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A light beam is said to be position squeezed if its position can be determined to an accuracy beyond the
standard quantum limit. We identify the position and momentum observables for bright optical beams and
show that position and momentum entanglement can be generated by interfering two position, or momentum,
squeezed beams on a beam splitter. The position and momentum measurements of these beams can be per-
formed using a homodyne detector with local oscillator of an appropriate transverse beam profile. We compare
this form of spatial entanglement with split detection-based spatial entanglement.
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I. INTRODUCTION

The concept of entanglement was first proposed by Ein-
stein, Podolsky, and Rosen in a seminal paper in 1935 �1�.
The original Einstein-Podolsky-Rosen �EPR� entanglement,
as discussed in the paper, involved the position and momen-
tum of a pair of particles. In this paper, we draw an analogy
between the original EPR entanglement and the position and
momentum �x− p� entanglement of bright optical beams.

Entanglement has been reported in various manifesta-
tions. For continuous wave �cw� optical beams, these in-
clude, quadrature �2,3� and polarization �4� entanglement.
Spatial forms of entanglement, although well studied in the
single photon regime, have not been studied significantly in
the continuous wave regime. Such forms of entanglement are
interesting as they span a potentially infinite Hilbert space.
Spatial EPR entanglement �5� has wide-ranging applications
from two-photon quantum imaging �6,7� to holographic tele-
portation �8,9� and interferometric faint phase object quan-
tum imaging �10�.

Current studies are focused on x− p entanglement for the
few photons regime. Howell et al. �11� observed near and
far-field quantum correlation, corresponding to the position
and momentum observables of photon pairs. Gatti et al. �12�
have also discussed the spatial EPR aspects in the photons
pairs emitted from an optical parametric oscillator below
threshold. Other forms of spatial entanglement which are re-
lated to image correlation have also been investigated. A
scheme to produce spatially entangled images between the
signal and idler fields from an optical parametric amplifier
has been proposed by Gatti et al. �13–15�. Their work was
extended to the macroscopic domain by observing the spatial
correlation between the detected signal and idler intensities,
generated via the parametric down conversion process �16�.

Our proposal considers the possibility of entangling the
position and momentum of a free propagating beam of light,

as opposed to the entanglement of local areas of images,
considered in previous proposals. Our scheme is based on
the concept of position squeezed beams where we have
shown that we have to squeeze the transverse mode corre-
sponding to the first order derivative of the mean field in
order to generate the position squeezed beam �17�. Similarly
to the generation of quadrature entangled beams, the position
squeezed beams are combined on a beam splitter to generate
x - p entangled beams. We also propose to generate spatial
entanglement for split detection, utilizing spatial squeezed
beams reported by Treps et al. �18–20�. This form of spatial
entanglement has applications in quantum imaging systems.

By considering the relevant modal decomposition of dis-
placed and tilted fields, we arrive at general expressions for
the position and momentum of an optical beam. We then
limit ourselves to the regime of small displacements and tilts.
This is the relevant regime for observing quantum optical
phenomena, since for large displacements �tilts� the overlap
between displaced �tilted� and nondisplaced �nontilted�
beams approaches zero and hence they become perfectly dis-
tinguishable even in a classical sense. Applying this restric-
tion, we show that as expected the position and momentum
of an optical field are Fourier transform related. We then
consider the specific case of a beam with TEM00 mode
shape. TEM00 beams have the unique feature of satisfying
the position-momentum uncertainty relation in the equality,
and therefore represent an ideal starting point for the genera-
tion of spatial entanglement. We explicitly show that the po-
sition and momentum observables derived in this paper for a
TEM00 beam are conjugate observables which obey the
Heisenberg commutation relation. We then propose a scheme
to produce x - p entanglement for TEM00 optical beams. Fi-
nally, we consider spatial squeezed beams for split detectors
and show that it is also possible to generate spatial entangle-
ment with such beams.

II. POSITION-MOMENTUM ENTANGLEMENT

A. Definitions—Classical treatment

Let us consider an optical beam with an x- and
y-symmetric transverse intensity profile propagating along
the z axis. Since the axes of symmetries remain well defined
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during propagation, we can relate the beam position relative
to these axes. To simplify our analysis we henceforth assume
without loss of generality, a one-dimensional beam displace-
ment, d, from the reference x axis �see Fig. 1�a��. We denote
the electric field profile of the beam by E�x�. For a displaced
beam, the electric field profile is given by

Ed�x� = E�x� + d
�E�x�

�x
+

d2

2

�2E�x�
�x2 + ¯ . �1�

In the regime where displacement is much smaller than the
beam size, we can utilize the linearized approximation where
only the zeroth and first order terms are significant. We see
from this expression that the zeroth order term is not depen-
dent on d, and that the displacement is directly proportional
to the derivative of the field amplitude �E�x� /�x �17�.

The transverse beam momentum p on the other hand, can
be obtained from the transverse component of the wave num-
ber of the beam, p=k sin �, where k=2� /� and the beam tilt
is �. This beam tilt is defined with respect to a pivot point at
the beam waist, as shown in Fig. 1�b�.

The electric field profile for a tilted beam with untilted
electric field profile E�x� and wavelength � is given by

E��x� = exp� i2�x sin �

�
�E�x cos �� . �2�

We can again simplify Eq. �2� by taking the zeroth and first
order Taylor expansion terms to get a transverse beam mo-
mentum of p�k�. In the case of small displacement or tilt,
we therefore obtain a pair of equations

Ed�x� � E�x� + d
�E�x�

�x
, �3�

Ep�x� � E�x� + p ixE�x� . �4�

Equations �3� and �4� give the field parameters that relate to
the displacement and tilt of a beam. For freely propagating
optical modes, the Fourier transform of the derivative of the
electric field, F��E�x� /�x�, is of the form ixE�x�. Hence the
Fourier transform of displacement is tilt.

In the case of a single photon, the position and momen-
tum are defined by considering the spatial probability density
of the photon, given by 	E�x�	2 / I, where I=
	E�x�	2dx is the
normalization factor. The mean position obtained from an
ensemble of measurements on single photons is then given

by �x�= �1� �I� 
x	E�x�	2dx. The momentum of the photon is
defined by the spatial probability density of the photon in the
far-field, or equivalently by taking the Fourier transform of
�x�. These definitions are consistent with our definitions of
position and momentum for bright optical modes.

B. TEMpq basis

In theory, spatial entanglement can be generated for fields
with any arbitrary transverse mode shape. However, as with
other forms of continuous-variable entanglement, the effi-
cacy of protocols to generate entanglement is highest if the
initial states are minimum uncertainty. For position and mo-
mentum variables, the minimum uncertainty states are those
which satisfy the Heisenberg uncertainty relation �2x̂�2p̂
��, in the equality. This equality is only satisfied by states
with Gaussian transverse distributions �21�, therefore we
limit our analysis to that of TEM00 modes.

A field of frequency 	 can be represented by the positive
frequency part of the mean electric field E+ei	t. We are inter-
ested in the transverse information of the beam described
fully by the slowly varying field envelope E+. We express
this field in terms of the TEMpq modes. For a measurement
performed in an exposure time T, the mean field for a dis-
placed TEM00 beam can be written as

Ed
+�x� = i
 �	

2
0cT

N�u0�x� +

d

w0
u1�x�� , �5�

where the first term indicates that the power of the displaced
beam is in the TEM00 mode while the second term gives the
displacement signal contained in the amplitude of the TEM10
mode component. The corresponding mean field for a tilted
TEM00 beam can be written as

Ep
+�x� = i
 �	

2
0cT

N�u0�x� +

iw0p

2
u1�x�� , �6�

where the second term describes the beam momentum signal,
contained in the � /2 phase-shifted TEM10 mode component.

C. Definitions—Quantum treatment

We now introduce a quantum mechanical representation
of the beam by taking into account the quantum noise of
optical modes. We can write the positive frequency part of
the electric field operator in terms of photon annihilation
operators â. The field operator is given by

Êin
+ = i
 �	

2
0cT�
n=0

�

ânun�x� , �7�

where un�x� are the transverse beam amplitude functions for
the TEMpq modes and ân are the corresponding annihilation
operators. ân is normally written in the form of ân= �ân�
+�ân, where �ân� describes the coherent amplitude part and
�ân is the quantum noise operator.

In the small displacement and tilt regime, the TEM00 and
TEM10 modes are the most significant �17�, with the TEM10
mode contributing to the displacement and tilt signals. We

FIG. 1. �Color online� �a� Beam displacement d, and �b� beam
tilt by angle �, from a reference axis.
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can rewrite the electric field operator for mean number of
photons N as

Êin
+ = i
 �	

2
0cT
�
Nu0�x� +

�X̂a0

+ + i�X̂a0

−

2

+ �
n=1

� � X̂ai

+ + iX̂ai

−

2
�ui�x�� , �8�

where the annihilation operator is now written in terms of the

amplitude X̂a
+ and phase X̂a

− quadrature operators.
The displacement and tilt of a TEM00 beam is given by

the amplitude and phase of the u1�x� mode in Eqs. �5� and
�6�, respectively. We can, therefore, write the beam position
and momentum operators as

x̂ =
w0

2
N
X̂a1

+ , �9�

p̂ =
1

w0

N

X̂a1

− . �10�

D. Commutation relation

Two observables corresponding to the position and mo-
mentum of a TEM00 beam have been defined. We have
shown that the position and momentum observables corre-
spond to near- and far-field measurements of the beam, re-
spectively. Hence we expect from Eqs. �9� and �10� that the
position and momentum observables do not commute. In-
deed, the commutation relation between the two quadratures

of the TEM10 mode is �X̂a1

+ , X̂a1

− �=2i. This leads to the com-
mutation relation between the position and momentum ob-
servables of an optical beam with N photons

�x̂, p̂� =
i

N
. �11�

This commutation relation is similar to the position-
momentum commutation relation for a single photon, aside
from the 1/N factor. The 1/N factor is related to the preci-
sion with which one can measure beam position and momen-
tum. Rewriting the Heisenberg inequality using the commu-
tation relation gives

�2x̂�2p̂ �
1

4N
. �12�

The position measurement of a coherent optical beam
gives a signal which scales with N. The associated quantum
noise of the position measurement scales with 
N. Hence the
positioning sensitivity of a coherent beam scales as 
N
�17,18�. The same consideration applied to the sensitivity of
beam momentum measurement shows an equivalent depen-
dence of 
N. This validates the factor of N in the Heisenberg
inequality and the commutation relation for a cw optical
beam.

As an aside, it is interesting to consider the implications
of the Heisenberg inequality of Eq. �12� on recent discus-

sions of ghost imaging in discrete variable quantum optics
�22–24�. In ghost imaging, the spatial resolution of an imag-
ing system is enhanced using a pair of correlated fields. One
field passes through the object, and object information is
then retrieved through spatially resolved photon coinci-
dences between the two fields. At first glance, the results of
Bennink et al. �22,23�, and Gatti et al. �24� appear contra-
dictory. According to Bennink et al. the position-momentum
uncertainty relation sets an ultimate resolution limit which
can only be surpassed using entangled fields; while Gatti
et al. show that thermal fields can achieve the same resolu-
tion as entangled fields for large N. We see from Eq. �12� that
these statements are not mutually incompatible. For small N
the position and momentum of the beams, and therefore also
the imaging resolution, are highly uncertain; however, as N
becomes large the uncertainty product �2x̂�2p̂ approaches
zero, so that even without quantum resources x and p can be
known simultaneously with arbitrary precision.

E. Entanglement scheme

We have shown that the position and momentum observ-
ables of cw TEM00 optical beams satisfy the Heisenberg
commutation relation. Consequently, EPR entanglement for
the position and momentum of TEM00 beams is possible.
Experimentally, the usual quadrature entanglement is gener-
ated by mixing two amplitude squeezed beams on a 50:50
beamsplitter. The same idea can be applied to generate EPR
x - p entanglement, by using position squeezed beams �17�.
Our scheme to produce x - p entanglement between two cw
TEM00 optical beams is shown in Fig. 2. The position
squeezed beams in Figs. 2�a� and 2�b� are generated via the
in-phase combination of a vacuum squeezed TEM10 beam
with a coherent TEM00 beam. Such a beam combination can
be achieved experimentally, for example, using an optical
cavity or a beam-splitter �20�. The result of the combination
is a position squeezed beam. To generate entanglement, we
consider beams with zero mean position and momentum, but
we are interested in the quantum noise of the position and
momentum of the beam. With this assumption, the electric
field operators for the two input beams at the beam splitter
are given by

FIG. 2. �Color online� Scheme for generating position-
momentum entanglement for continuous wave TEM00 optical
beams. OPA: optical parametric amplifiers for the generation of
squeezed light, BS: 50:50 beam splitter, HD: homodyne detectors,
LO: local oscillator beams, and 
: phase of local oscillator beam.
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Ê1
+ = i
 �	

2
0cT
�
Nu0�x� + �

n=0

�

�ânun�x�� �13�

Ê2
+ = i
 �	

2
0cT
�
Nu0�x� + �

n=0

�

�b̂nun�x�� �14�

where in both equations, the first bracketed term describes
the coherent amplitude of the TEM00 beam. The second
bracketed terms describe the quantum fluctuations present in
all modes. For position squeezed states, only the TEM10
mode is occupied by a vacuum squeezed mode. All other
modes are occupied by vacuum fluctuations. It is also as-
sumed that the number of photons in each of the two beams,
during the measurement window, is equal to N. The two
position squeezed beams �1,2� are combined in-phase on a
50:50 beam splitter �BS� in Fig. 2�c�.

The usual input-output relations of a beam splitter apply.
The electric field operators describing the two output fields

from the beam splitter are given by Ê3= �Ê1+ Ê2� /
2 and Ê4

= �Ê1− Ê2� /
2. To demonstrate the existence of entanglement,
we seek quantum correlation and anticorrelation between the
position and momentum quantum noise operators. The posi-
tion operators corresponding to beams 3 and 4 are given,
respectively, by

�x̂3 =
w0

2
2
N
��X̂a1

+ + �X̂b1

− � =
1

2

��x̂a +
w0

2

2
�p̂b� , �15�

�x̂4 =
w0

2
2
N
��X̂a1

+ − �X̂b1

− � =
1

2

��x̂a −
w0

2

2
�p̂b� . �16�

The momentum operators corresponding to the photocurrent
difference for beams 3 and 4 are given by

�p̂3 =
1

w0

2
N

��X̂a1

− + �X̂b1

+ � =
1

2

��p̂a +
2

w0
2�x̂b� ,

�17�

�p̂4 =
1

w0

2
N

��X̂a1

− − �X̂b1

+ � =
1

2

��p̂a −
2

w0
2�x̂b� .

�18�

In our case where the two input beams are position squeezed,
the sign difference between the position noise operators in
Eqs. �15� and �16� as well as that between the momentum
noise operators in Eqs. �17� and �18� are signatures of corre-
lation and anticorrelation for �x̂ and �p̂.

F. Inseparability criterion

Many criterions exist to characterize entanglement, for
example, the inseparability criterion �25� and the EPR crite-
rion �26�. We have adopted the inseparability criterion to
characterize position-momentum entanglement. For states
with Gaussian noise statistics, Duan et al. �25� have shown
that the inseparability criterion is a necessary and sufficient
criterion for EPR entanglement.

In the case where two beams are perfectly interchangeable
and have symmetrical fluctuations in the amplitude and
phase quadratures, the inseparability criterion has been gen-
eralized and normalized to a product form given by
�4,27–31�

I�x̂, p̂� =
��x̂3 + x̂4�2���p̂3 − p̂4�2�

	�x̂, p̂�	2
�19�

for any pair of conjugate observables x̂ and p̂, and a pair of
beams denoted by the subscripts 3 and 4. For states which
are inseparable, I��x̂ ,�p̂��1. By using observables �x̂ and
�p̂ from Eqs. �15�–�18� as well as the commutation relation
of Eq. �11� the inseparability criterion for beams 3 and 4 is
given by

I��x̂,�p̂� =
16N2

	0
4 ���x̂a1

+ �2����x̂b1

+ �2� = ���X̂a1

+ �2����X̂b1

+ �2� � 1,

�20�

where we have assumed that the TEM10 modes of beams 1

and 2 are amplitude squeezed �i.e., ���X̂a1

+ �2��1 and

���X̂b1

+ �2��1�.
Thus we have demonstrated that continuous-variable EPR

entanglement between the position and momentum observ-
ables of two cw beams can be achieved.

G. Detection scheme

Reference �17� has shown that the optimum small dis-
placement measurement is homodyne detection with a
TEM10 local oscillator beam �see Fig. 2�d��. When the input
beam is centered with respect to the TEM10 local oscillator
beam, no power is contained in the TEM10 mode. Due to the
orthogonality of Hermite-Gauss modes, the TEM10 local os-
cillator only detects the TEM10 vacuum noise component. As
the input beam is displaced, power is coupled into the TEM10
mode. This coupled power interferes with the TEM10 local
oscillator beam, causing a change in photocurrent observed
at the output of the homodyne detector. Thus the difference
photocurrent of the TEM10 homodyne detector is given by
�17�

n̂−
d =

2
N
NLO

w0
x̂ , �21�

where NLO and N are the total number of photons in the local
oscillator and displaced beams, respectively, with NLO�N.
The linearized approximation is utilized, where second order
terms in �â are neglected since N� 	��ân

2�	 for all n.
In order to measure momentum, one could use a lens to

Fourier transform to the far-field plane, where the beam is
then measured using the TEM10 homodyning scheme. How-
ever, we have shown that the position and momentum of a
TEM00 beam differs by the phase of the TEM10 mode com-
ponent. Indeed for a tilted TEM00 beam, the TEM10 mode
component is � /2 phase shifted relative to the TEM00 mode
component. Consequently the phase quadrature of the TEM10
mode has to be interrogated. This can be achieved by utiliz-
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ing a TEM10 local oscillator beam with a � /2 phase differ-
ence relative to the TEM10 mode component of the TEM00
beam. The resulting photocurrent difference between the two
homodyning detectors, for NLO�N, is given by

n̂−
p = w0


N
NLOp̂ . �22�

III. SPATIAL ENTANGLEMENT FOR SPLIT
DETECTION

The entanglement presented in the previous section is
analogous to x - p entanglement in the single photon regime.
However, the choice of the mean field mode is restricted to
the TEM00 mode. This limits the richness of a spatial vari-
able and thus excludes the possibility of generating an infi-
nite Hilbert space. To exploit the properties of spatial vari-
ables, we now consider more traditional forms of spatial
squeezing. Consequently, we study the possibility of gener-
ating spatial entanglement for array detection devices, based
on spatial squeezed beams.

A. Spatial squeezing

Spatial squeezing was first introduced by Kolobov �32�.
The generation of spatial squeezed beams for split and array
detectors was experimentally demonstrated by Treps et al.
�18–20�. A one-dimensional spatial squeezed beam has a
spatially ordered distribution, where there exists correlation
between the photon numbers in both transverse halves of the
beam. A displacement signal applied to this beam can thus be
measured to beyond the QNL.

We consider a beam of normalized transverse amplitude
function v0�x� incident on a split detector. The noise of split
detection has been shown to be due to the flipped mode �33�,
given by

v1�x� = �v0�x� for x � 0,

− v0�x� for x � 0.
�

When the field is centered at the split-detector, such that
the mean value of the measurement is zero, the flipped mode
is thus orthogonal to the mean field mode. In this instance,
modes vi�x� �for i�1� can be derived to complete the modal
basis. The electric field operator written in this new modal
basis is given by

Ê+ = i
 �	

2
0cT�
Nv0�x� + �
n=0

�

�ĉnvn�x�� , �23�

where the first term describes the coherent excitation of the
beam in the v0�x� mode and N is the total number of photons
in the beam. It has been shown that the corresponding photon
number difference operator for split detection is given by
�17�

n̂−
�+� = 
N�X̂c0

+ . �24�

The beam is spatially squeezed if the state of the flipped
mode is vacuum squeezed and in phase with the mean field
mode �see Figs. 3�a� and 3�b��.

B. Spatial homodyne

Since split detection is commonly used as a detection de-
vice for beam position, one would naturally consider taking
the Fourier transform of a spatial squeezed beam to obtain
the conjugate observable for the beam. However, we have
shown that split detection does not correspond exactly to
beam position measurement. Thus the Fourier plane of the
spatial squeezed beam does not provide the conjugate ob-
servable. More practically, the flipped mode is not mode-
shape invariant under Fourier transformation. In the far-field,
each odd-ordered mode component of the flipped mode ob-
tains a �2n+1�� Gouy phase difference, compared to the
near-field. Thus the mode shape in the far-field is no longer a
flipped mode. Consequently, far- and near-field measure-
ments of a spatial squeezed beam will not give the conjugate
observables.

However, we can find the conjugate observables of a spa-
tial squeezed beam by drawing an analogy to standard ho-
modyne detection. In split detection, the equivalent local os-
cillator mode is the mean field v0�x� mode. The mode under
interrogation by the split detector is the flipped mode v1�x�.
In the case of homodyne detection, the phase of the local
oscillator beam is varied to measure the conjugate observ-
ables �i.e., amplitude and phase quadratures� of the input
beam. Adapting this concept to the split detector, the conju-
gate observables for the spatial squeezed beam is thus the
amplitude and phase quadratures of the flipped mode, while
the mode shape of the flipped mode remains unaltered. This
is further verified upon inspection of Eq. �24�.

Our scheme to perform a phase measurement of the
flipped mode is shown in Fig. 3�d�. In our scheme we assume
that the mean field is a TEM00 mode. Note that in principle,
this analysis could be performed for any mode shape. The
coherent TEM00 mode component provides a phase reference
for the flipped mode, analogous to that of a local oscillator
beam in homodyne detection. Thus the phase quadrature of
the flipped mode can be accessed by applying a � /2 phase
shift between the TEM00 mode and the flipped mode noise
component. Experimentally, this is achievable using an opti-
cal cavity. When the cavity is nonresonant for the v0�x� and
v1�x� modes it will reflect off the two modes, in phase, onto

FIG. 3. �Color online� Scheme for generating spatial entangle-
ment for TEM00 continuous wave light beams. OPA: optical para-
metric amplifiers for generating squeezed beams, PP: phase plates
for producing flipped modes, and BS: 50:50 beam splitter.
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the split detector. This will give a measurement of the am-
plitude quadrature of the flipped mode. However, the cavity
can be tuned to be partially resonant on the v0�x� mode while
reflecting the flipped mode. A � /2 phase difference can then
be introduced between the reflected v0�x� and v1�x� modes,
giving a measurement of the phase quadrature of the flipped
mode. The corresponding photon number difference operator
is

n̂−
�−� = 
N�X̂c0

− , �25�

which is the orthogonal quadrature of the spatial squeezed
beam. The photon number operators corresponding to the
two measurements in Eqs. �24� and �25� are conjugate ob-
servables and satisfy the commutation relation �n̂−

�+� , n̂−
�−��

=2iN.
It is important to realize that the number of photons N in

Eqs. �24� and �25� are only approximately equal. This is due
to the fact that partial power in the TEM00 mode is transmit-
ted by the cavity, when the cavity is partially resonant on the
TEM00 mode. Although it is possible to implement a scheme
that conserves the total number of photons at detection �e.g.,
losslessly separating the mean field and flipped modes and
recombining them with a phase difference�, we would like to
emphasize that our scheme is more simple and intuitive, as
well as being valid when N is large.

C. Entanglement scheme

In order to generate spatial entanglement for split detec-
tion, two spatial squeezed beams labeled 1 and 2 are com-
bined on a 50:50 beam splitter, as shown in Fig. 3�c�.

The electric field operators for the two input spatial
squeezed beams at the beam splitter are described in a form
identical to that of Eq. �23�. The annihilation operators of the
electric field operators for input beams 1 and 2 are labeled by

ĉn and d̂n, respectively. By following a similar procedure as
before, the photon number difference operator for output
beams 3 and 4 from the beam splitter are calculated.

For the amplitude quadrature measurement, the addition
of the difference photocurrent between beams 3 and 4 yields

n̂3−
�+� + n̂4−

�+� = 
N��X̂c0

+ + �X̂d0

+ � . �26�

For the phase quadrature measurement, the subtraction of the
difference photocurrent between beams 3 and 4 gives

n̂3−
�−� − n̂4−

�−� = 
N��X̂d0

+ − �X̂c0

+ � . �27�

To verify spatial entanglement, the inseparability crite-

rion is utilized. The substitution of Eqs. �26� and �27� and the
commutation relation between the photon number difference
operators into the generalized form of the inseparability cri-
terion gives

I��n̂−
�+�,�n̂−

�−�� =
N�Vc0

2 + 2Vc0
Vd0

+ Vd0

2 �
4N

� 1, �28�

where Vc0
= ���X̂c0

+ �2� and Vd0
= ���X̂d0

+ �2� are the variances for
the flipped mode component of the spatial squeezed beams 1
and 2. The inseparability criterion is satisfied for amplitude
squeezed flipped modes Vc0

�1 and Vd0
�1.

We have proposed a scheme to generate spatial entangle-
ment for split detection using spatial squeezed beams. Spatial
squeezing has been defined for any linear measurement per-
formed with an array detector �34�. Similarly, spatial en-
tanglement corresponding to any linear measurement can be
obtained. For an infinite span array detector with infinitesi-
mally small pixels, it is thus possible to generate multimode
spatial entanglement, increasing the Hilbert space to being
infinite-dimensional.

IV. CONCLUSION

We have identified the position and momentum of a
TEM00 optical beam. By showing that x̂ and p̂ are conjugate
observables that satisfy the Heisenberg commutation rela-
tion, a continuous variable x - p entanglement scheme is pro-
posed. This proposed entanglement, as considered by EPR
�1�, was characterized using a generalized form of the in-
separability criterion.

We further explored a form of spatial entanglement which
has applications in quantum imaging. The detection schemes
for quantum imaging are typically array detectors. In this
paper, we considered the split detector. We utilized the one-
dimensional spatial squeezing work of Treps et al. �18� and
proposed a spatial homodyning scheme for the spatial
squeezed beam. By identifying the conjugate observables for
the spatial squeezed beam as the amplitude and phase
quadratures of the flipped mode, we showed that split
detection-based spatial entanglement can be obtained.
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