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Quantum process tomography on vibrational states of atoms in an optical lattice
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Quantum process tomography is used to fully characterize the evolution of the quantum vibrational state of
atoms. Rubidium atoms are trapped in a shallow optical lattice supporting only two vibrational states, which
we characterize by reconstructing the 2 X 2 density matrix. Repeating this reconstruction for a complete set of
inputs allows us to completely characterize both the system’s intrinsic decoherence and resonant coupling.
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In recent years, there have been remarkable advances in
directly controlling and observing the dynamics of individual
quantum systems in a variety of domains. This degree of
control of microscopic systems is one of the technological
advances underlying the myriad proposals for realistic
quantum-information processing systems. For instance, a
number of quantum-computing proposals rely on atoms
trapped in an optical lattice [1,2], a system in which a great
deal of work has investigated coherent center-of-mass mo-
tion [3-5], full characterization of spin states [6], quantum
state reconstruction of trapped ions and atoms [7-9], loading
of individual atoms into lattice sites [10], and coherent inter-
actions between atoms [11-13]. Here we demonstrate a tech-
nique for completely reconstructing the quantum state of mo-
tion of atoms trapped in an optical lattice. By performing this
density-matrix reconstruction for a complete set of input
states, we are able to completely characterize the quantum
evolution of the system (the “superoperator”), including de-
coherence.

Such characterization will be necessary in order to imple-
ment quantum error correction [14]; the development of a
quantum computer will require reducing errors to below a
certain threshold [15]. An arbitrary operation may be charac-
terized using quantum process tomography (QPT) [16]. The
result of QPT is the superoperator, a positive, linear map
from density matrices to density matrices, which governs the
evolution of the density matrix for the operation. Unlike a
propagator, the superoperator allows for nonunitary evolu-
tion of the system, thoroughly characterizing decoherence,
relaxation, and loss in a system. From the superoperator one
can determine which errors occur and develop procedures to
reduce or eliminate them, without prior assumptions about
the underlying physical mechanisms [17].

QPT has recently been demonstrated using spins in a
NMR system [18], the polarization of single photons [19]
and photon pairs [20], and an optical controlled-NOT gate
[21]. QPT is performed by preparing a complete set of input
density matrices, subjecting each to the operation being
tested, and measuring the resultant output density matrices.
Due to the linearity of quantum mechanics, QPT of a process
on an N-dimensional system requires O(N?) linearly inde-
pendent input density matrices. Alternatively, it has recently
been shown that one can use a single state in a larger Hilbert
space as the input [19,22,23].

We perform quantum process tomography using the mo-
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tional states of atoms trapped in the potential wells of a one-
dimensional (1D) optical lattice. We examine processes that
involve only the motional states of the atoms, not their elec-
tronic state. The measurements are insensitive to the long-
range degrees of freedom and effectively trace over the qua-
simomentum in the Bloch state picture (or equivalently the
well index in the Wannier state picture). We use a shallow
1D lattice which supports only two bound bands, which we
label as ground (|0)) and excited (|1)). The lattice is vertically
oriented, causing all atoms in higher-energy, classically un-
bound states to quickly fall out of the lattice and become
spatially separated from the bound states (the Landau-Zener
tunneling rates from the three lowest-energy bands are 3
%1077, 14.5, and 1150 s™! in increasing order). A typical
sequence, from state preparation in the lattice to measure-
ment, lasts 20 ms.

We cool and trap 3Rb atoms in a standard vapor cell
magneto-optical trap MOT to a temperature of 7 uK with a
rms radius of approximately 1 mm. The optical lattice is ap-
plied during a post-trapping optical molasses phase. The op-
tical lattice is created by interfering two laser beams which
are detuned 30 GHz below the Rb D2 resonance at
780.03 nm. The relative phase of the beams, and thus the
displacement of the lattice, is controlled via acousto-optic
modulators that are driven by a common source. The beams
are superposed with orthogonal polarizations using a polar-
izing beam splitter. The beams copropagate to the vacuum
system, passing through a spatial filter to mode-match the
beams, ensuring that fringes forming the lattice are flat and
horizontal. The beams are separated with another polarizing
beam splitter just before they enter the vacuum chamber. The
lattice beams have an angle of 50° between them, in a verti-
cal plane, creating a vertically oriented optical lattice with a
lattice constant of L=0.93 um. The depth of the lattice is
controlled by the intensity and detuning of the beams, and is
chosen to be E,=18E, (where E,=h*/8L’m=h X 690 Hz is
the effective recoil energy of the lattice, & is Planck’s con-
stant, and m is the mass of the Rb atom) at which depth it
contains two bound states. The energy separation between
the states is 74X 5.0 kHz and the scattering rate is on the
order of 4 Hz, which is insignificant on the time scale of the
experiment.

We measure the populations of the |[0) and |1) bands by
adiabatically releasing the atoms from the lattice; as the
depth of the lattice is adiabatically decreased, the energy
bands approach the top of the potential. Once an energy band
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FIG. 1. (a) A fluorescence image of the state populations in a
lattice obtained by continuous adiabatic decrease of the lattice po-
tential over a period of 45 ms. An adiabatic stepwise decrease of the
potential leads to a clearer separation of the states as shown in (b).

becomes classically unbound, the atoms in that band accel-
erate downward due to gravity. Since each band becomes
unbound at a different time, each is mapped to a different
vertical position. The spatial distribution is recorded by fluo-
rescence imaging. Alternatively, the lattice depth may be
quickly, but still adiabatically, lowered to a depth of 9E,. At
this depth the ground state has a Landau-Zener-limited life-
time of 250 ms while the excited state has a lifetime of
0.5 ms; the latter quickly escape the lattice while the former
remain trapped. After holding the depth constant for some
time (typically for about 20 ms), the relative populations can
be determined as shown in Fig. 1(b). In order to satisfy the
adiabatic criterion we must decrease the potential slower
than dE,/dt<<hX 108/s2; the fastest decrease we use is
dEy/dt=h X 4.1 X 10°/s2, and we observed nonadiabatic ef-
fects only with a turn-off faster than dE,/dt=hX1.4
% 107/s%. The lattice beams have a Gaussian shape with rms
width of 3 mm, creating a shallower lattice near the edges.
The correspondingly earlier release times at the edges result
in the curved clouds seen in Fig. 1(a). To reduce broadening
from inhomogeneous well depths we collect signal only from
the central 600 wm of the cloud.

A sample of ground-state atoms is prepared by filtering
out the excited-state atoms from the lattice. We hold the well
depth near 9E, for about 3 ms, allowing most atoms in |1) to
escape. The depth is then adiabatically increased back to the
original depth, preparing a sample of atoms with up to 95%
occupation of the ground state. To prepare a variety of initial
states, we make use of our ability to displace the lattice, and
of the atoms’ free evolution. Displacement of the lattice is
equivalent to a spatial translation of the atom cloud in the
lattice’s reference frame, constituting a coherent coupling be-
tween the energy eigenstates. In addition to coupling the two
bound states, this induces some transitions to unbound states,
which are lost from the lattice. Spatial translations change
the coefficients of the states as described by the following
equations:

Ax
|0)=>c00) + ¢ 1) + (loss), (1)
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Ax
[1)= = c10|0) + ¢y |1) + (loss). (2)

The coefficients ¢, c;g, and c¢;; are determined by displac-
ing the lattice with different initial state populations. The
“loss” term represents coupling of atoms to unbound states
of the lattice. For a displacement Ax=L/8=116 nm we mea-
sure ¢y, Cjo, and ¢, to be 0.86(2), 0.50(2), and 0.53(10),
respectively, close to the theoretical values of 0.87, 0.45, and
0.63. During a time period At of free evolution in the lattice,
the ground and excited states acquire a relative phase shift of
wAt, where o is the oscillation frequency in the lattice. Us-
ing a combination of displacement and time delay we can
prepare superposition states with arbitrary relative phase.

State tomography [24,25] is performed by projecting the
unknown state onto a set of known states. We use a set of
nonorthogonal states {®,, ..., ®,}={[0),[1),]6,),|6,)} where
|6)=cos 60)+sin 6]1) and [6,)=cos 60)+isin 6]1). We
project onto states of the form cos §|0)+sin 6|1) by spatially
displacing the trapping potential before separating the result-
ing energy eigenstates. We choose our displacements to be
small in order to have negligible coupling to the higher-
energy, unbound states; at Ax=116 nm we measure 6
~(.5 rad. Projection onto the state |6,) is accomplished by
adding a quarter-period time delay prior to displacement of
the trapping potential. State tomography is performed by
measuring the projections m;={(®;|p|®;) for all states |D,).
The resulting measurements {m,, ...,m,} are used to recon-
struct the density matrix, with p;;=m, pp=m,, and p;,
=[(m*+im*)—m, cos® 6—m, sin’ @]/sin 2.

We perform QPT of the “process” of free evolution within
the lattice, to fully characterize the decoherence. We prepare
and characterize a known state, allow it to evolve for 200 us
(one oscillation period), and measure the resulting density
matrix by state tomography as above. Repeating this with
four linearly independent input states allows reconstruction
of the process. The four states we use are the ground state p,,
prepared as above; a superposition of [0) and |1) with real
coherence p,, prepared by displacing the ground state; a su-
perposition with imaginary coherence p;, prepared by adding
a quarter-period delay after displacement; and a mixed state
p,- The mixed state can be prepared by either omitting the
filtering step, or preparing a superposition state and waiting
3 ms for it to decohere (see discussion below). Table I shows
the projection of each input density matrix onto the states
{®,,...,D,}, before (left) and after (right) the “operation.”
The same data are displayed graphically in Fig. 2. Note the
decreased contrast in the projections of p, and p; onto |®s)
and |d,), as expected for an operation where the coherence
of the state decreases.

The superoperator € resulting from QPT can be expressed
in a number of ways. One common form is the operator sum
representation,

Pour = 5(pin) = 2 AipinAj7 (3)

where Ai are operational elements, often called Kraus opera-

tors [26], subject to the constraint E,AM,:I. The Choi ma-
trix [27,28] provides a straightforward procedure to obtain
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TABLE 1. Projection of the prepared states onto the measurement state. The table on the left shows the
projections after state preparation, and the table on the right shows the projections after one period of free

evolution.

Pg Pm Pr pi Pg Pm Pr Pi
|0y 0.90 0.60 0.69 0.69 |0 0.90 0.60 0.69 0.69
1) 0.10 0.40 0.31 0.31 1) 0.10 0.40 0.31 0.31
D) 0.82 0.59 0.85 0.63 D) 0.83 0.60 0.82 0.65
D)) 0.84 0.58 0.64 0.37 |®,) 0.82 0.57 0.70 0.46

experimental Kraus operators. The Choi matrix is defined as
=3, [i)(jl ® E(i)(j[) where [i){j| is an outer product of basis
states and £(|i){j|) is the superoperator acting on the matrix
given by the outer product |i){j|. Then £(p)=Z; ;,C; ;p; ; where
C;;=&(i)(j]) is the (i, j)th 2 X 2 submatrix of C and p;; is the
(i,j)th element of the density matrix. The eigenvalues and
eigenvectors of C can then be used to determine the canoni-
cal Kraus operators, given by A,-:V/;ikAi, where «; is the ith
eigenvalue and kA, is the corresponding eigenvector written in
matrix form. Using a maximum-likelihood technique, we
find the Choi matrix that best predicts the measured output
states given the measured input states. As we may lose atoms
from the system under some operations we do not enforce
the Choi matrix to preserve the trace of the density matrix;
however, we do limit the search to physical, i.e., completely
positive, Choi matrices. If the system does exhibit loss then
the measured matrix is the projection of the full Choi matrix,
including higher-energy levels, onto the two lowest-energy
states. We find the Choi matrix to be

0.99 —-0.01; 0.00 0.64 - 0.03i
c 0.01: 0.01 0.00 0.00
=1 0.00 0.00 0.04 0.05-0.04 |’

0.64 +0.03; 0.00 0.05+0.04i 0.98

(4)

with uncertainties, equal for real and imaginary components
(when present), of 0.12 for the off-diagonal corners, 0.08 for
the 3,4 and 4,3 elements, and <0.04 for the rest. The Choi
matrix for the process of free evolution preserves the trace of

Projection
1.0

FIG. 2. Matrix of measured projections. Input density matrices
(reading left to right: ground state, mixed state, superposition with
real coherence, and superposition with imaginary coherence) are
shown along the bottom while the postselected states are listed on
the side. Note the decreased contrast in the 6, and 6, projections for
the superposition states. All populations are unchénged to within
experimental error.

the density matrix, with the constraint E,AITAZ:I having de-
viations no larger than 0.02. The Choi matrix after one os-
cillation in the lattice is dominated by the corner elements,
which map elements of the density matrix onto themselves.
The diagonal corners represent the mapping of populations
into populations, and show that the state populations are
nearly unchanged. The off-diagonal corners, which map co-
herences into coherences, are significantly less than 1, show-
ing a 36% loss of coherence. The most significant Kraus

operators are found to be AI=0.9Oi+I§1 and 142:—0.416-Z
+}§2 where 1 is the identity, &, is a Pauli matrix, and Iél,ﬁz

are small remainders with magnitudes bound by Tr[IélTI%,-]
=<0.03. The other two Kraus operators are insignificant on
the scale of our experimental resolution, also satisfying a

similar bound. Kraus operators of the form I and G, are con-
sistent with pure dephasing, as expected for either interwell
tunneling or inhomogeneous broadening.

The same data may be visually displayed using a Bloch
sphere representation [19,29], which has the advantage of
showing how any state on the surface of the Bloch sphere
evolves into a new state. Figure 3(a) shows the initial, undis-
turbed Bloch sphere before evolution in the lattice, and Fig.

FIG. 3. Bloch sphere representation of process tomography. (a)
The initial Bloch sphere representing the space of pure input states.
(b) After one period of free evolution the sphere contracts horizon-
tally due to a loss of coherence. (c) After sine drive showing rota-
tion about the y axis. (d) After cosine drive, showing rotation about
the x axis.
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3(b) shows the Bloch sphere after one oscillation. The sphere
becomes prolate, contracting toward the z axis by 36%, as
expected. The coherence time is thus found to be 54060 us
(2.8+0.3 periods), much shorter than the expected coherence
time of 2 ms based on the width of the excited band (the
interwell tunneling rate). The number of oscillations is, how-
ever, consistent with oscillations observed in other work
[4,30,31]. It is believed that the observed decoherence is ac-
tually dominated by dephasing caused by inhomogeneity in
the lattice beams, including their 3 mm Gaussian width and
possibly smaller-scale fringes. The addition of antireflection-
coated slides to the vacuum cell did not change the observed
coherence time. Using a pulse-echo style experiment, we
have observed revivals that decay with a time constant of
0.8 ms [32]. Unlike earlier experiments, we use a two-level
system, and anharmonicity is therefore not a factor in the
observed decoherence.

An example of an operation necessary for quantum-
information processing is a single-qubit rotation. To demon-
strate the applicability of process tomography to characteriz-

0.91 ~0.22+0.07i
~0.22-0.07i 0.10

Cin=| 02640.06i - 0.06—0.02i

04240331 —0.10-0.11i

For a cosine drive we find

0.86 0.14-0.25i

c 0.14 +0.25i 0.16
s 0.25i
0.50 + 0.04i

Qualitative information about the the process can be more
easily determined from a Bloch sphere representation. As a
Bloch sphere does not accurately represent non-normalized
states, we first normalize the measured density matrices be-
fore determining the Choi matrix. Figures 3(c) and 3(d) show
the resulting normalized Bloch spheres, which have rotations
of 35.5° and 36.4° about the y and x axis, respectively. The
Bloch spheres are rotated about orthogonal axes, as expected
for driving fields 90° out of phase. The resulting shape is
again a spheroid, but the radius has decreased in all dimen-
sions. In particular, the length of the semiminor axis for the
sinusoidal drive is 0.69 (while it should be noted that in the
absence of the coherent drive, it decayed to a value of 0.64).
A simulation using a truncated harmonic-oscillator model
predicts a rotation of 35.0° about the y axis.

We have presented a technique for determining the mo-
tional quantum state of atoms in an optical lattice. Using
displacements, delays, and adiabatic relase of atoms from the
lattice we make projective measurements onto several super-
position states, as needed for quantum state tomography. We

0.08 +0.01i
0.03-0.13i
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ing such operations we attempt to perform a rotation of the
Bloch sphere by a method equivalent to a Rabi oscillation.
We sinusoidally drive the displacement of the lattice at the
trap frequency, thereby coupling neighboring states coher-
ently. Process tomography is performed after a single period
of this drive. The displacement is kept small to ensure that
coupling is predominantly between neighboring states. We
test both a sine drive Ax(7)=x,, sin(wyf) and a cosine drive
Ax(1)=x,,[cos(wyt)—1], where x,,=26 nm is the displace-
ment and wy is the oscillation frequency in the lattice and the
pulse lasts from t=0 to t=2/w,. We again find the Choi
matrix from a maximum-likelihood model, but find the
Bloch sphere representation to be the most intuitive. For
these coupling operations we do observe some loss from the
system, but the loss does not exceed 20%. As we do observe
loss with the sine and cosine drives, the results of the mea-
surements give the projection of the full Choi matrix onto the
lowest two states of the system. The superoperator for the
sine drive is found to be

0.26-0.06i  0.42-0.33/
-0.06+0.02i -0.10+0.11{
0.22 0.19-0.06i ®)
0.19 + 0.06i 0.53
-0.25;  0.50-0.09i
0.08-0.01; 0.03+0.13i
(6)

0.13 0.03+0.17i
0.03-0.17i 0.51

have performed quantum process tomography on three el-
ementary operations for quantum-information processing:
free evolution and two different single-qubit rotations. We
have extracted the superoperators describing the intrinsic
dephasing of the system over time and the effectiveness of
single-qubit rotations induced by resonant modulation of the
lattice position. We plan to extend these techniques to test the
Markovian approximation; to characterize and optimize
bang-bang methods [33,34] for removing inhomogeneous-
broadening effects; and to study the well-depth dependence
of the decoherence, investigating the role of interwell tunnel-
ing, Wannier-Stark transitions, and Bloch oscillations. Pro-
cess tomography allows the tailoring of error correction pro-
tocols to the observed behavior of particular physical
realizations of quantum-information systems [35,36]. This
system-by-system tailoring will likely prove essential if error
thresholds on the order of 10 or 1073 are ever to be reached
[15]. More generally, it is the only method to permit com-
plete characterization of the evolution of open quantum sys-
tems, and should play a central role in the toolbox for control
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and study of individual quantum systems, whether for
quantum-information processing or for other applications.
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