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Coherent population trapping �CPT� is an important concept in many subfields of physics and chemistry.
Here we analyze the collective excitation spectrum of the CPT states in a coupled atom-molecule condensate
system. We find that collisions between particles can cause the CPT state to be dynamically unstable, which is
a unique feature of the nonlinear system. We obtain a set of analytical criteria for determining the stability
properties of the CPT state in the long-wavelength limit. We construct stability diagrams and provide a
systematic classification of various instabilities according to collisional interaction strengths.
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I. INTRODUCTION

The availability of atomic Bose-Einstein condensates has
made it possible to create, via photo- or magnetoassociation,
molecular condensates. In photoassociation, a pair of free
atoms is brought into a bound molecular state by absorption
of a photon through a dipole transition. In magnetoassocia-
tion �or Feshbach resonance �1,2��, atom pairs in an open
channel are converted into bound molecules in a closed
channel through hyperfine spin interaction resonantly en-
hanced by making the energies of the two channels close to
each other via the Zeeman effect. Photoassociation creates
molecules in excited electronic levels, while magnetoasso-
ciation creates molecules in high vibrational quantum states.
In either case, the resulting molecules are energetically un-
stable and suffer from large inelastic loss rates. Macroscopic
coherence between atoms and molecules has been both stud-
ied theoretically �2,4–9� �also see a recent review article by
Duine and Stoof �10�� and demonstrated experimentally �3�;
nevertheless, long-lived stable molecular condensates have
not been produced by direct association of atomic conden-
sates �11�.

One possibility to overcome the difficulty is to employ the
two-photon or Raman photoassociation model, as in the pro-
posal for generating ground molecular condensates �12–15�
from atomic condensates through stimulated Raman adia-
batic passage �STIRAP� �16,17�. In spite of the nonlinear
nature of the atom-molecule coupling in the photoassociation
process, it was shown by Mackie et al. �13� that in the col-
lisionless limit, this model can support a coherent superposi-
tion of free atomic and ground molecular condensates. This
superposition, being immune to the inelastic processes asso-
ciated with the excited molecular state, is called the nonlin-
ear coherent population trapping �CPT� state, in direct anal-
ogy to the CPT state in the linear � three-level atomic
system �18,19�. However, efficient operation of this scheme
typically demands very high laser intensities in order to over-
come the weak coupling caused by the extremely small
Franck-Condon overlap integral for the free-atomic–bound-
molecular transition �15�.

To overcome the small Franck-Condon factor, a
Feshbach-assisted STIRAP model is proposed �20,21�. Here,

conversion of atoms into quasibound molecules is accom-
plished by the much more efficient Feshbach process. To
bring the quasibound molecules into a more deeply bound
vibrational state, a two-photon Raman laser field is applied.
In the limit where both optical fields are tuned far off reso-
nance from other electronically excited levels, one can re-
duce the Raman coupling between the two molecular levels
into an effective one-photon coupling. This leads to a three-
level � atom-molecule system �22� as shown in Fig. 1. In
this scheme, the possible source of decoherence is the decay
of the quasibound molecular state while the atomic state and
the deeply bound molecular state are both stable.

In the absence of particle collisions, we expect, from the
work of Mackie et al. �13�, that this system is capable of
supporting a CPT state, owing to the mathematical equiva-
lence to its photoassociation counterpart. The situation when
the collisions are present is more complicated. It was gener-
ally believed that the nonlinear phase shifts arising from par-
ticle collisions would defeat the two-photon resonance con-
dition �13,15�, a prerequisite for the existence of CPT states
and hence the key for the successful implementation of

FIG. 1. The energy diagrams of three-level atom-molecule sys-
tem involving free-bound-bound transitions. Conversion of atoms in
�a� to quasibound molecules in �m� is accomplished by Feshbach
resonance, while the coupling between �m� and the ground molecu-
lar state �g� is provided by laser light.

PHYSICAL REVIEW A 72, 013608 �2005�

1050-2947/2005/72�1�/013608�9�/$23.00 ©2005 The American Physical Society013608-1

http://dx.doi.org/10.1103/PhysRevA.72.013608


STIRAP. In a recent work �23�, we have shown that by ap-
propriately chirping the optical frequency and the Feshbach
detuning, the collision-induced nonlinear phase shifts can be
dynamically compensated, hence generalizing the concept of
the CPT state from the collisionless limit �13� to situations
where collisions cannot be ignored. In addition, we have also
shown that collisions may lead to dynamical instabilities in
the nonlinear CPT state, in contrast to the CPT states in the
linear � system which are always stable. Avoiding dynami-
cal unstable regimes is another key for successful implemen-
tation of the STIRAP process in nonlinear systems.

The purpose of the current paper is to provide a system-
atic study of the excitation spectrum of the generalized non-
linear CPT state, focusing on the characterization of its sta-
bility phase diagram. To the best of our knowledge, a
detailed stability analysis specific to the CPT state of the
nonlinear � system has not been presented before. Our paper
is organized as follows. In Sec. II, we present the Hamil-
tonian and the nonlinear CPT solution to the coupled Gross-
Pitaevskii equations. In Sec. III, collective excitations of the
CPT state are calculated in the spirit of the Bogoliubov treat-
ment �24,25�. Section IV focuses on the stability analysis in
the long-wavelength limit based on the excitation spectrum
obtained in Sec. III. In Sec. V, we study the dynamics of a
CPT state and show that dynamical instabilities may lead to
self-pulsing of a condensate mode or growth of nonconden-
sate modes. Finally, a summary is provided in Sec. VI.

II. HAMILTONIAN, STATIONARY EQUATIONS, AND CPT
STATE

We choose to formulate our theoretical description for the
Feshbach-based � system as illustrated in Fig. 1. The exact
same description can be applied to the two-photon
photoassociation-based � system, due to the formal equiva-
lence between the two models �15�. In Fig. 1, we use �a�, �m�,
and �g� to denote the free atomic, quasibound molecular, and
ground molecular states, respectively. Levels �a� and �m� are
coupled by a magnetic field through the Feshbach resonance
with a coupling strength � and a detuning � �� is experimen-
tally tunable via the magnetic field�, while levels �m� and �g�
are coupled by an �effective� laser field with a Rabi fre-
quency � and a detuning �. In second quantization, the total
Hamiltonian, including collisions, takes the form

Ĥ = �� dr�	
i

�̂i
†�r�
−

�

2mi
�2��̂i�r�

+
1

2	
i,j

�ij�̂i
†�r��̂ j

†�r��̂ j�r��̂i�r� + ��̂m
† �r��̂m�r�

+
�

2
��̂m

† �r��̂a�r��̂a�r� + H.c.� + �� + ���̂g
†�r��̂g�r�

−
�

2
��̂m

† �r��̂g�r� + H.c.�� , �1�

where �̂i
†�r���̂i�r�� �i=a, m and g� is the creation �annihila-

tion� operator of the bosonic field for species i at location r,

and the terms proportional to �ij represent two-body colli-
sions with �ii=4	�ai /mi and �ij =� ji=2	�aij /
ij for i� j
characterizing the intra- and interstate interaction strengths,
respectively �ai and aij are s-wave scattering lengths, mi is
the mass of species i with mm=mg=2ma, and 
ij is the re-
duced mass between states i and j�. We take, without loss of
generality, both � and � to be real as their phase factors can
be absorbed by a trivial global gauge transformation of the
field operators. Here, we consider a uniform system and
hence have dropped the external trapping potentials.

Let us begin our formulation from the Bogoliubov ap-

proximation, which amounts to decomposing �̂i�r� as

�̂i�r�  �i�r� + ��̂i�r� , �2�

where �i�r�= ��̂i�r�� is the condensate wave function and

��̂i�r� is a small fluctuation field operator that obeys the
usual bosonic commutation relation

���̂i�r�,��̂ j
†�r��� = �ij��r − r�� . �3�

As a first step in the Bogoliubov approach, we put Eq. �2�
into the grand canonical Hamiltonian �1�,

Ĥ = Ĥ − �
� dr��̂a
†�̂a + 2�̂m

† �̂m + 2�̂g
†�̂g� , �4�

where the chemical potential �
 is introduced to conserve
the total particle number, and expand Eq. �4� up to the sec-
ond order in fluctuation operators as

Ĥ  Ĥ�0� + Ĥ�1� + Ĥ�2�, �5�

where the superscript represents the order in ��̂i�r�.
The zeroth-order term Ĥ�0� is a constant depending on the

wave functions �i and is irrelevant to our interest. The first-

order term Ĥ�1� is required to vanish in the Bogoliubov for-
malism. This requirement leads to a set of coupled stationary
equations,


�a = 
−
��2

2ma
+ 	

i

�ai��i�2��a + ��m�a
*, �6a�

2
�m = 
−
��2

4ma
+ 	

i

�mi��i�2��m + ��m +
�

2
�a

2 −
�

2
�g,

�6b�

2
�g = 
−
��2

4ma
+ 	

i

�gi��i�2��g + �� + ���g −
�

2
�m,

�6c�

which represent the generalized time-independent Gross-
Pitaevskii equations �GPEs�. Finally, the second-order term

Ĥ�2�, which has a more complicated structure, will be studied
separately in the next section where we calculate the spectra
of the collective excitations.
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We now turn our attention to the homogeneous �zero-
momentum� solution to the GPEs. To proceed, we separate
each wave function into an amplitude and a phase according
to

� j = �� j�ei�j, j = a,m,g . �7�

To seek the CPT solution, we take �m=0. After substituting
Eq. �7� into Eq. �6�, we find that under the conditions

�g = 2�a,

���a�2 = ���g� , �8�

Eq. �6� possesses a solution consistent with the requirement
that �m=0. The explicit form of this solution can be readily
found by combining Eq. �8� with the particle number conser-
vation

��a�2 + 2��g�2 = n , �9�

where n is the total particle density, to yield the particle
density distribution as

��m
0 �2 = 0, �10a�

��a
0�2 =

2n

1 + �1 + 8���n/��2
, �10b�

��g
0�2 =

n

2

�1 + 8���n/��2 − 1

1 + �1 + 8���n/��2
. �10c�

A check for consistency leads to the chemical potential


 = �a��a
0�2 + �ag��g

0�2, �11�

where �i��ii, and the laser detuning

� = − � + �2�ag − �g���g
0�2 + �2�a − �ag���a

0�2, �12�

which is necessary in order for Eqs. �10� to be a stationary
solution of Eqs. �6�.

The vanishing of the population in the quasibound mo-
lecular state indicates a destructive interference in the exci-
tation to this state. A system prepared in the state represented
by Eqs. �10� is not subject to the particle loss suffered by the
quasibound molecular state. This situation is reminiscent of
the CPT state in a linear �-type atomic system where the
atoms are immune to spontaneous emission �18,19�. For this
reason, we regard the steady state represented by Eqs. �10� as
the nonlinear matter-wave analog of the CPT state in a linear
� system.

Interestingly, just as in the linear case, the CPT solution
described by Eqs. �10� depends explicitly on only the two
coupling strengths � and �, not on the collisional param-
eters. The latter, however, play important roles as evidenced
by Eq. �12�. Note that in the absence of collisions, Eq. �12�
degenerates into �+�=0, which is just the ordinary “two-
photon” resonance condition. Thus, Eq. �12� can be regarded
as the generalization of the two-photon resonance in which
the nonlinear phase shifts due to particle collisions have been
compensated. This CPT solution is therefore a nonlinear gen-
eralization of the one found in the collisionless limit �13�.

III. COLLECTIVE EXCITATIONS OF THE CPT STATE

In this section, we want to calculate the excitation spectra
of the CPT state, especially the spectra in the long-
wavelength limit, since they determine many important prop-
erties, including the stability, of the CPT state at low tem-
perature.

A. Bogoliubov equations

To determine the equations for the collective excitations,
we first take advantage of our system being homogeneous
and move to the momentum space through the expansion

��̂i�r� =
1

�2	��3/2 � dp eip·r/�ĉi�p� , �13�

where ĉi�p��ĉi
†�p�� is the annihilation �creation� operator for

a particle of species i with momentum p and obey the stan-
dard bosonic commutation relation

�ĉi�p�, ĉj
†�p��� = �ij��p − p�� , �14�

in accordance with Eq. �3�. The third term Ĥ�2� in Eq. �5� for
our CPT state can now be put into a compact form

Ĥ�2� =
�

2
� dp�	

nm

�2ĉn
†�p���A�nmĉm�p��

+ �ĉn�p��Bnmĉm�− p�� + H.c.�� , �15�

where A and B are both real and symmetric matrices, given
by

A =�
�p + �a��a

0�2 ���a
0� �ag��a

0���g
0�

���a
0�

�p

2
+ �� −

�

2

�ag��a
0���g

0� −
�

2

�p

2
+ �g��g

0�2� , �16a�

B = � �a��a
0�2 0 �ag��a

0���g
0�

0 0 0

�ag��a
0���g

0� 0 �g��g
0�2

� , �16b�

where we have defined

�p � p2/�2ma�� , �17a�

�� = � − �a��a
0�2 − �g��g

0�2, �17b�

�a = 2�a − �am, �17c�

�g = 2�ag − �mg. �17d�

The process of finding the quasiparticle spectrum begins
by changing Eq. �15� into a diagonalized form,
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Ĥ�2� = �� dp	
i

i�p�b̂i
†�p�b̂i�p� + �c number� , �18�

with the generalized Bogoliubov transformation

b̂i�p� = 	
j

uij�p�ĉj�p� + 	
j

vij�p�ĉj
†�− p� , �19�

where i�p� is the quasiparticle frequency, uij�p� and vij�p�
are the transformation coefficients, and b̂i�p� and b̂i

†�p� are
the respective annihilation and creation operators for a qua-
siparticle of frequency i�p� and momentum p. To obtain the
equations for i�p�, uij�p�, and vij�p�, we first note that

�b̂i�p�,Ĥ�2�� = �i�p�b̂i�p� . �20�

Inserting Eq. �19� into Eq. �20� and with the help of Eqs. �14�
and �15� along with the symmetric properties of A and B, we
arrive at

	
m

	
n

��Amnuin − Bmnvin�ĉm�p� + �Bmnuin − Amnvin�ĉm
† �− p��

= i	
m

�uimĉm�p� + vimĉm
† �− p�� . �21�

Equating the coefficients of ĉm�p� and ĉm
† �−p� on both sides

of the above equation, we arrive at a 6�6 matrix equation


A − B

B − A
�
ui

vi
� = i�p�
ui

vi
� , �22�

where

ui = �uia,uim,uig�T, vi = �via,vim,vig�T.

A simple manipulation can show that i
2�p� are the eigen-

values of the 3�3 matrix �A+B��A−B�; hence i
2�p� satisfy

a cubic equation with the form

�i
2�3 − a1�i

2�2 + a2i
2 − a3 = 0, �23�

where the coefficients are given by

a1 = a10 + a11�p + a12�p
2, �24a�

a2 = a20 + a21�p + a22�p
2 + a23�p

3 + a24�p
4, �24b�

a3 = a31�p + a32�p
2 + a33�p

3 + a34�p
4 + a35�p

5 + a36�p
6.

�24c�

The coefficients aij depend on the coupling and the colli-
sional constants and are in general quite complicated. We
only list three of them below:

a10 = ��2 +
1

2
��2 + 4�2��a

0�2� , �25a�

a20 =
1

16
��2 + 4�2��a

0�2�2 − 0.5���2��a
0�4��g − 4�ag + 4�a� ,

�25b�

a31 =
1

8
��a

0�2��2 + 2�2��a
0�2���a�2 + 4�2��g��g

0�2 + �ag��a
0�2�

− 8����a�g − �ag
2 ���g

0�2� , �25c�

as they will be explicitly referenced in later discussions.

B. Excitation spectra

Equation �23� has a cubic form with respect to i
2 and

hence can be solved analytically. However, the analytical
expressions are in general too complicated to provide much
physical insight. Since we are most interested in the long-
wavelength excitations, we proceed to take a perturbative
approach by expanding i�p� in the limit of small p, or
equivalently small ��p. The perturbative solution thus takes
the form

i�p�  i
�0� + di

�1���p + di
�2��p + ¯ . �26�

In order to bring out the effects of collisions more clearly, let
us first consider the collisionless limit.

1. Excitation spectra in the collisionless limit

In the absence of collisions, the matrix B becomes null.
The excitation frequencies i�p� are eigenvalues of the Her-
mitian matrix A and therefore must be real. This means that
there is no dynamical instability in spite of the nonlinear
nature of the coupling between the atomic and the quasi-
bound molecular state.

To the zeroth order, we find that i
�0� has three solutions

�26�:

0
�0� = 0, ±

�0� = ��a10 ± �a10
2 − 4a20�/2, �27�

where the subscripts �0, �, �� are used to denote the three
branches of the collective modes. Clearly the 0 branch is
gapless, while the � branches are gapped. The reality of ±

�0�

is guaranteed because here both a10 and a20 are positive with
a10

2 �4a20 �see Eqs. �25a� and �25b�, in the absence of colli-
sions�.

For all three branches, we have found that di
�1�=0. Hence

the next leading order in i�p� is quadratic in momentum
with

d0
�2� =

�2 + 2�2��a
0�2

�2 + 4�2��a
0�2

, �28a�

d±
�2� = ±

��2/8 + �2��a
0�2 + �±

�0��2/2�
��±

�0��2 + �2/4 + �2��a
0�2�

. �28b�

Solid lines in Fig. 2 represent the three branches in the
collisionless limit. They are obtained by directly solving the
cubic equation �23�, and are in good agreement with the
perturbative results �not shown�.

2. Excitation spectra with collisions

The spectra including the collisional terms can be simi-
larly obtained. The zeroth-order solutions i

�0� have exactly
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the same forms as in the collisionless limit given by Eq. �27�.
Therefore the 0 branch continues to be gapless. Due to the
collision-modified coefficients aij, the two zeroth-order
gapped modes ±

�0� are now, however, no longer guaranteed
to be real. Complex mode frequencies lead to dynamical in-
stability, which we will discuss in detail in the next section.

Another important effect of the collisions is the modifica-
tion of the gapless 0 branch. While d±

�1� still remains zero
�hence the two gapped branches are still quadratic in p to the
leading order�, d0

�1� now takes a finite value given by

d0
�1� =�a31

a20
. �29�

Hence the gapless branch, in the long-wavelength limit, is
linear in p and represents the phonon mode with the speed of
sound determined by Eq. �29�. The dotted lines in Fig. 2
represent the spectra with collisions in the stable regime.
Once again, they are calculated by solving the cubic Eq.
�23�, but are found in good agreement with the perturbative
results �not shown�.

According to Eq. �29�, whenever a31 and a20 are opposite
in sign, 0 becomes imaginary for finite p in the long-
wavelength limit, indicating an unstable 0 branch. We now
turn to a detailed discussion of the collision-induced dynami-
cal instability. Note that from Eq. �29�, it may seem that 0 is
singular for any finite momenta when a20=0. However, when
a20=0 , 0

�0� and −
�0� are degenerate according to Eq. �27�.

Thus, this singularity is only an artifact, indicating the failure
of the nondegenerate perturbative calculation. Indeed, exact
solutions of Eq. �23� do not exhibit such a singularity. De-
spite this complication, the perturbative results can be used
to identify the unstable regimes quite accurately.

IV. CLASSIFICATION OF DYNAMICAL INSTABILITY

Studies in Sec. III B 2 suggest that complex excitation
frequencies and hence dynamical instabilities can occur un-
der the following situations: �1� when a31 and a20 possess
opposite signs, the 0 branch becomes unstable �see Eq. �29��;
�2� when a20�0, − becomes complex �see Eq. �27��;

�3� when a10
2 �4a20, both � branches become unstable �see

Eq. �27��.
Before moving foward, let us clarify our unit system. We

consider systems with particle densities on the order of n0
=5�1020 m−3, and � fixed to 4.22�10−6 m3/2 s−1, which
corresponds to the atom-molecule coupling strength for the
23Na Feshbach resonance at a magnetic field strength of
85.3 mT �27�. We then adopt a unit system in which n0 is the
unit for density, � /�n0=1.887 24�10−16 m3 s−1 the unit for
collisional parameters ��i ,�ij�, ��n0=9.436�104 s−1 the
unit for frequencies � ,� ,��, and ��2m���n0�=8.72
�10−28 kg m/s the unit for momentum p. Furthermore, for
simplicity, we only consider the situation where all the scat-
tering lengths are positive.

Our goal is to identify the unstable regimes in the param-
eter space spanned by � and �, while the laser detuning � is
always fixed by the resonance condition represented by Eq.
�12�. For cases 1 and 2, we can identify two threshold values
for the Feshbach detuning �0

th and �1
th, given by

�0
th = �a��a

0�2 + �g��g
0�2 +

2��2/4��a
0�2 + 1�2

4�a + �g − 4�ag
, �30�

�1
th = �a��a

0�2 + �g��g
0�2 +

�a�2 + 4��g��g
0�2 + �ag��a

0�2�
8��g

0�2��a�g − �ag
2 �

,

�31�

which are obtained from the conditions a20=0 and a31=0,
respectively. Case 3 will be discussed at the end of this sec-
tion.

It is not difficult to see that the signs of the denominators
of the last terms of Eqs. �30� and �31�, 4�a+�g−4�ag and
�a�g−�ag

2 , respectively, will play crucial roles in locating the
instability parameter regime. For this reason, we first decom-
pose the ��g ,�a� space into three regions divided by a
straight line �g=−4�a+4�ag and a hyperbola �a�g=�ag

2 , as
shown in Fig. 3. The line is tangent to the hyperbola at the
point ��g=2�ag ,�a=0.5�ag�. The three regions are defined as
follows: both 4�a+�g−4�ag and �a�g−�ag

2 are negative in
region I and both are positive in region II, while in region III,
4�a+�g−4�ag�0 and �a�g−�ag

2 �0.

FIG. 2. The quasiparticle dispersion spectra for n=1, �=1, and
�=−2. Solid lines represent the collisionless case while dotted lines
are for a system with �a=0.625, �m=�g=�am=�ag=�mg=0.3�a.
Units are defined in Sec. IV.

FIG. 3. Division of the positive quarter of ��g ,�a� space into
three regions by a straight line �g=−4�a+4�ag and a hyperbola
�a�g=�ag

2 .
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Next, we choose to construct, for each region defined
above, two instability maps in the �� ,�� space; one for the
instability due to the imaginary sound speed �case 1�, and the
other for the instability due to the complex gap �case 2�. We
represent them by the shaded areas of the diagrams in the
first and second columns of Fig. 4, respectively. Each set of
diagrams in rows 1, 2, and 3 is built upon the collisional
parameters corresponding to regions I, II, and III of ��g ,�a�
space, respectively. We construct these maps based on two
principles. First, it can be shown from Eqs. �30� and �31� that
�1

th−�0
th�1/ �4�a+�g−4�ag���a�g−�ag

2 � with a positive defi-
nite proportionality. As a result, we have �1

th��0
th in regions I

and II, and �1
th��0

th in region III. Second, according to Eq.
�A1� �Eq. �A2��, �0

th ��1
th� is bent downward if 4�a+�g

−4�ag�0 ��a�g−�ag
2 �0�, and vice versa. Note that the in-

stability of case 2 is solely determined by �0
th; the presence of

�1
th in the second column of Fig. 4 is to make the comparison

of the two maps easier. For example, one can easily identify
that the two instability maps in region II overlap in the band
between �0

th and �1
th.

Let us now consider a specific atom-molecule system
composed of 23Na. The atomic s-wave scattering length for
sodium is around aa=3.4 nm �28� which yields �a=0.625.
No precise knowledge about the scattering lengths involving
molecules exists. Assuming they are on the same order of
magnitude as aa, we take �m=�g=�am=�mg=�ag=0.3�a.
This set of parameters puts the system in region II of
Fig. 4. According to Eqs. �A3� and �A4�, �0

th and �1
th

approach 0.5�g+2�2 / �4�a+�g−4�ag�=1.126 and 0.5�g

+0.5�2�g / ��a�g−�ag
2 �=1.237, respectively, in the limit of

small �.
A search using Eq. �23� above these thresholds and at

small momenta indeed leads to two branches whose frequen-

cies have finite imaginary parts for certain values of �, as
illustrated in Figs. 5�a� and 5�b�, respectively. Each curve in
Fig. 5�a� is restricted between two thresholds, both of which
increase as �, evidently resembling the instability originating
from the imaginary sound speed �case 1�. Thus, in the limit
of small p, we expect it to approach d0

�1�p. In fact, one can
trace the sharp asymmetry of each curve to the fact that
according to Eq. �29�, d0

�1� vanishes at the left threshold
where a31 is close to zero, while becomes singular at the
right threshold where a20 is close to zero. In contrast, each
curve in Fig. 5�b� has only one threshold, which matches
quite closely the right threshold of the corresponding curve
in Fig. 5�a�. This along with the fact that the value of the
mode frequency is rather insensitive with respect to p �as
long as p is not too large� indicates that it represents the
instability from the complex gapped branch of case 2. There-
fore these exact calculations are in good agreement with the
insights gained from the instability map shown in Fig. 4.

In order to have a more detailed look at various instabili-
ties, we make a three-dimensional plot in Fig. 6 for the
imaginary parts of the two �nonvanishing� branches of exci-
tation frequencies. A glance at this three-dimensional view
further confirms the instability map of Fig. 4: one can easily
associate the large bump in Fig. 6�a� with the instability of
case 2, and the curved band in Fig. 6�b� with the instability
of case 1. The shapes of these unstable regions completely
match those shown in Fig. 4.

However, Fig. 6�b� also reveals a new feature consisting
of a narrow strip along the � dimension. We can trace this
new feature to the source of instability associated with case 3
which has so far been ignored. An analysis with the help of

FIG. 4. Classification of the instabilities in the limit of low
momentum. The shaded areas of the diagrams in columns 1 and 2
correspond to the instabilities due to the imaginary sound speed and
the complex gaps, respectively. The sets of diagrams in rows 1, 2,
and 3 are the instability maps for systems operating in regions I, II,
and III as specified in Fig. 3, respectively.

FIG. 5. Im��p�� as a function of � for a fixed momentum p
=0.005. The curves from left to right correspond to �=1.3, 1.5, 2,
and 3, respectively. Other parameters are n=1, �a=0.625, and �m

=�g=�am=�mg=�ag=0.3�a. Units are defined in Sec. IV.
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Eqs. �25a� and �25b� indicates that the condition a20
�a10

2 /4 amounts to

�����3 + ��2 + 4�2��a
0�2��� + 2�2��a

0�4��g − 4�ag + 4�a�� � 0,

�32�

from which we find that to a good approximation, the un-
stable � is bounded between

�1 = �a��a
0�2 + �g��g

0�2, �33a�

�2  �1 − 2�2��a
0�4

�g − 4�ag + 4�a

�2 + 4�2��a
0�2

. �33b�

It can be shown that �1 and �2 are not very sensitive to �,
and they merge together in the limit of either small or large
�, which explains the shape of this new instability region.

V. DYNAMICAL SIGNATURES OF STABLE AND
UNSTABLE CPT STATES

In order to determine the fate of an unstable state, we
must examine its dynamical response to fluctuations, which
can be simulated using the time-dependent version of the
GPEs, which are obtained by replacing the left-hand sides of

Eqs. �6� by i�̇i.
We take a CPT state associated with a Rabi frequency �0

and Feshbach detuning � to be the initial state. To simulate
small fluctuations, we modify the Rabi frequency as

� = �0 + ���0 + 2��1 sin�px/��� , �34�

where ��0 and ��1 are small perturbation amplitudes. Note
that a position-dependent perturbation represented by the

��1 term can cause spatial deformation of the uniform CPT
state, making it possible to trigger the instabilities due to
perturbations of finite momentum.

To test the instability of case 2, we take the same colli-
sional parameters as in Fig. 5, but fix the Feshbach detuning
to �=3. We apply a zero-momentum perturbation with an
amplitude ��0=0.001 and ��1=0 to the CPT state with
�0= �a� 1.1 and �b� 0.9, respectively. By inspecting the �
=3 curve of Fig. 5�b�, which survives even when p=0, we
anticipate that the dynamics of the system will change from
a stable to an unstable one as �0 varies from 1.1 to 0.9. The
results, shown in Figs. 7�a� and 7�b�, clearly support our
analysis. The stable CPT state does not respond significantly
to the small perturbation; while Fig. 7�b� shows a large-
amplitude self-pulsing behavior, characteristic of an unstable
system. In addition, there is a noticeable population in the
unstable molecular state. Such self-pulsing oscillations are
also familiar features in the study of unstable nonlinear op-
tical systems �29�.

To demonstrate the instability of case 1, we need to apply
a finite-momentum perturbation since for case 1, the imagi-
nary part of the excitation frequency 0 vanishes at p=0.
The finite-momentum perturbation will couple together dif-
ferent momentum modes. To simulate this process, we adopt
the Floquet technique and expand the wave functions as

�i�r,t� = 	
l=−�

+�

�i�l,t�eilpx/�, �35�

where ��i�l , t��2 represent the particle density of the ith spe-
cies with momentum lp. Here, l is an integer and p

FIG. 6. �Color online� A three-dimensional view of Im��p�� as
a function of � and � for two branches of roots to Eq. �23�. Param-
eters are the same as in Fig. 5. Units are defined in Sec. IV.

FIG. 7. The time evolution of the particle number densities in
the condensate mode probed by a zero-momentum perturbation
with ��0=0.001 for 0= �a� 1.1 and �b� 0.9, while the Feshbach
detuning is fixed at �=3. Other parameters are the same as in Fig. 5.
Units are defined in Sec. IV.
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=2	� /L, with L being the length of the condensate along x
dimension. Then the orthonormality condition for the mo-
mentum modes reads

1

L
� ei�l−l��px/�dx = �l,l�. �36�

This enables us to transform the dynamical GPEs for �i�r , t�
into the coupled modal equations for �i�l , t�,

i
d�a�n�

dt
= �pn2�a�n� + 	

l,l�
	

s

�as�s�l��s
*�l���a�n + l� − l�

+ �	
l

�m�l��a
*�l − n� , �37a�

i
d�m�n�

dt
=

�p

2
n2�m�n� + 	

l,l�
	

s

�ms�s�l��s
*�l���m�n + l� − l�

+ ��m�n� +
�

2 	
l

�a�l��a�n − l� −
�0 + ��0

2
�g�n�

−
��1

2i
��g�n − 1� − �g�n + 1�� , �37b�

i
d�g�n�

dt
=

�p

2
n2�g�n� + 	

l,l�
	

s

�gs�s�l��s
*�l���g�n + l� − l�

+ �� + ���g�n� −
�0 + ��0

2
�m�n�

−
��1

2i
��m�n − 1� − �m�n + 1�� . �37c�

The initial condition is then equivalent to

�a�0,0� = ��a
0�, �m�0,0� = 0, �g�0,0� = ��g

0� , �38�

and �i�l�0,0�=0, where ��a
0� and ��g

0� are determined from
Eqs. �10� with � being replaced by �0. We now switch to a
set of collisional parameters with �a=0.625, �m=�g=�mg
=0.5�a, �am=�a, and �ag=1.4�a, which puts the system in
region I, where the two instability regions of cases 1 and 2
do not overlap in the same parameter space �see the two
diagrams in the first row of Fig. 4�. We take �=−4 and �0
=1, which puts the system in the unstable region of case 1.
This allows us to demonstrate the instability due solely to the
finite-momentum perturbation. Indeed, simulations show that
the system is stable against zero-momentum perturbations
but is unstable when finite-momentum perturbations are ap-
plied. A dynamical result of a finite-momentum perturbation
is displayed in Fig. 8 which shows that the instability leads
to an irreversible population transfer from the condensate
mode �p=0� to noncondensate modes �p�0�. The initial
growth of the noncondensate modes is approximately expo-
nential but quickly becomes rather chaotic, which is typical
for an unstable multimode system �30�.

VI. CONCLUSION

To summarize, using a generalized Bogoliubov approach,
we have calculated the collective excitation spectra of the
CPT states involving atomic and stable molecular conden-
sates. We have found, through our analysis of the excitation
spectra, that collisions involving atoms and stable molecules
strongly affect the stability properties of the CPT state. We
have developed a set of analytical criteria for classification of
various instabilities in the long-wavelength limit. We have
shown that these criteria can be used to accurately identify
the unstable parameter regimes. In this paper, we studied a
homogeneous system. It will be desirable in the future to
extend this work to the inhomogeneous case where trapping
potentials are present, as in typical experimental situations.
Nevertheless, our work here should provide important ana-
lytical insights into the much more complicated inhomoge-
neous problem, for which the only viable treatment is per-
haps through numerical simulations.

Just as the usual CPT states in linear three-level � sys-
tems are behind many important applications in quantum and
atom optics �31�, we anticipate that the nonlinear CPT states
will also play important roles in applications where the co-
herence between atom and molecule condensates becomes
critical. Evidently, the success of these applications depends
on our ability to avoid the unstable regimes of the CPT state.
For example, high-efficiency coherent population transfer
between the atomic and molecular condensate using STIRAP
can only be achieved if these unstable regimes are not en-
countered during the transfer process �23�. With this in mind,
we believe that our work will have important implications in
coupled atom-molecule condensates �7�, a system of signifi-
cant current interest, with ramifications in other nonlinear
systems.
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APPENDIX: ASYMPTOTES

A qualitative understanding of the instability map shown
in Fig. 4 depends on the asymptotic behavior of the threshold

FIG. 8. The time evolution of ��g�l , t��2 �l=0, 1, and 2� after a
finite-momentum perturbation with ��1=0.001 at p=0.01 ���0

=0� is applied to a system initially prepared in a CPT state of �
=−4 and �0=1. We include modes ranging from l=−10 to 10 in the
simulation. Other parameters are �a=0.625, �m=�g=�mg=0.5�a,
�am=�a, �ag=1.4�a, and n=1. Units are defined in Sec. IV.
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Feshbach detunings �0
th and �1

th which we show below. In the
limit of large � /�

�0
th  �a +

�2

8�4�a + �g − 4�ag�

�

�
�4

, �A1�

�1
th  �a +

�a�2

8��a�g − �ag
2 �


�

�
�4

, �A2�

and in the limit of small � /�

�0
th  0.5�g +

2�2

4�a + �g − 4�ag

+ 
2�a − �g

2�2
+

�2�2

4�a + �g − 4�ag
��

�
, �A3�

�1
th  0.5�g +

0.5�2�g

�a�g − �ag
2

+
�ag

2 �2�ag − �g� + �a�g��g − 2�a� − 2�2�ag

2�2��ag
2 − �a�g�

�

�
.
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