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A microscopic theory of a nondissipative drag in a two-component superfluid Bose gas is developed. The
expression for the drag current in the system with the components of different atomic masses, densities, and
scattering lengths is derived. It is shown that the drag current is proportional to the square root of the gas
parameter. The temperature dependence of the drag current is studied and it is shown that at temperature of
order or smaller than the interaction energy the temperature reduction of the drag current is rather small. A
possible way of measuring the drag factor is proposed. A toroidal system with the drag component confined in
two half-ring wells separated by two Josephson barriers is considered. Under certain condition such a system
can be treated as a Bose-Einstein counterpart of the Josephson charge qubit in an external magnetic field. It is
shown that the measurement of the difference of number of atoms in two wells under a controlled evolution of
the state of the qubit allows one to determine the drag factor.
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I. INTRODUCTION

Macroscopic quantum coherence manifests itself in many
specific phenomena. One of them is a nondissipative drag
that takes place in superfluids and superconductors. The non-
dissipative drag, also known as the Andreev-Bashkin effect,
was considered, for the first time, in Ref. �1�, where a three
velocity hydrodynamic model for 3He- 4He superfluid mix-
tures was developed. It was shown that superfluid behavior
of such systems can be described under accounting the
“drag” term in the free energy. This term is proportional to
the scalar product of the superfluid velocities of two super-
fluid components. A similar situation may take place in mix-
tures of superfluids of Sz= +1 and Sz=−1 pairs in liquid 3He
in the A-phase �2�. Among other objects, where the nondis-
sipative drag may be important, are neutron stars, where the
mixture of neutron and proton Cooper pair Bose condensates
is believed to realize �3,4�. The possibility of realization of
the nondissipative drag in superconductors was considered in
�5�. The nondissipative drag in bilayer Bose systems was
treated microscopically in �6,7� for a special case of two
equivalent layers of charged bosons. The case of a bilayer
system of neutral bosons was studied in �8� in the limit of
small interlayer interaction.

The most promising systems where the nondissipative
drag can be observed experimentally are two-component al-
kali metal vapors. In such systems the interaction between
atoms of different species is of the same order as the inter-
action between atoms of the same specie and the effect is
expected to be larger than in bilayers. In Bose mixtures the
components are characterized by different densities, different
masses of atoms, and different interaction parameters. In this
paper we consider such a general case and obtain an analyti-
cal expression for the drag current for zero and finite tem-
peratures.

In the system under consideration the drag force influ-
ences the dynamics of atoms in the drag component in the

same manner as the vector potential of the electromagnetic
field influences the dynamics of electrons in superconduct-
ors. In particular, in neutral superfluids with Josephson links
the drag effect may induce the gradient of the phase of the
order parameter in the bulk and, as a consequence, control
the phase difference between weakly coupled parts of the
system. Therefore, one can expect that the effect reveals it-
self in a modification of Josephson oscillations between
weakly coupled Bose gases. In this paper we discuss possible
ways for the observation of such a modification. We consider
the Bose gas confined in a toroidal trap with two Josephson
links. In the Fock regime �9� the low energy dynamics of the
system can be described by the qubit model of general form
�the model, where all three components of the pseudomag-
netic field can be controlled independently�. The parameters
of the qubit Hamiltonian depend on the drag factor. The mea-
surement of the state of the qubit under controlled evolution
allows one to observe the effect caused by the nondissipative
drag and determine the drag factor. In this paper we consider
two particular schemes of the measurement. In the first
scheme one should determine the time required to transform
a reproducible initial state to a given final state. In the second
scheme the geometrical �Berry� phase should be detected.

In Sec. II the microscopic theory of the nondissipative
drag in two-component Bose gases is developed. In Sec. III a
model of the Bose-Einstein qubit subjected by the drag force
is formulated and the schemes of measurement of the drag
factor are proposed. Conclusions are given in Sec. IV.

II. NONDISSIPATIVE DRAG IN A TWO-COMPONENT
BOSE SYSTEM: MICROSCOPIC DERIVATION

Let us consider a uniform two-component atomic Bose
gas in a Bose-Einstein condensed state. We will study the
most general situation where the densities of atoms in each
component are different from one another �n1�n2�, the at-
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oms of each components have different masses �m1�m2�,
and the interaction between atoms is described by three dif-
ferent scattering lengths �a11�a22�a12�. The Hamiltonian
of the system can be presented in the form

H = �
i=1,2

�Ei − �iNi� +
1

2 �
i,i�=1,2

Eii�
int, �1�

where

Ei =� d3r
�2

2mi
���̂i

†�r�� · � �̂i�r� �2�

is the kinetic energy,

Eii�
int =� d3r�̂i

†�r��̂i�
† �r��ii��̂i��r��̂i�r� �3�

is the energy of interaction, �ii=4��2aii /mi and �12
=2��2�m1+m2�a12/ �m1m2� are the interaction parameters,
and �i are the chemical potentials.

For the further analysis it is convenient to use the density
and phase operator approach �see, for instance, �10,11��. The
approach is based on the following representation for the
Bose field operators:

�̂i�r� = exp�i�i�r� + i�̂i�r���ni + n̂i�r� , �4�

�̂i
†�r� = �ni + n̂i�r�exp�− i�i�r� − i�̂i�r�� , �5�

where n̂i and �̂i are the density and phase fluctuation opera-
tors, �i�r� are the c-number terms of the phase operators,
which are connected with the superfluid velocities by the
relation vi=���i /mi. In what follows we specify the case of
the superfluid velocities independent of r.

Substituting Eqs. �4� and �5� into Eq. �1� and expanding it
in series in powers of n̂i and ��̂i we present the Hamiltonian
of the system in the following form

H = H0 + H2 + ¯ . �6�

In Eq. �6� the term

H0 = V� �
i=1,2

	1

2
minivi

2 +
�ii

2
ni

2 − �ini
 + �12n1n2� �7�

does not contain the operator part. Here V is the volume of
the system. The minimization conditions for the Hamiltonian
H0 yield the equations

1

2
mivi

2 + �iini + �12n3−i − �i = 0 �i = 1,2� . �8�

Under the conditions �8� the terms, linear in the density fluc-
tuation operators, vanish in the Hamiltonian. Taking into ac-
count the � · �ni��i�r��=0, we find that the terms, linear in
the phase fluctuation operators, vanish in the Hamiltonian as
well.

The part of the Hamiltonian quadratic in ��̂i and n̂i op-
erators reads as

H2 =� dr��
i
� �2

2mi
	 �� n̂i�r��2

4ni
+ ni���̂i�r��2


+
�vi

2
· n̂i�r� � �̂i�r� + ���̂i�r��n̂i�r��

+
i�2

2mi
�� n̂i�r�� · � �̂i�r� − ���̂i�r�� · � n̂i�r��

+
�ii

2
�n̂i�r��2� + �12n̂1�r�n̂2�r�� . �9�

The quadratic part of the Hamiltonian determines the
spectra of the elementary excitations. Hereafter we will ne-
glect the higher order terms in the Hamiltonian �6�. These
terms describe the scattering of the quasiparticles and they
can be omitted if the temperature is much smaller than the
temperature of Bose-Einstein condensation.

Let us rewrite the quadratic part of the Hamiltonian in
terms of the operators of creation and annihilation of the
elementary excitations. As the first step, we use the substitu-
tion

n̂i�r� =�ni

V
�
k

eik·r� �ik

Eik
�bi�k� + bi

†�− k�� , �10�

�̂i�r� =
1

2i
� 1

niV
�
k

eik·r�Eik

�ik
�bi�k� − bi

†�− k�� , �11�

where operators bi
†, bi satisfy the Bose commutation rela-

tions. Here �ik=�2k2 /2mi is the spectrum of free atoms, and

Elk = ��ik��ik + 2�iini� �12�

is the spectrum of the elementary excitations at �12=0 and
vi=0. The substitution �10� and �11� reduces the Hamiltonian
�9� to the form quadratic in bi

† and bi operators:

H2 = �
ik
	Ei�k��bi

†�k�bi�k� +
1

2
� −

1

2
�ik


+ �
k

gk�b1
†�k�b2�k� + b1�k�b2�− k� + H.c.� . �13�

Here

Ei�k� = Eik + �k · vi �14�

and

gk = �12��1k�2kn1n2

E1kE2k
. �15�

The Hamiltonian �15� contains nondiagonal in Bose cre-
ation and annihilation operator terms and it can be diagonal-
ized using the standard procedure of u-v transformation �13�.
The result is
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H2 = �
k
	 �

�=	,

E��k��
�

†�k�
��k� +
1

2
� −

1

2 �
i=1,2

�ik
 ,

�16�

where 
�
†�k� and 
��k� are the operators of creation and an-

nihilation of elementary excitations.
The energies E��k� satisfy the equation

det�A − EI B

B A + EI
� = 0, �17�

where

A = �
E1�k� 0 gk 0

0 E1�− k� 0 gk

gk 0 E2�k� 0

0 gk 0 E2�− k�
� , �18�

B =�
0 0 0 gk

0 0 gk 0

0 gk 0 0

gk 0 0 0
� , �19�

and I is the identity matrix.
The densities of superfluid currents in two components

can be obtained from the relation

ji =
1

V

�F

�vi
, �20�

where F is the free energy of the system. Here the quantity ji
is defined as the density of the mass current.

The free energy of the system, described by the Hamil-
tonian �6�, is given by the formula

F = H0 +
1

2�
k
	 �

�=	,

E��k� − �

i=1,2
�ik


+ T�
k

�
�=	,


ln	1 − exp�−
E��k�

T
�
 . �21�

The second term in Eq. �21� is the energy of the zero-point
fluctuations and the third term is the standard temperature
dependent part of the free energy for the gas of noninteract-
ing elementary excitations.

We specify the case of small superfluid velocities �much
smaller than the critical ones�. In this case the currents can be
approximated by the expressions linear in vi. To obtain these
expressions we will find the free energy as series in vi, ne-
glecting the terms higher than quadratic.

At v1=v2=0 the equation �17� is easily solved and the
spectra are found to be

E	�
�k = �E1k
2 + E2k

2

2
±��E1k

2 − E2k
2 �2

4
+ 4�12

2 n1n2�1k�2k�1/2

.

�22�

As required in the procedure �13�, we take positive valued
solutions of Eq. �17�. The energies �22� should be real valued
quantities. This requirement yields the common condition for
the stability of the two-component system: �12

2 ��11�22. If
this condition were not fulfilled, spatial separation of two
components �at positive �12� or a collapse �at negative �12�
would take place.

At nonzero superfluid velocities we present the solutions
of Eq. �17� as series in vi:

E	�k� = E	k +
1

2
�k · v1�1 +

E1k
2 − E2k

2

E	k
2 − E
k

2 �
+

1

2
�k · v2�1 −

E1k
2 − E2k

2

E	k
2 − E
k

2 �
+

2�12
2 n1n2�1k�2k�3E	k

2 + E
k
2 �

E	k�E	k
2 − E
k

2 �3 �2�k · v1 − k · v2�2,

�23�

E
�k� = E
k +
1

2
�k · v1�1 −

E1k
2 − E2k

2

E	k
2 − E
k

2 �
+

1

2
�k · v2�1 +

E1k
2 − E2k

2

E	k
2 − E
k

2 �
−

2�12
2 n1n2�1k�2k�E	k

2 + 3E
k
2 �

E
k�E	k
2 − E
k

2 �3 �2�k · v1 − k · v2�2.

�24�

Note that at v1=v2=v the spectra �23� and �24� are reduced
to common expressions for the energies of quasiparticles in a
moving condensate: E	�
��k�=E	�
�k+�k ·v.

Using Eqs. �21�, �23�, and �24� we obtain the following
expression for the free energy:

F = F0 +
V

2
���1 − �n1�v1

2 + ��2 − �n2�v2
2 − �dr�v1 − v2�2� ,

�25�

where F0 does not depend on vi. In Eq. �25� �i=mini are the
mass densities, the quantities

�n1 = −
m1

3V
�
k

�1k	dN	k

dE	k
+

dN
k

dE
k

+
E1k

2 − E2k
2

E	k
2 − E
k

2 �dN	k

dE	k
−

dN
k

dE
k
�
 , �26�

�n2 = −
m2

3V
�
k

�2k	dN	k

dE	k
+

dN
k

dE
k

−
E1k

2 − E2k
2

E	k
2 − E
k

2 �dN	k

dE	k
−

dN
k

dE
k
�
 �27�

describe the thermal reduction of the superfluid densities,
and the quantity
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�dr =
4

3V
�m1m2�

k

�12
2 n1n2��1k�2k�3/2

E	kE
k
	1 + N	k + N
k

�E	k + E
k�3

−
N	k − N
k

�E	k − E
k�3 +
2E	kE
k

�E	k
2 − E
k

2 �2�dN	k

dE	k
+

dN
k

dE
k
�
 ,

�28�

which we call the “drag density,” yields the value of redis-
tribution of the superfluid densities between the components.
In Eqs. �26�–�28� N	�
�k= �exp�E	�
�k /T�−1�−1 is the Bose
distribution function.

Using Eqs. �20� and �25� we arrive at the following ex-
pressions for the supercurrents:

j1 = ��1 − �n1 − �dr�v1 + �drv2, �29�

j2 = ��2 − �n2 − �dr�v2 + �drv1. �30�

One can see that at nonzero �dr the current of one component
contains the term proportional to the superfluid velocity of
the other component. It means that there is a transfer of
motion between the components. In particular, at v1=0 the
current in the component 1 �j1=�drv2� is purely the drag
current. Since �dr is the function of �12

2 �see Eqs. �28� and
�22�� the drag current does not depend on the sign of the
interaction between the components.

Equation �28� is the main result of the paper. This equa-
tion yields the value of the drag for the general case of the
two-component Bose system with components of different
densities, different masses of atoms, different interaction pa-
rameters, and for zero as well as for nonzero temperatures.
Moreover, this equation is valid not only for the point inter-
action between the atoms, but for any central force interac-
tion. In the latter case the interaction parameters �ik in Eq.
�28� and in the spectra �22� and �12� should be replaced with
the Fourier components of the corresponding interaction po-
tentials.

To estimate the absolute value of the drag we, for simplic-
ity, specify the case m1=m2=m, that is realized when two
components are two hyperfine states of the same atoms.

At T=0 Eq. �28� is reduced to

�dr =
4m

3
�

0



d�
�12

2 n1n2�����1/2

��� + w1��� + w2���� + w1 + �� + w2�3
,

�31�

where

���� =
m3/2

�2�2�3
��

is the density of states for free atoms, and

w1�2� = �11n1 + �22n2 ± ���11n1 − �22n2�2 + 4�12
2 n1n2.

The integral in Eq. �31� can be evaluated analytically. To
present the answer in a compact form it is convenient to
introduce the dimensionless parameters

� =
a12

2

a11a22
and � =�n1a11

n2a22
+�n2a22

n1a11

�0���1 and ��2�.
Using these notations we have

�dr = ��1�2
�4 n1a11

3 n2a22
3 �

��
F��,�� , �32�

where

F��,�� =
256

45�2�

�� + 3�1 − ����

��� + ��2 − 4 + 4� + �� − ��2 − 4 + 4��3
.

�33�

Direct evaluation of Eq. �33� shows that at allowed � and �
�0���1 and ��2� the factor F�� ,�� is almost the con-
stant �the range of variation of F is �0.7–0.8�� and one can
neglect the dependence of F on the parameter of the system.

At a11n1=a22n2 we obtain from Eq. �32� the following
approximate relation:

�dr �
1

2
�1

a12
2

a11a22

�n1a11
3 =

1

2
�2

a12
2

a11a22

�n2a22
3 . �34�

If the density of one component is much larger than that of
the other and a11�a22, the “drag density” is approximated as

�dr � 0.8�1
a12

2

a22
2

�n2a22
3 at n1 � n2,

�dr � 0.8�2
a12

2

a11
2

�n1a11
3 at n2 � n1. �35�

One can see that the “drag density” is proportional to the
square root of the gas parameter. It means that the drag effect
is larger in “less ideal” Bose gases.

The temperature dependence of the “drag density” at
small T can be evaluated analytically from Eq. �28� using the
linear approximation for the spectra of the excitations. It
yields �dr�T�=�dr�0��1−	TT4 /T0

4�, where T0=��11n1�22n2

and the factor 	T is positive. Numerical evaluation of the
sum over k in Eq. �28� shows that the analytical approxima-
tion is valid only at T�T0. At T�T0 the “drag density”
decreases much slower under increase of the temperature. As
an example, the dependence of �dr�T� at n1=n2=n, �11

=�22=�, and �=0.5 is shown in Fig. 1.
Now let us discuss how the drag effect can reveal itself in

a real physical situation. If one deals with the stationary su-
perflow one implies that it is the circulating superflow, e.g.,
the tangential superflow in a hole cylinder. In such a case the
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superfluid velocities satisfy the Onsager-Feynman quantiza-
tion condition

� vi · dl =
2��Ni

mi
, �36�

where the vorticity parameters Ni are integer. Then, the drag
effect can be understood as the appearance of the circulating
current in the drive component �e.g., specie 1�, when the
circulation of the superfluid velocity of the drive component
�e.g., specie 2� is fixed �N2=const�. The current of the specie
1 �Eq. �29�� depends on the superfluid velocities of both
species and if the superfluid velocity of the drag component
is directed antiparallel to the superfluid velocity of the drive
component the current of the drag component might vanish.
But since the velocities are quantized it may happen only
under certain special conditions �see below�. The superfluid
velocity of the drag component is determined by that at fixed
N2 the free energy �25� has a minimum with respect to dis-
crete values of v1=�N1 / �m1R� �where the R is the radius of
the contour in Eq. �36��. Depending on the value of the pa-
rameter 	= ��dr / ��2−�n2−�dr���m1 /m2�N2 several possibili-
ties can be realized. At �	��1/2 the minimum of the energy
�25� corresponds to N1=0 �and v1=0�. In this case the cur-
rent of the drag component is directed along the drive current
and it is proportional to the drag density. At �	�= p �p is
natural� the value N1=−p minimizes the energy. In this case
two terms in Eq. �29� compensate each other and the current
in the drag component vanishes. At half-integer 	 the degen-
erate situation takes place: two states �with codirected cur-
rents, and counterdirected currents� have the same energy. At
p−1/2� �	�� p the state with counterdirected currents gains
the energy and at p� �	�� p+1/2 the codirected currents are
energetically preferable. In the latter two cases the nonzero
vorticity of the drag component �N1�0� is also induced.
This behavior is analogous to the behavior of a supercon-
ducting ring in a magnetic field. We note that since �dr��2,
the most realistic case is �	��1/2 when the simple picture of
the transfer of part of the motion from the drive to the drag
component takes place.

In this study we have concentrated on the analytical deri-
vation of the drag effect in the uniform Bose gases. The
consideration of the nonuniform case requires the solution of
the eigenvalue problem for the elementary excitations in the

two-component Bose gas in the external potential. But even
for the simplest case of a spherically symmetric trap this
problem can be solved analytically only in the long-
wavelength limit and the Thomas-Fermi approximation �12�
�the spectrum of elementary excitations in one-component
Bose gases was obtained analytically for a number of poten-
tials but also in the same limit �11,14–16��. Since the main
contribution to the drag density comes from the excitations
with the wave vectors of order of the healing length �see Eq.
�28��, the rigorous analysis of the drag effect can be done
only numerically. Nevertheless, in the Tomas-Fermi situation
the drag effect can be evaluated basing on the following
arguments. When the linear size of the Bose cloud is much
larger than the healing length, the spectrum of the excitations
at the wave vectors of order or higher than the inverse heal-
ing length is well-described by the quasiuniform approxima-
tion. Therefore the drag effect can be described by the same
equations, as in the uniform case with the only modification
that the quantities n1 and n2, and, correspondingly, �i, �ni,
�dr, and ji in Eqs. �26�–�30� are understood as functions of
coordinates.

At an arbitrary symmetry of the trap potential the super-
fluid velocity of the drag component cannot be equal to zero
in each point. Indeed, in the general case of space dependent
�i, �ni, and �dr the velocity field v2�r� cannot satisfy two
independent continuity conditions � · ���2−�n2−�dr�v2�=0
and � · ��drv2�=0. To analyze this case one should find the
velocity fields v1�r� and v2�r� that satisfy the continuity con-
ditions and the quantization conditions. To illustrate this
point let us consider a simple example of a trap having the
shape of a hollow cylinder with the densities that depend
only on the polar angle �. We will seek the velocity fields
that do not have radial components. Then, Eqs. �29� and �30�,
written for the tangential components of the currents and the
velocities, can be presented in the matrix form

� j1

j2
� = R̂�v1�r,��

v2�r,��
� , �37�

where

R̂ = ��s1��� − �dr��� �dr���
�dr��� �s2��� − �dr���

� �38�

with �si���=�i���−�ni���. Due to the continuity conditions
the currents j1 and j2 in Eq. �37� do not depend on �. Ac-
cording to Eq. �37� the velocities v1�r ,�� and v2�r ,�� are
connected with the currents by the equation

�v1�r,��
v2�r,��

� = R̂−1� j1�r�
j2�r�

� . �39�

Integrating Eq. �39� over � and taking into account the quan-
tization conditions �36� we obtain the equation for the cur-
rents

T̂� j1�r�
j2�r�

� =
2��

r
�N1/m1

N2/m2
� , �40�

where

FIG. 1. Dependence of the “drag density” on the
temperature.
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T̂ =� �
0

2�

d�
�s2 − �dr

�s1�s2 − �dr��s1 + �s2�
− �

0

2�

d�
�dr

�s1�s2 − �dr��s1 + �s2�

− �
0

2�

d�
�dr

�s1�s2 − �dr��s1 + �s2� �
0

2�

d�
�s1 − �dr

�s1�s2 − �dr��s1 + �s2�
� . �41�

If a given vorticity of the drive component N2 is not very
large the minimum of energy is reached at N1=0. In the latter
case the solution of Eq. �40� in the leading order in �dr yields
the following expression for the current of the drag compo-
nent:

j1�r� �
2��N2

m2r

�
0

2�

d�
�dr���

�s1����s2���

�
0

2�

d�
1

�s1����0

2�

d�
1

�s2���

. �42�

One can see that if at some � the density �s1 has a sharp
minimum the first factor in the denominator in Eq. �42� be-
comes large. On the other hand, the integral in the numerator
is not very sensitive to lowering of �s1 �see Eqs. �35��. Thus
in a system with a “bottle neck” in the drag component the
drag current decreases strongly and the main consequence of
the drag effect is the emergence of the gradient of the phase
of the order parameter of the drag component. A similar situ-
ation takes place in a system with a weak link. The latter
case is analyzed in the next section. In the uniform case Eq.
�42� is reduced to j1=�drv2.

To complete the discussion we emphasize that the crossed
term ��drv1 ·v2� in the free energy �25� �and, consequently,
the drag terms in the currents �29� and �30�� comes only from
the second and third terms in Eq. �21�. Consequently, the
drag effect considered in this paper is solely by the excita-
tions. At the mean field level of approximation �which can be
also formulated in terms of the Gross-Pitaevsky equation�
the effect does not appear, while the coupling between the
components is also present at that level of approximation.
We would note that at the mean field level the drag effect of
another type may emerge. That effect takes place in the case
when one of the species is subjected by an asymmetric ro-
tating external potential �see, for instance, �17�, where such
an effect has been studied with reference to the system of
two coupled traps�.

III. MODEL OF BOSE-EINSTEIN QUBIT WITH
EXTERNAL DRAG FORCE

It is known that Bose systems in the Bose-Einstein con-
densed state may demonstrate Josephson phenomenon �9�. In
this paper we consider the external Josephson effect that
takes place in two-well Bose systems. It was shown in �18�
that in such systems one can realize the situation, when two
states, that differ in the expectation value of the relative
number operator, can be used as qubit states.

To include the drag force into the play we consider the
following geometry. Let our two-component system be con-

fined in a toroidal trap and the Bose cloud of the component
1 �the drag component� is situated inside and overlaps with
the Bose clouds of the component 2 �the drive component�.
Such a situation can be realized if ��12��min��11,�22�.

Deforming the confining potential one can cut the drag
component into two clouds of a half-torus shape �separated
by two Josephson links� leaving the Bose cloud of the drive
component uncut �Fig. 2�. In what follows we use the fol-
lowing notations: Rt is the large radius of the toroidal trap,
and rt1 and rt2 are the small radii of the toroidal Bose clouds
of the drag and the drive components, correspondingly.

Rotating this trap one can excite a superflow in the drive
component. After the rotation is switched off there will is a
circulating superflow in the drive component and no super-
flow in the drag component �at negligible small Josephson
coupling�. The superfluid velocity of the drive component is

v2 =
N2�

m2Rt
. �43�

In Eq. �43�, we imply that Rt�rt1 ,rt2 and neglect, for sim-
plicity, the effect caused by a dependence of rt2 on the polar
angle.

Since j1=0, the phase gradient ��1 should be nonzero to
compensate for the drag effect. In the polar coordinates the �
component of the phase gradient is given by the relation

���1�� = −
N2

Rt
fdr = − fdr���2��, �44�

where

FIG. 2. Schematic shapes of Bose clouds for the drag �top fig-
ure� and drive �bottom figure� components. The drag component is
situated inside and overlaps with the drive component.
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fdr =
m1

m2

�dr

�s1 − �dr
. �45�

The quantity fdr yields the ratio between the phase gradients
in the drag and the drive components in the situation when
the drag component is in the open circuit �i.e., the current
cannot flow in the circuit�. We call this quantity the drag
factor.

We imply that rt1 and rt2 are much larger than the healing
lengths that allows one to describe the drag effect in quasi-
uniform approximation. For definiteness, we specify the case
of �1��2 and �2�const in the overlapping region. In this
case one can neglect the space dependence the drag factor
�see Eqs. �35��.

At nonzero Josephson coupling the current j1 can be non-
zero, but it cannot exceed the maximum Josephson current
jm. Relation �44� remains approximately correct at nonzero
Josephson coupling if an inequality jm���1 / �m1Rt� is satis-
fied. Here we specify just such a case. It is important to
emphasize that we consider the situation, when there is only
the external Josephson effect between two half-torus traps,
and there is no internal Josephson effect between the drag
and the drive species.

The drag force can be considered as an effective vector
potential Adr=−�fdr��2 �in units of e=c=1� that corre-
sponds to an effective magnetic flux �dr=−2��fdrN2. Thus
our Bose system is similar to the Cooper pair box system that
implements the Josephson charge qubit with the Josephson
coupling controlled by an external magnetic flux �19�. To
extend this analogy we formulate the model of the Bose-
Einstein qubit subjected by the drag force. In what follows
we use the approach of Ref. �18�.

In the two mode approximation the Bose field operators
for the drag component can be presented in the form:

�̂1�r,t� = �
l=L,R

al�t��l�r − rl� ,

�̂1
†�r,t� = �

l=L,R
al

†�t��l
*�r − rl� , �46�

where aL�R�
† and aL�R� are the operators of creation and anni-

hilation of bosons in the condensates confined in the
left�right� half-torus, and �L, �R are two almost orthogonal
local mode functions

� d3r�l
*�r��l��r� � �ll�, l,l� = L,R

that describe the condensate in the left and right traps �20�.
Substituting Eq. �46� into Hamiltonian �1�, we obtain the

following expression for the parts of the Hamiltonian that
depend on the operators al

† and al:

Ha = �
l=L,R

�Klal
†al + �lal

†al
†alal� + �JaL

†aR + J*aR
†aL� ,

�47�

with

Kl =� d3r�l
*	−

�2

2m
�2 + Vtr + �12�2

*�2
�l, �48�

�l =
�11

2
� d3r��l�4, �49�

J =� d3r	 �2

2m
� �L

* · � �R + Vtr�L
*�R
 . �50�

The functions �L and �R contain the phase factors ei�L�r�

and ei�R�r�, where the phases satisfy Eq. �44�. Taking these
factors into account, one can choose the following basis for
the one mode functions

�L�R��r� = ��L�R��r��exp�− iN2fdr�L�R��r�� , �51�

where �L ,�R are the polar angles counted from the centers
of L and R half-torus, correspondingly �see Fig. 3�. The
angles �L�R��r�, defined as shown in Fig. 3, satisfy the rela-
tion

�R�rA� − �L�rA� = �L�rB� − �R�rB� = � , �52�

where rA and rB are the radius-vectors of Josephson links.
Substituting Eq. �51� into Eq. �50�, using Eq. �52�, and

taking into account that the functions �L and �R overlap in
a small vicinity of A and B links, we obtain the following
expression for the Josephson coupling parameter:

J = �JA + JB�cos��
�dr

�0
� + i�JA − JB�sin��

�dr

�0
� , �53�

where �0=2�� is the “flux quantum” and

JA�B� � �
VA�B�

d3r	 �2

2m
� ��L� · � ��R� + Vtr��L���R�� .

�54�

Here VA and VB are the areas of overlapping of two one
mode functions at links A and B, correspondingly.

Considering the Hilbert space in which the total number
operator

N̂ = aL
†aL + aR

†aR �55�

is a conservative quantity �N̂=N� we present the Hamiltonian
�47� in the following form:

FIG. 3. Left �L� and right �R� half-torus of the drag component,
separated by Josephson links A and B.
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Ha = Ec�n̂RL − ng�2 + �JaL
†aR + H.c.� + const, �56�

where

n̂RL =
aR

†aR − aL
†aL

2
�57�

is the number difference operator,

Ec = �R + �L �58�

is the interaction energy, and the quantity

ng =
1

2Ec
�KL − KR + �N − 1���L − �R�� �59�

describes an asymmetry of L and R half-tore.
In what follows we imply that the system is in the Fock

regime �9� ��J�N�Ec� and use the number representation

�nRL� � �nR,nL� � �N

2
+ nRL,

N

2
− nRL� .

In this representation the first term in Eq. �56� is diagonal.
The second term in Eq. �56� can be considered as a small
nondiagonal correction. But if ng is biased near one of the
degeneracy points

ndeg = �M + 1
2 for even N

M for odd N
� �60�

�where M is an integer and �M��N /2�, the second term in
Eq. �56� results in a strong mixing of two lowest states
��↑ �= �ndeg+1/2� and �↓ �= �ndeg−1/2�� and the low energy
dynamics of the system can be described by a pseudospin
Hamiltonian

Hef f = −
�x

2
�̂x −

�y

2
�̂y −

�z

2
�̂z, �61�

where �̂i are the Pauli operators, and

�x = − �JA + JB���N + 1�2 − 4ndeg
2 cos��

�dr

�0
� ,

�y = − �JA − JB���N + 1�2 − 4ndeg
2 sin��

�dr

�0
� ,

�z = 2Ec�ng − ndeg� �62�

are the components of the pseudomagnetic filed. In experi-
ments one can control the parameters ng, JA, and JB indepen-
dently and, consequently, the pseudomagnetic field ��t� can
be switched arbitrarily. It means that Eq. �61� represents the
standard Hamiltonian of the qubit system. The parameters of
the qubit �61� depend on the “drag flux” �dr. Therefore one
can determine its value from the measurement of the state of
the system after a controlled evolution of a certain reproduc-
ible initial state.

Let us consider two possibilities. For definiteness, we
specify the case of odd N and the degeneracy point ndeg=0.
If the Josephson coupling is switched off and ng is switched
on to some positive value �much less than unity� the system

is relaxed to the state ��in�= �↑ �. This state can be used as the
reproducible initial state. The quantity that should be mea-
sured is the expectation value of the number difference op-
erator. In the initial state the expectation value of this opera-
tor is nRL=1/2.

When the system is switched suddenly to the degeneracy
point ng=0 and the Josephson couplings are switched on for
some time � the initial state evolves to another state with
another nRL.

If one sets JA=JB=J the result of evolution ��� f�=U��in�
is described by the unitary operator

U1��� = � cos�	1�� − i sin�	1��
− i sin�	1�� cos�	1��

�
where 	1= �J /���N+1�cos���dr /�0�. One can see that at
the time of evolution �=�1=� / �4�	1�� the expectation value
of the number difference operation will be equal to zero.

For the case JA=J and JB=0 the operator of evolution
reads as

U2��� = � cos�	2�� − ie−i��dr/�0 sin�	2��
− iei��dr/�0 sin�	2�� cos�	2��

�
with 	2= �J /2���N+1�. Respectively, the expectation value
nRL will be equal to zero at �=�2=� / �4	2�.

The ratio �2 /�1= �cos���dr /�0�� /2 depends only on �dr

and the quantity �dr can be extracted from the measurements
of �1 and �2. It is important to note that to provide this
scheme one should control only the ratio of JA and JB, but
not their absolute values.

Another possibility can be based on detection of the Berry
phase �21�. Equation �61� contains all three components of
the field � and they can be controlled independently. The
general scheme of detection of the Berry phase in such a
situation was proposed �22�. A concrete realization of this
scheme in the Josephson charge qubit was described in �23�.
Here we extend the ideas of �22,23� to the case of the
“dragged” Bose-Einstein qubit.

We start from the same initial state and switch to JA=JB
=J and ng=0. The initial state �↑� can be presented as the
superposition of two instantaneous eigenstates �ea�= ��↑ �
+ �↓ �� /�2 and �eb�= ��↑ �− �↓ �� /�2:

��in� =
1
�2

��ea� + �eb�� . �63�

An adiabatic cyclic evolution of the parameters of the Hamil-
tonian �61� results in the appearance of the Berry phase in
the �ea� and �eb� eigenstates if the vector � subtends a non-
zero solid angle at the origin.

Let us consider the following four stage cyclic adiabatic
evolution starting from the point JA=JB=J and ng=0: 1—JB
is switched off; 2—JA is switched off and simultaneously ng
is switched to ng1�0; 3—ng is returned to the same degen-
eracy point �ng=0� and JB is switched to JB=J; and 4—JA is
switched to JA=J �all switches should be done slowly:
��d� /dt���2�.

After such an evolution the system arrives at the state
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��m� =
1
�2

�ei�a+i��ea� + ei�b−i��eb�� , �64�

where �=��dr /�0 is the Berry phase �equal to half of the
solid angle subtended by �� and �a, �b are the dynamical
phases. Elimination of the dynamical phases can performed
by swapping the eigenstates ��-transformation� and repeat-
ing the same cycle of evolution in a reverse direction �see
�22��.

The �-transformation can be done by fast switching off
the Josephson coupling and switching on ng=ng2�0 during
the time interval t�=�� / �2Ecng2�. After the
�-transformation the state becomes

��m�� = −
i

�2
�ei�a+i��eb� + ei�b−i��ea�� . �65�

After the cyclic evolution in the reverse direction we ar-
rive at the state

�� f� = −
i

�2
ei��a+�b��e2i��eb� + e−2i��ea�� . �66�

One can see that the expectation value of the number
difference operator in the final state �66� nRL=cos�4�� /2
=cos�4��dr /�0� /2 depends only on �dr and the measure-
ment of this difference allows one to determine the value of
the “drag flux.”

Thus the measurements of a relative number of atoms in
left and right condensates under controlled evolution of the
state of the system allows one to observe the nondissipative
drag and determine the drag factor �if the vorticity of the
drive component is known�.

IV. CONCLUSIONS

We have investigated the nondissipative drag effect in
three-dimensional weakly interacting two-component super-
fluid Bose gases. The expression for the drag current is de-
rived microscopically for the general case of two species of
different densities, different masses, and different interaction
parameters. It is shown that the drag current is proportional
to the square root of the gas parameter. The drag effect is
maximal at zero temperatures and it decreases when the tem-
perature increases, but at temperatures of order of the inter-
action energy the drag current remains of the same order as
at zero temperature.

We have considered the toroidal double-well geometry,
where the nondissipative drag influences significantly the Jo-
sephson coupling between the wells. In the system consid-
ered the drag force can be interpreted as an effective vector
potential applied to the drag component. The effective vector
potential is equal to Adr=−�fdr��drv �in units of e=c=1�,
where �drv is the phase of the drive component, and fdr is the
drag factor. In the toroidal geometry the effective vector po-
tential can be associated with an effective flux of external
field �dr=2��fdrNv, where Nv is the vorticity of the drive
component. In the Fock regime the system can be considered
as a Bose-Einstein counterpart of the Josephson charge qubit
in an external magnetic field. The measurement of the state
of such a qubit allows one to observe the drag effect and
determine the drag factor.
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