for the one excitation case, but in gen-
eral it is a function of the effective coupling g0

�n, where n is
the photon number, instead of g0. Thus, for a general initial
state of the cavity field, a perfect mass measurement will
give m1,2=m1,2�g0

�n ,� ,q� for any n. Only masses
m1,2�g0

�n ,� ,q� with n’s that have a nonvanishing probabil-
ity from the initial photon distribution, can be detected.
Knowing m1 or m2 and g0 ,�, and q it is possible to solve for
n, meaning that measuring the mass reduces the field to the
Fock state �n�, a sort of projective measurement. Physically,
this means that an initial state ���t=0�� splits up in a set of
states ���t��n for the various photon numbers n. If all of the
overlaps between different final states ���t��n vanish, it is
possible to separate the individual parts with one single mea-
surement. However, having nonoverlapping final states
seems unlikely in realistic experiments.

E. Scattering and transmission

In order to simulate atomic scattering and transmission by
the cavity, the mode function coupling g�x� needs to be
modified by multiplication of an envelope function

ḡ =
1

2
	tanh� x + x1

xe
� − tanh� x − x1

xe
�
 . �32�

This function goes to zero for large �x� and is centered around
x=0, the cavity length is given by 2x1, and the “slope” how
fast it turns on/off is determined by xe. Thus, the coupling
will be approximately be zero for x	−x1 and x�x1, and in
the interval �−x1 ,x1� it behaves as g�x�=2g0cos�qx�. We
choose x1 such that 2x1��=2� /q, and xe such that the cou-
pling is turned on/off smoothly, but fast enough for a nona-
diabatic transition. The envelope function allows us to test
boundary effects from not having a completely periodic po-
tential; it turns out, however, that the dynamics follows very
well the Floquet predictions as long as ��2x1.

An incoming atom entering a cavity has been studied in a
series of papers �12–14�, were, in particular, the transmission
and reflection coefficients have been calculated. In these pa-

FIG. 8. The group velocity vg as function of the coupling, ob-
tained, both from the wave-packet simulation, circles shows the
result from bare state propagation and crosses from dressed state
propagation, and the Floquet theory �solid line�, when k0=q /4. A
clear agreement is seen, but unexpectedly the bare state result co-
incide better with the Floquet one, which might be due to a not fully
adiabatic preparation of the dressed state. The parameters are tf

=1000,�=0, and �x
2=2500.

FIG. 9. The effective mass m2 as function of the coupling, ob-
tained, both from the wave-packet simulation of bare �circles� and
dressed states �crosses� and the Floquet theory �solid line�, when
k=0. The main reason for the deviation of the result of the bare
state propagation is that the wave packet of the lower atomic state,
which is used in the calculation, does not stay Gaussian and the tails
of the distribution are cut off for �x��15 in the calculation of �x

2.
The parameters are tf =1000,�=0, and �x

2=1500.
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pers, either a mesa function or a hyperbolic secant squared
coupling g�x� was used to obtain analytical solutions. The
spatial wave function was assumed to be a plane wave and
not a propagating wave packet. In the case of a mesa func-
tion or a hyperbolic secant, the atom effectively sees a po-
tential barrier or a well with an amplitude ±��2 /4+g2�x�n,
where n is the photon number. The case of a standing wave
shape of the coupling is, however, different; the spectrum of
allowed energies is then formed by bands, with forbidden
gaps in between. Thus, an atom entering the cavity mode
must have an allowed energy in order to traverse the cavity.
If the atom has an energy falling into forbidden energy gaps,
it must be reflected �assuming the tunneling rate through the
cavity to be negligible�.

Going back to Fig. 1, we see that, when �=0, the cross-
ings occur for �+1/2�q and q, where, as before, 
=0, ±1, ±2,… . We know that these become avoided cross-
ings when the coupling is turned on, and they give the for-
bidden energy gaps in the spectrum. The gap size decreases
for increasing band index �, and the largest gap is at k
= ±q /2 between the first two bands. If the momentum distri-
bution ��k� of the incident atom is such that �k��0.5q and
the energy spread due to the spread �k is smaller than the
gap width, the atom should be reflected when it approaches
the cavity mode, and from energy conservation we must have
�k��0.5q⇒ �k��−0.5q. The atom thus shifts the momen-
tum by one unit q and, due to the form of the Hamiltonian
�3�, also the internal atomic-cavity state flips. Hence, the
quantum state is changed by the reflection against the lowest
gap as

� dk ��k��k�� ± � ⇒� dk ��k��k − q�� 
 � . �33�

On the other hand, the internal atomic state will not flip for
scattering against a gap corresponding to momentum q. If
the atom goes from �↑ ���↓ �� to �↓ ���↑ ��, the photon number
must also change as n→n±1. This means, for example, that
starting with the vacuum and reflecting N excited atoms from
the cavity allows one to create an N-photon Fock state in the
mode. If instead the atoms scatter when they are initially in
their ground state, the mode will be cooled down toward
lower photon numbers.

Figure 10 shows the results of a numerical simulation, in
which an atom reflects from a cavity. The atom is initially in
its lower atomic state �−� and ends up in �+ �. The cavity
starts at around x=−150 and ends at x=150,x1=1500 and
xe=50, and the flip takes place at the edge of the cavity. The
scale of the contours is chosen such that even the small am-
plitudes of the wave packet is seen; a closer look on the scale
indicates that almost all the population is reflected.

If the energy spread of the incident atom is broader than
the band gap, the tails of the packet are in the allowed region
of energies, and can therefore enter the cavity. Figure 11
depicts the same system as Fig. 10, but the momentum dis-
tribution is much wider, hence part of the wave packet is
transmitted. This phenomenon can also be observed on the
momentum representation of the wave packet: The part of
the wave packet having allowed energies is transmitted,

while the forbidden part is reflected, with a flipped atomic
state �↓ �→ �↑ �. Thus, due to the forbidden energies, a “hole”
is seen in the momentum distribution. This suggests a way of
measuring the band/gap structure, since the energies of the
reflected atoms correspond to gaps. The momentum wave
packet for the �−� atomic state is shown in Fig. 12. We ob-
serve that the momenta close to k=q /2 are “burned out”.

The atomic inversion, defined as ��3�, indicates the
amount of the atomic population that is in the upper respec-
tively the lower state. If ��3�=−1, the entire population is in
the lower state, while if ��3�=1, the atom is completely ex-
cited. In Fig. 13, we show the inversion for the two examples
above, �x

2=2500 and �x
2=100, as function of time. Here, it is

obvious that in the first case almost the entire population is
flipped, while in the second most of it is not flipped. We note
that, after the atomic wave packet has reached the cavity, an
oscillating behavior can be observed. The reason is the inter-
ference between the dressed states involved.

FIG. 10. Scattering of an atom against a cavity. The cavity is
located within �x��xl for xl=1500 �marked with dashed line� and
xe=50. In �a�, we show the ground state atomic wave function ��
−��x����2 and in �b� the upper state ��+��x ����2 as function of posi-
tion x and time t. Note that the atom starts to propagate in its lower
state at x0=−2500 at the time t=0 with momentum k0=q /2 until it
reaches the cavity boundary at x=−1500. It is reflected and its in-
ternal state is flipped to the upper state �↑ �. The reflection is due to
the fact that its energy coincides with an energy gap; hence the atom
absorbs the photon from the cavity field and the impact changes the
direction of propagation. Note the scale of the contours, which in-
dicate that almost everything is reflected, as confirmed in Fig. 13
for the atomic inversion. The parameters are here are g0=0.01,�
=0, and �x

2=2500. The contour bar shows relative values.
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So far the atom has entered the cavity with a momentum
�k� that lies within a band gap, but we now consider the
situation in which it is within the first allowed band �=1. We
still choose the atom to start in its ground state �−�, but now
with k0=q /4, halfway between k=0 and the gap at k=0.5q.
If the overlap between the initial bare state and the dressed
state ��1

k� is close to unity, the population of the internal
states of the system stays approximately constant, and the
atom will traverse the cavity without changing between its
two states �↑ � and �↓ � or change its momentum state. It will,
however, experience a shift in the masses m1 and m2. The
overlap for these parameters is F�=1,=0�k0=1/4�=0.998,
which is close to 1. The result of the simulation is given in
Fig. 14. The atomic inversion is shown in Fig. 15, from
which we see that �99.8% of the population is in the lower
state during the time inside the cavity, as predicted by the
overlap. After leaving the cavity, the atom regains its original
internal and momentum state.

As mentioned above, scattering N excited atoms against
an initially empty cavity, so that they are all reflected in the

lower state, creates a Fock state with exactly N photons.
Other interesting situations may be realized as well with the
same idea. Assuming the cavity to be empty from the begin-
ning and the atom in some linear combination of upper and
lower state and with a momentum corresponding to the first
gap, the state evolves as

�a�↑� + b�↓���q/2��0� ⇒ �a�− q/2,1� + b�q/2,0���↓� .

�34�

Since a lower state atom will traverse unaffected through the
cavity, while the upper state atom is reflected, this is realiz-
ing an atomic Stern–Gerlach type of measurement. If in-
stead, the field is initially in some linear combination of
vacuum and the one photon state and the atom in the lower
state, it follows that

FIG. 11. This figure shows the same as Figs. 10�a� and 10�b�,
except that now the momentum distribution is much wider, �x

2 is
chosen 100 instead of 2500 as in the previous plot. The conse-
quence is that energy spread exceeds the band gap and the tails of
the momentum wave packet are transmitted rather than reflected.
The contour scale is the same as in Fig. 10, and a closer look shows
that a much larger part of the wave packet is propagating inside the
cavity. Note how the wave packets spreads much faster in these
plots.

FIG. 12. The momentum distribution of the lower atomic state,
��−��k ����2, corresponding to Fig. 11, as a function of time t. The
forbidden energies are burned out when the packet hits the cavity.
The contour bar gives relative values.

FIG. 13. The atomic inversion ��3� as function of time t for the
example in the previous Fig. 10 �solid line�, and Fig. 11 �dashed
line�. It is clear that at the cavity boundary, the atom flips from �↓ �
to �↑ � in the first example, but when the momentum width becomes
larger than the gap, parts of the wave packet will not be reflected
and therefore will not be flipped.
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�↓,q/2��a�0� + b�1�� ⇒ �a�↓,q/2� + b�↑,− q/2���0� . �35�

Thus, a photon Stern–Gerlach type of measurement is real-
ized, assuming that the field is restricted to the states �0� and
�1�. Obviously, the scheme may not be used only for sepa-
rating atomic or field stats, but it works also as a model for
creating entanglement between the involved degrees of free-
dom, momentum, atomic and field states.

IV. CONCLUSION

We have theoretically analyzed the problem of a two-level
atom propagating within a quantized standing wave electro-
magnetic field, with an emphasis on the mass parameters in
atomic cavity QED systems. We have approached the prob-
lem with two different strategies: The Floquet theory for the
periodic Hamilton operator, and the wave-packet simula-
tions. The first is a purely mathematical procedure, which

offers numerical and approximate analytic expressions for
the mass parameters, while the second is a more physical
attack. The analytic results offer a hint of the dependence of
the masses on the physical parameters. Roughly speaking, a
small detuning �, small photon momentum q, and a large
atom-field coupling g0 yield large mass shifts.

The dynamics of an atomic wave packet inside �or enter-
ing� the cavity can be understood in terms of the dispersion
curve E��k�, where k is the quasi-momentum of a generalized
plane wave and � is the band index. In the Taylor expansion
around some quasi-momentum k0 each term defines a mass
paramter; in this paper, we have considered the mass m1
=�k0 /vg related to the group velocity vg of Gaussian wave
packets and the mass m2 associated with the spreading of the
wave packet:

1

m1
=

1

�2k0
� �E��k�

�k
�

k=k0

and
1

m2
=

1

�2� �2E��k�
�k2 �

k=k0

.

�36�

Note that m2 is the same as the customary effective mass m*

introduced to describe, for example, the acceleration of elec-
trons within a crystal under an external force. These param-
eters vary essentially over different scales of the coupling, as
seen in Fig. 5. Even an arbitrary small coupling g results in
strong effects in the atomic dynamics. For g�

1
2 , both the

group velocity and 1/m2 approaches zero and finally satu-
rates towards this value, which in unscaled quantities can be
written as

Eint = �g̃ �
�2q̃2

2m
= Ekin. �37�

Hence, whenever the characteristic interaction energy ex-
ceeds the characteristic kinetic energy of the lowest band, the
band is essentially flat and the energy becomes nearly inde-
pendent of the quasi-momentum. Using typical values �
=1000 nm and m=100 a .m.u, we get a characteristic time
scale Ts�0.4 s. which gives us the unscaled coupling g̃

FIG. 14. Transmission of the atom through the cavity. The plots
are the same as in Figs. 10�a� and 10�b�, but now the initial mo-
mentum is k0=q /4, and the atom energy falls on the first allowed
energy band, contrary to Figs. 10 and 11. The overlap between the
initial bare state ��0

k0=1/4� and the dressed state ��1
k0=1/4� is 0.998.

Thus, the propagation can be described using the effective param-
eters and the wave packet remains Gaussian; only a small amount
of population is transferred into the �+ �-state and the Gaussian
wave packet spreads according to the effective mass m2 and
traverse the cavity with a velocity vg. The contour scale is the same
as in Fig. 10 and the cavity boundaries are marked by the dashed
lines.

FIG. 15. The atomic inversion ��z�, corresponding to Fig. 14.
Note that when the atom has tra- versed the cavity, it regains its
original state. The asymmetry is due to broadening of the wave
packet while traversing the cavity, leading to a longer transit time as
it leaves the cavity compared to when it enters.
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=g /Ts�10 kHz for saturation. Note that dividing our dimen-
sionless detuning � and the coupling g by Ts gives real
physical quantities.

The effective masses are only defined for dressed states
with well defined momenta and, in many situations, the sys-
tem starts out in a bare state. It is, however, possible that the
bare states have a large overlap with some dressed state and
may be assigned an effective mass. This has been investi-
gated in great detail in the present paper, and numerical
simulation of propagation for both Gaussian dressed and
Gaussian bare states has been analyzed and compared–with
both each other and with results given by the Floquet theory.
Both the group velocity and the effective mass m2 have been
extracted numerically in various cases with good agreement
as compared with the values obtained from the Floquet
theory.

In most experiments today, the atom and field are pre-
pared separately and the atom is shot through the cavity with
a preselected velocity. The state of the complete system is
then, most likely, not in a dressed state, but rather a bare
state. We have not, in this text, discussed in detail how one
may prepare initial dressed states. A standard method is to
use a slow adiabatic change of some external controllable
parameter. For the JC model, bare and dressed states be-
comes identical in the two limits g0→0 or �→ ±�. By let-
ting the atom traverse a Fabry–Perot cavity almost perpen-
dicular to the standing wave mode, it is possible to have very
small initial atomic velocities �k0 /m along the standing
wave mode even for not so cold atoms by varying the angle
of injection; the atoms will have a high transverse velocity
and a slow velocity in the x direction along the standing
wave mode. Thus, it is enough to quantize the atomic motion
in just the x direction, while the y and z directions are treated
classically. In the case of a Fabry–Perot cavity, the transverse
Gaussian mode shapes can then be described by the time
envelope exp�−t2 /�t2�. If the turn on of the transverse
Gaussian mode is slow enough, the atom will traverse the
cavity in a dressed state. Another feasible way to prepare the
dressed states is to use an external ion trap to confine the ion
inside an off-resonance cavity, and then slowly tune the cav-
ity into resonance and shut off the external trap.

In addition to investigating the dynamics of the atom in
the presence of the standing wave mode, we have suggested
various applications for state preparations and measure-
ments. It has been explained and shown numerically how an
incident atom may be reflected by the cavity while simulta-
neously leaving one photon into it, which might be used for
creation of Fock states. The model can also be used for

Stern–Gerlach type of measurements, separating the upper
and lower atomic states spatially. Likewise, it could also be
used for separating the vacuum �0� from the one photon state
�1� and to create various entangled states, like EPR states.

The paper is purely theoretical, and we understand that
the experimental measurement of the effective masses will
pose several challenges, depending on the approach chosen.
First of all, the nodes of a free-space standing wave have a
tendency to drift, which is avoided in a natural way by using
an optical or a microwave cavity. Both regimes, however,
bring new difficulties: A periodic field mode is needed in
order to observe changes predicted in the propagation char-
acteristics; present high-Q microwave cavities have, unfortu-
nately, dimensions of the order of wavelength. Hence, the
optical wave number is not well defined and the Floquet
approach adapted in this paper is no longer applicable �48�.
In the optical regime, time scales of both the atomic sponta-
neous emission and the cavity decay are usually shorter than
the interaction time, and both processes will strongly affect
the atom-cavity system in a way that is not included in the
present consideration. One way to go around these difficul-
ties is to use extremely long-lived transitions and configura-
tions in which upper atomic levels are only slightly popu-
lated, cf. Figs. 5 and 6; the cavity decay may be
circumvented by using a driven cavity, hence rendering the
light field effectively classical. Similar experiments are per-
formed using classical laser fields made stable by a set of
mirrors, see e.g. �49�. The same kind of setup could, in prin-
ciple, be used for determination of the effective mass and
one may then neglect decay of the field. The dynamics of the
atom will then be the same when it interacts with a classical
field as with a Fock state.

The Floquet approach presented for the description of
atomic motion in terms of effective mass parameters is, in
principle, independent of whether the two-level atom inter-
acts with a classical light field or with a photonic Fock state
of a quantised field. The present results may, however, not be
realistically achievable in today’s cavity QED systems. Our
treatment does set the stage for the concept of an electromag-
netic effective mass, and we may only hope that novel ex-
perimental conditions will, one day, make possible the obser-
vation of cavity-induced mass modification.
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