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We propose two experimental schemes to generate the cluster states in the context of microwave cavity
quantum electrodynamics �QED�. In the first scheme to prepare many cavities into the cluster states, we encode
the vacuum state and one-photon state of the microwave cavity as the logic zero and one of the qubits. The
second scheme is to prepare many atoms into the cluster states, where qubits are represented by the states of
Rydberg atoms. Both schemes require the resonant atom-cavity interaction so that the quantum dynamics
operates at a high speed, which is important in view of decoherence.
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I. INTRODUCTION

An entangled state of two or more particles is not only a
key ingredient for the tests of quantum nonlocality �1–3�, but
also a basic resource in achieving tasks of quantum informa-
tion processing, such as quantum cryptography �4�, quantum
dense coding �5�, and quantum teleportation �6�. Most of the
research in quantum information processing is based on
quantum entanglement of two qubits. Recently, there has
been much interest in quantum entanglement of many qubits.
It has become clear that for the system shared by three and
more parties, there are several inequivalent classes of en-
tangled states �7�. In Ref. �8�, Briegel et al. introduced a
class of entangled states, the so-called cluster states. It has
been shown that cluster states can be regarded as a resource
for Greenberger-Horne-Zeilinger �GHZ� states �8� and are
more immune to decoherence than GHZ states �9�. In Ref.
�10�, the proof of Bell’s theorem without the inequalities was
given for cluster states, and a new Bell inequality is consid-
ered, which is maximally violated by the four-qubit cluster
state and is not violated by the four-qubit GHZ state. More
interestingly, cluster states have been shown to constitute a
universal resource for quantum computation with assistance
by local measurement only �11�. It has been shown that clus-
ter states can be produced through the Ising interaction �8�.

Microwave cavity QED, with Rydberg atoms crossing su-
perconducting cavities, offers an almost ideal system for the
implementation of quantum information processing �13�. In
the context of cavity QED, numerous theoretical schemes for
generating entangled states of many atoms and nonclassical
states of cavity fields have been proposed �14�, which led to
experimental realization of the Einstein-Podolsky-Rosen
�EPR� state �15� of two atoms, the GHZ state �16� of three
parties �two atoms plus one cavity mode�, the Schrödinger
cat state �17�, and the Fock state �18� of a single-mode cavity
field.

In this paper, we propose two cavity QED schemes to
generate the cluster states. The first scheme is to prepare
many cavities into the cluster states, in which we encode the
vacuum state and one-photon state of a microwave cavity as
the logic zero and one of the qubits. The second one is to
prepare many atoms into the cluster states, in which qubits
are represented by the states of Rydberg atoms. Both
schemes are based on the resonant atom-cavity interaction,

so that the quantum dynamics operates at a high speed,
which is important in view of decoherence. The paper is
organized as follows. In Sec. II, we give a brief introduction
to cluster states. In Sec. III, we first propose a scheme to
prepare many cavities into one-dimensional cluster states,
then demonstrate how to construct a two-dimensional cluster
state from one-dimensional cluster states. In Sec. IV, a
scheme is proposed to prepare many atoms into the cluster
states. A conclusion is given in Sec. V.

II. A BRIEF INTRODUCTION TO CLUSTER STATES

A cluster state is a multipartite entangled state which has
special features suitable for implementing a quantum com-
puter on a network. It is necessary to give a brief review of
the definition of the cluster state of the qubits positioned at
specific sites of a lattice structure �8,11�. For any site a of the
lattice, one defines the operator

K�a� = �x
a

�
b�ngbh�a�

�z
�b� �1�

where ngbb�a� is the set of all the neighbors of the site a.
The operators �K�a� ,a� lattice� form a complete family of
commuting operators on the lattice. A cluster state is any of
their common eigenstates

Ka����C = �− 1��a����C �2�

with �a� �0,1�. A cluster state is completely specified by the
eigenvalue equation �2� and it can be shown that all states are
equally suitable for quantum computation �12�. For simplic-
ity, we consider the state associated with all eigenvalues be-
ing 1. The compact notation for such cluster states built on
the d-dimensional lattice structure C is given by �without
being normalized�

�
a�C��0�c + �1�c �

���
�z

�c+��� �3�

with the choice �= �1� for d=1, �= ��1,0� , �0,1�� for d=2,
and �= ��1,0 ,0� , �0,1 ,0� , �0,0 ,1�� for d=3.

It has been shown that the cluster states can be produced
through the Ising interaction �8�. However, an ideal Ising
interaction is difficult to obtain experimentally. In Ref. �19�,
Browne et al. showed that the projective operator
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P = �0�	0�	0� + �1�	1�	1� �4�

can be used to combine two one-dimensional cluster states
into a new two-dimensional cluster state. A linear optical
scheme was also proposed to realize such a projective opera-
tor �19�.

III. GENERATION OF THE CLUSTER STATES
OF MANY CAVITIES

In this section, we first propose a scheme to prepare many
cavities into one-dimensional cluster states, then demonstrate
how to realize the project operator �4�, which can be used to
construct a two-dimensional cluster state from one-
dimensional cluster states. In this scheme, we encode the
vacuum state and one-photon state of a microwave cavity as
the logic zero and one of the qubits.

We now consider the resonant interaction of the Rydberg
atom with a cavity field. The atomic levels of the Rydberg
atom are labeled by �f�, �g�, and �e� �see Fig. 1�. The �e�↔ �g�
and �f�↔ �g� transitions are at 51.1 and 54.3 GHz, respec-
tively. Thus, we can choose the frequencies of the cavity
mode in a way that only the levels �e� and �g� are appropri-
ately affected by the cavity field. The transition frequency
between the states �g� and �f� is highly detuned from the
cavity frequency and thus the state �f� is not affected during
the atom-cavity interaction. We assume that the �e�↔ �g�
transition is coupled to the cavity mode with the vacuum
Rabi oscillation frequency �. In the interaction picture, the
effective interaction Hamiltonian for the atom-cavity system
under the dipole and rotating wave approximation can be
written as follows:

H = i��a†�g�	e� − a�e�	g�� , �5�

where a and a† are annihilation and creation operators for the
cavity mode, and the cavity mode is assumed to be resonant
with the corresponding atomic transitions. Under domination
of the Hamiltonian �5�, the time evolution of the relevant
states of the joint atom+cavity-field system is given by

�g��0� → �g��0� ,

�g��n� → cos�
n�t��g��n� − sin�
n�t��e��n − 1� ,

�e��n − 1� → cos�
n�t��e��n − 1� + sin�
n�t��g��n� , �6�

where the interaction time t can be controlled by using a
velocity selector.

To explain the main idea of the scheme for preparing
many cavities into one-dimensional cluster states, we intro-
duce a simple building block �see Fig. 2� which describes a
three-level Rydberg atom sequentially passing through one
cavity and one Ramsey zone. In order to demonstrate the
functionality of this basic block, we assume that the Rydberg
atom, before entering into the cavity, is in the state of the
form

1

2

��f���1� + �e���2�� , �7�

where we assume that the Rydberg atom is entangled with
other subsystems, and ��1� and ��2� are arbitrary normalized
wave functions of the subsystems. The cavity field is initially
prepared in the vacuum state. Thus as the atom enters the
cavity, the state of the system �atom+cavity� is

1

2

��f���1� + �e���2���0�c. �8�

After the atom passes through the cavity, the state of the
system evolves into

1

2

��f��0�c��1� + �cos��t��e��0�c + sin��t��g��1�c���2�� .

�9�

If the interaction time t between the atom and the cavity is
chosen to satisfy t=� /2�, the state of the system becomes

1

2

��f��0�c��1� + �g��1�c��2�� . �10�

After leaving the cavity C, the atom is sequentially subjected
to two classical pulses in the Ramsey zone R. The first one is
tuned to the transition �e�↔ �g�. The amplitude and the phase
of the classical field are chosen appropriately so that the
atom undergoes the transition �e�→ �g� and �g�→ �e�. The
second one is tuned to the transition �e�↔ �f�, which induces
the transformation �e�→ �1/
2���f�− �e�� and �f�→ �1/

2���f�+ �e��. Thus, the state �10� becomes

FIG. 1. This figure shows the electronic levels of the three-level
atom in the energy representation.

FIG. 2. The basic element to prepare many cavities into one-
dimensional cluster states, which consists of one high-Q cavity C
and one Ramsey zone R.
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1

2
��f���0�c��1� + �1�c��2�� +

1

2
�e���0�c��1� − �1�c��2��� ,

�11�

which can be rewritten as follows:

1

2
��f� + �e��c���0�c��1� + �1�c��2�� , �12�

where �c= �0�c	0�− �1�c	1�.
Now we demonstrate how to prepare many cavities in

one-dimensional cluster states by arranging the building
blocks as shown in Fig. 3 A Rydberg atom is sequentially
sent through �N−1� building blocks Bi �i=1, . . . ,N−1� and
one cavity CN. We assume that all cavities are initially pre-
pared in the vacuum states and the atom is in the superposi-
tion state ��f�+ �e�� /
2, i.e., the initial state of the system is

1

2

��f� + �e���0�c1
�0�c2

¯ �0�cN
. �13�

After the atom passes through �N−1� building blocks, based
on Eq. �12�, the state �13� becomes

1

2N

��f� + �e��cN−1���0�cN−1 + �1�cN−1�cN−2� ¯ ��0�c2

+ �1�c2�c1���0�c1 + �1�c1��0�cN. �14�

Before the atom enters the Nth cavity, it is subjected to one
classical pulse in the Ramsey zone R, which induces the
transformation �f�→ �g� and �g�→ �f�. The state �14� becomes

1

2N

��g� + �e��cN−1���0�cN−1 + �1�cN−1�cN−2� ¯ ��0�c2

+ �1�c2�c1���0�c1 + �1�c1��0�cN. �15�

Thus, after the atom passes through the Nth cavity with the
duration 	=� /2�, the quantum state �15� becomes

1

2N

��0�cN + �1�cN�cN−1���0�cN−1 + �1�cN−1�cN−2� ¯ ��0�c2

+ �1�c2�c1���0�c1 + �1�c1� , �16�

where we have neglected the atomic state, since the atom and
cavity fields are disentangled. If we encode the vacuum state
and one-photon state as the logic zero and one of the qubits,
Eq. �16� is exactly the expected one-dimensional cluster state
�3�.

So far, we have only considered the generation of one-
dimensional cluster states, which are insufficient for a one-
way quantum computer. In the following, we will consider

how to implement the projective operator �4�, which can be
used to combine two one-dimensional cluster states into a
new two-dimensional cluster state. The experimental setup is
shown in Fig. 4. We assume that the cavity i �i=1,2� is in the
state

�
i� =
1

2

��0�ci��i1� + �1�ci��i2�� , �17�

where we assume that the ith cavity field is entangled with
other subsystems, and ��i1� and ��i2� are arbitrary normal-
ized wave functions of the subsystems. In order to imple-
ment the expected projector operator �4�, we send the atom 1
in the superposition state ��f�1+ �g�1� /
2 sequentially through
two cavities 1 and 2. If the interaction times between the
atom and two cavity fields are the same at � /�, the time
evolution can be written as follows:

1

2

�
1��
2���f�1 + �g�1� ——→
cavity 1 1

2
��0�c1��f�1 + �g�1���11�

+ �1�c1��f�1 − �g�1���12���
2� ——→
cavity 2 1

2
2
���f�1 + �g�1�

���0�c1�0�c2��11���21� + �1�c1�1�c2��12���22��

+ ��f�1 − �g�1���0�c1�1�c2��11���22� + �1�c1�0�c2��12�

���21��� . �18�

After atom 1 exits from cavity 2, one detects whether the
atom is in the state ��g�1+ �f�1� /
2. This detection process
can be implemented by passing the atom through the classi-
cal microwave field zone and field ionization counters. If the
atom is in the expected state, the state of the two cavity
modes is projected into

1

2

��0�c1�0�c2��11���21� + �1�c1�1�c2��12���22�� . �19�

Now we send the atom 2 prepared in the state �g�2 through
the cavity 1. If the interaction is chosen to be � /2�, the state
�19� becomes

1

2

��g�2�0�c2��11���21� − �e�2�1�c2��12���22�� , �20�

where we have neglected the vacuum state of cavity 1. After
the atom exits from the cavity 1, one detects whether the
atom is in the state ��g�2± �e�2� /
2. If the atom is in the state
��g�2− �e�2� /
2, the state �20� is projected into

FIG. 3. This figure shows the required experimental setup to
prepare N cavities into cluster states. Bi denotes the setup shown in
Fig. 2 �i=1, . . . ,N−1�, and CN denotes the Nth cavity. R is the
Ramsey zone.

FIG. 4. Experimental setup to realize the project operator �4� of
two cavity modes. After atom 1 sequentially passes through cavity 1
and 2, atom 2 is sent through cavity 1.
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1

2

��0�c2��11���21� + �1�c2��12���22�� . �21�

If the atom is in the state ��g�2+ �e�2� /
2, the state �20� is
projected into

1

2

��0�c2��11���21� − �1�c2��12���22�� ,

which can be transferred into Eq. �21� by local operation. It
is noticed that Eq. �21� can be rewritten as follows:

��0�c2c1	0�c2	0� + �1�c2c1	1�c2	1���
1��
2� , �22�

which shows that the setup shown in Fig. 4 can be used for
the project operator �4�. The success probability of the
scheme is 1 /2. Thus by combining the setups shown in Figs.
3 and 4, we can generate the two-dimensional cluster state
step by step.

IV. CAVITY QED GENERATION OF THE CLUSTER
STATES OF MANY ATOMS

In this section, we first present a scheme to use a cavity to
prepare many atoms in one-dimensional cluster states, and
then show how to construct the project operator �4�.

The basic building block is shown in Fig. 5, which re-
quires two three-level Rydberg atoms sequentially passing
through one cavity and one Ramsey zone. To demonstrate
the functionality of the basic block, we assume that, before
entering into the cavity, the cavity field is prepared in the
state of the form

1

2

��0�c��1� + �1�c��2�� , �23�

where we assume that the cavity field is entangled with other
subsystems, and ��1� and ��2� are arbitrary normalized wave
functions of the subsystems. We send the atoms 1 prepared in
the superposition state ��f�1+ �g�1� /
2 through the cavity. If
the interaction time is chosen to be � /�, the state of the
system becomes

1

2
��0�c��f�1 + �g�1���1� + �1�c��f�1 − �g�1���2�� . �24�

After exiting from the cavity, the atom 1 is subjected to one
classical pulse in the Ramsey zone R, which induces the

transformation �g�1→ �1/
2���f�1− �g�1� and �f�1→ �1/

2���f�1+ �g�1�. The state �24� becomes

1

2

��0�c�f�1��1� + �1�c�g�1��2�� . �25�

Now we send one auxiliary atom 2 in the state �g�2 into the
cavity. After the atom interacts with the cavity with the in-
teraction time � /2�, the state of the system becomes

1

2

��g�2�f�1��1� + �e�2�g�1��2���0�c. �26�

At this time, a short strong classical pulse is applied to the
atom 2, which induces the transformation �g�2→ �1/

2���g�2+ �e�2� and �e�2→ �1/
2���g�2− �e�2�. Here we assume
that the classical pulse is strong enough so that, in this pro-
cess, we can neglect contributions of atom-cavity interaction.
Thus the state of the system becomes

1

2
��g�2��f�1��1� + �g�1��2�� + �e�2��f�1��1� − �g�1��2����0�c.

�27�

Then atom 2 again interacts with the cavity for the duration
� /2�. The state of the system becomes

1

2
��0�c��f�1��1� + �g�1��2�� + �1�c��f�1��1� − �g�1��2��� ,

�28�

which can be rewritten as follows:

1

2
��0�c + �1�c�1���f�1��1� + �g�1��2�� , �29�

where �i= �f�1	f �− �g�1	g�.
Now we demonstrate how to prepare many atoms in one-

dimensional cluster states. We sequentially send 2�N−1� at-
oms through the cavity, which is initially prepared in the
superposition state ��0�c+ �1�c� /
2. If the �2i−1�th and �2i�th
atoms perform the operation shown in Fig. 5, and the �2i�th
atom is auxiliary, the state of the system �one cavity mode
+ �N−1� atoms� is given by

1

2N

��0�c + �1�c�2N−3���f�2N−3 + �g�2N−3�2N−5� ¯ ��f�3

+ �g�3�1���f�1 + �g�1� , �30�

then we send the �2N−1�th atom through the cavity with the
duration � /2�. The state of the system becomes

1

2N

��g�2N−1 + �e�2N−1�2N−3���f�2N−3 + �g�2N−3�2N−5� ¯ ��f�3

+ �g�3�1���f�1 + �g�1� . �31�

If we encode the �f� and �g� as logic zero and one of the
qubits, the state �31� is equal to the one-dimensional cluster
state.

In the following, we demonstrate how to use one cavity to
implement the project operator �4� of two atoms. We assume

FIG. 5. The basic operation to prepare many atoms into one-
dimensional cluster states. Two atoms are sent through the cavity
one by one. R denotes that a short pulse of classical field is applied
to the atom 2 midway while it passes through the cavity.
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the cavity field is in the superposition state ��0�c+ �1�c� /
2,
and the atom i �i=1,2� is in the state

�
i� =
1

2

��f�ai��i1� + �g�ai��i2�� , �32�

where the ith atom is entangled with other subsystems, and
��i1� and ��i2� are arbitrary normalized wave functions of
the subsystems. In order to implement the expected projector
operator, we send the atoms 1 and 2 sequentially through the
cavity with the duration � /�, and the state of the system
becomes

1

2
2
���0�c + �1�c���f�a1�f�a2��11���21� + �g�a1�g�a2��12���22��

+ ��0�c − �1�c���f�a1�g�a2��11���22� + �g�a1�f�a2��12�

���21��� . �33�

Then one auxiliary atom in the state �g� is sent through the
cavity with the duration � /2�. If the atom 2 and the auxil-
iary atom are detected in the state ��g�+ �e�� /
2, we obtain
the state of the system

1

2

��f�a1��11���21� + �g�a1��12���22�� . �34�

If the atom 2 is in the state ��g�− �e�� /
2 and the auxiliary
atom is in the state ��g�+ �e�� /
2, we can obtain

1

2

��f�a1��11���21� − �g�a2��12���22�� , �35�

which can be transferred into Eq. �34� by local operation. It
is noticed that Eq. �34� can be rewritten as follows:

��f�a1a1	f �a2	f � + �g�a2a1	g�a2	g���
1��
2� , �36�

which demonstrates the implementation of project operator
�4� of the two atoms. The success probability of the scheme
is 1 /2. Thus by combining the setups shown in Fig. 5 and the
project operator, we can generate the two-dimensional clus-
ter state step by step.

V. CONCLUSION

In summary, we have proposed two cavity QED schemes
to generate the cluster states, which can be used to test quan-
tum nonlocality and constitute a universal resource for quan-
tum computation assisted by local measurement only. In the
first scheme to prepare many cavities into the cluster states,
we encode the vacuum state and the one-photon state of the
microwave cavity as the logic zero and one of the qubits. The
second one is to prepare many atoms in the cluster states,
where qubits are represented by the states of Rydberg atoms.
Both schemes require the resonant atom-cavity interaction so
that the quantum dynamics operates at a high speed, which is
important in view of decoherence.

We now give a brief discussion on the experimental fea-
sibility of the proposed scheme within the microwave cavity

QED. The scheme presented here requires �i� resonant inter-
action between the Rydberg atom and cavity mode, �ii� neg-
ligible cavity loss during the whole preparation process, �iii�
no atomic spontaneous decay during the atom-cavity interac-
tions, �iv� detection of atoms in given states, and �v� con-
trolled interaction time between atom and cavity. Based on
the microwave cavity QED experiments performed by
Haroche and co-workers �13�, the cavity can have a photon
storage time of T=1 ms �corresponding to Q=3�108�, and
the radiative time of the Rydberg atoms with the principal
quantum numbers 49, 50, and 51 is about 3�10−2 s. The
coupling constant of the atoms to the cavity field is � /2�
=25 kHz. The detection process of the atom in a desired state
can be implemented by passing the atom through the classi-
cal microwave field zone and field ionization counters. The
interaction time between each of the atoms and the cavity
can be controlled by using a velocity selector and applying
Stark field adjustment in order to make the atom resonant
with the field for the right amount of time. As shown in Secs.
III and IV, the proposed schemes consist of a series of the
basic building blocks. It is necessary to give a brief discus-
sion on the experimental feasibility of the building blocks.
An experimental realization of the building blocks shown in
Fig. 2 is straightforward modification of a previous experi-
ment demonstrating a quantum phase gate in cavity QED
�20�, in which a three-level Rydberg atom is sent through a
hight-Q cavity and a Ramsey zone. The difference between
our scheme and experiment is that the atom is subjected to a
different classical pulse in the Ramsey zone, which can be
easily realized with the current experimental technology. To
realize the projective the operator shown in Fig. 4, the basic
operations are the quantum phase gate realized in experiment
�20� and the Rabi oscillation indicating the resonant interac-
tion of the atom and the cavity field. In Ref. �21�, quantum
Rabi oscillation and quantum memory with a single photon
in the microwave cavity have been experimentally reported.
The availability of an experimental configuration with two
cavities can be considered as a natural development of the
present configuration where only one cavity is present. Note
also that some other interesting proposals require at least two
cavities �22�. An experimental configuration of the building
blocks shown in Fig. 5 is similar to a previous experiment
generating an EPR state �15�, which requires two three-level
Rydberg atoms sequentially passing through one cavity. The
first atom performs a quantum phase gate operation demon-
strated in experiment �20�, and the second atom is subjected
to quantum Rabi oscillations to swap quantum information
between the atom and the cavity field �21�. In order to realize
these building blocks, the atom-cavity interaction times are
at the order of 10−5 s. At this time scale, the times needed for
the classical field pulse are negligible. Thus, the interaction
times needed to implement these setups are at the order of
10−5 s, which is much shorter than the radiative time and the
photon lifetime 1 ms in the present cavity. Therefore, based
on cavity QED techniques, the schemes to realize basic
building blocks in Secs. III and IV will be realizable in the
near future. However, to combine these setups together to
generate the cluster states is an experimental challenge.
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