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We report on the experimental characterization of energetic and dynamical instability, two mechanisms
responsible for the breakdown of Bloch waves in a Bose-Einstein condensate interacting with a one-
dimensional �1D� optical lattice. A clear separation of these two regimes is obtained by performing measure-
ments at different temperatures of the atomic sample. The time scales of the two processes have been deter-
mined by measuring the losses induced in the condensate. A simple phenomenological model is introduced for
energetic instability while a full comparison is made between the experiment and the 3D Gross-Pitaevskii
theory that accounts for dynamical instability.
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I. INTRODUCTION

The interest in the system made by neutral atoms in opti-
cal lattices has constantly been growing in recent decades
since the development of efficient laser-cooling techniques,
which opened the possibility of observing quantum effects
on the motion of atomic ensembles. The physics of quantum
particles in periodic potentials can be described in terms of
Bloch waves �1� and indeed many effects originally pre-
dicted for electrons in a lattice of ions have been observed
for ultracold thermal atoms moving in optical lattices �2�
and, more recently, in quantum degenerate samples with the
observation of long-lived Bloch oscillations in a degenerate
Fermi gas �3�. In particular, the achievement of Bose-
Einstein condensation �BEC� in dilute atomic gases has al-
lowed the possibility to repeat these experiments with en-
sembles of particles all occupying the same Bloch state, in
principle enhancing the visibility of these quantum effects
�4–7�. However, when the density of the sample increases, as
in the case of a trapped condensate, interactions among the
atoms forming the BEC may significantly change the simple
single-particle picture. The interaction-induced nonlinearity
is responsible for the observation of many other phenomena,
notably the phase transition from a superfluid to a Mott in-
sulator �8� and the generation of bright gap solitons �9�. Fur-
thermore, it can be shown that there exists a range of param-
eters for which nonlinearity makes the Bloch-like solutions
of the wave equation describing the system unstable.

In this paper we report on the experimental characteriza-
tion of the unstable regimes for a BEC in a one-dimensional
�1D� optical lattice, obtained through a clear measurement of
the time scales describing the evolution of the system, in
remarkable agreement with the theory.

The phenomenon of instability of a BEC in a 1D optical
lattice has already been the subject of experimental �10–13�

and theoretical �14–22� work. In particular, in the framework
of the Gross-Pitaevskii �GP� theory in a periodic potential,
there are different mechanisms responsible for the break-
down of the initial superfluid state. On one hand, as demon-
strated by Landau in the context of superfluid helium �23�,
there is a critical velocity �related to the sound velocity of the
system� beyond which the system can lower its energy by
emitting phononlike excitations which deplete the original
state. This kind of instability, which is closely related to the
energy spectrum of the system, is called energetic instability
and it has been observed for a harmonically trapped conden-
sate in �24�. On the other hand, due to the interplay between
nonlinearity and periodicity in the GP equation governing the
dynamics of the system, for certain values of lattice height
and velocity an arbitrarily small fluctuation of the original
state may grow exponentially in time, thus destroying the
initial Bloch state. This kind of instability, common to many
nonlinear systems in a periodic potential, is usually called
dynamical or modulational instability since it is connected to
the dynamic equation which describes the system. In Fig. 1
we show a schematic diagram of the stability of the first band
of Bloch states for a condensate in a 1D optical lattice as a
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FIG. 1. �Color online� Schematic plot of the stability of Bloch
matter waves in the first band of a 1D optical lattice: white area
corresponds to the stable region, in the light gray area the conden-
sate is energetically unstable, and in the dark gray area it is both
energetically and dynamically unstable �14,21�. Vertical axis is the
Bloch quasimomentum q and horizontal axis is the lattice height in
recoil energy �see Sec. II�.
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function of the lattice height. The theory predicts the exis-
tence of three regions depending on the the condensate qua-
simomentum q, corresponding to a regime where Bloch
waves are stable solutions, or they are energetically unstable,
or they are both energetically and dynamically unstable.

Although the distinction of these two mechanisms is
straightforward from the theoretical point of view, in the ex-
periments it is much more difficult to separate energetic and
dynamical instability since, no matter which is the mecha-
nism responsible for the onset of instability, the original BEC
superfluidity will be compromised and losses of atoms in the
ground state are expected. Furthermore, as it is shown in Fig.
1, the stability of the system depends on the height of the
optical lattice: when the lattice height is greater than the
chemical potential of the BEC, the so-called tight-binding
regime �lattice height greater than 5Erec in Fig. 1�, energetic
instability is only a narrow boundary between the regions of
stability and dynamical instability. On the other hand, when
the lattice is weak compared to the chemical potential, as in
the experiments reported in this paper, there is a wide range
of values of quasimomentum for which the system is ener-
getically but not dynamically unstable. The lack of control
over the condensate quasimomentum in the very first experi-
ment devoted to this subject made the separate identification
of the two regimes a very difficult task �10�. The excitation
of the collective dipole mode in the combined �harmonic
plus periodic� potential used in �10,11� can indeed demon-
strate the onset of instability but cannot easily discriminate
between different mechanisms because, during a single ex-
perimental run, the condensate velocity �and therefore its
quasimomentum� evolves throughout the first band and thus
explores both regimes �see Fig. 1�. Actually the phenomena
observed in �10� were attributed to energetic instability be-
cause the 1D Gross-Pitaevskii theory used to analyze the
data cannot reproduce some of the observed experimental
features. This in turn suggested that finite-temperature effects
could play a role. However a comparison with the full 3D
theory shows that the dynamics observed in �10� can be fully
understood in terms of dynamical instability �21�.

In the present paper we show that the precise control of
the BEC quasimomentum, obtained using an optical lattice
moving at constant velocity, is crucial to distinguish the dif-
ferent unstable regimes. The experimental procedure imple-
mented in this work allows a comparison with the predic-
tions of the theory and a study of the stability of the
condensate also in the excited bands of the periodic potential
�13�. The structure of the paper is the following. In Sec. II
we describe the experimental setup, in Sec. III we present
our results obtained for energetic instability and discuss the
role of thermal excitations, and then in Sec. IV we present a
comprehensive investigation of the phenomenon of dynami-
cal instability and show that it is possible to clearly distin-
guish it from energetic instability. In the Appendix we dis-
cuss the effect of the harmonic trapping potential on the
dynamics of the BEC adiabatically loaded in the moving
optical lattice.

II. EXPERIMENTAL SETUP AND PROCEDURE

We produce a BEC of 87Rb atoms in the hyperfine state
�F=1;mF=−1� using a standard double magneto-optical trap

�MOT� apparatus. Our condensate typically contains 3
�105 atoms and it is produced by radio-frequency-induced
evaporation of the atomic sample confined in an elongated
magnetic harmonic trap characterized by an axial and radial
frequency of �z=2�� �8.74±0.03� Hz and ��=2�
� �85±1� Hz, respectively. The 1D optical lattice is formed
by two counterpropagating laser beams obtained from a
Ti:sapphire source and it is aligned along the axis of the
magnetic trap. The interference profile has a spatial period of
� /2, where ��820 nm is the wavelength of the laser. Using
two single-mode fibers we obtain two Gaussian beams with a
radius of 200 �m, much larger than the condensate radial
size. In this paper we report measurements carried out with
lattice heights of s=0.2 and 1.15, where s is the height of the
optical potential in recoil energies �Erec=h2 / �2�2m�, m being
the mass of a Rb atom�. The lattice height is calibrated via
Bragg scattering of the condensate and is monitored through-
out the experiment �25�. The frequencies of the two beams
are controlled independently by two acousto-optic modula-
tors which use the same time base. This allows us to pre-
cisely control the velocity of the lattice vL, which is related
to the frequency difference between the two beams, ��, by
the following relation:

vL =
�

2
�� . �1�

In the laboratory frame the lattice potential can be written as

VL�z� = sErec cos2�2��z − vLt�
�

	 �2�

while the confining magnetic potential is

VHO�x� =
1

2
m���

2 r2 + �z
2z2� . �3�

After producing the condensate in the harmonic potential,
we load it adiabatically into a single Bloch state ramping the
intensity of the lattice from zero to its final value in a time
tR�2 ms. During the ramp time the lattice velocity is kept
constant and no acceleration is used. This process can be
viewed as a deformation of the spectrum of the system from
a free-particle one �i.e., parabolic� to a Bloch one, in which
the states are labeled by a band index n and a quasimomen-
tum q �which has the periodicity of the reciprocal lattice,
2qB=4� /�=2mvB /	�. If the ramping time is sufficiently
long so that this deformation can be considered adiabatic, the
condensate is transferred to a Bloch state with quasimomen-
tum q= �vL�m /h, belonging to the first band if �vL�
vB, to the
second band if vB
 �vL�
2vB, and to the nth band if �n
−1�vB
 �vL�
nvB �4,5� �further details are given in the Ap-
pendix�. To observe the effect of nonlinearity, we maintain a
high density in the sample, keeping the harmonic trapping
potential on during the whole experimental procedure. This
is crucial to enter the regime where the effects of dynamical
instability are observable.

In order to study the two mechanisms of instability we
perform a time-resolved analysis of the losses in the conden-
sate induced by the lattice for different values of quasimo-
mentum, band index, and lattice height. The general proce-
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dure is the following. After loading the condensate into a
single Bloch state we let it interact with the moving lattice
for a time t, then we switch off adiabatically the lattice,
release the atoms from the magnetic trap, and measure the
number of atoms remaining in the condensate by taking an
absorption image along the radial direction after 28 ms of
expansion. This allows us to reconstruct the evolution of the
number of atoms as a function of time and to measure the
lifetime of the condensate � as a function of q. Without the
optical lattice the BEC lifetime is limited to �=23±3 s by
the heating due to current noise in the coils producing the
magnetic trap. The introduction of a stationary lattice �i.e., a
standing wave� introduces two further heating mechanisms:
resonant photon scattering and lattice vibrations due to me-
chanical noise on the optics setting the path of the two
beams. Using the Ti:sapphire laser at a wavelength of
820 nm �74 THz detuned from the D1 line� makes heating
from resonant photon scattering completely negligible, while
we measured that the second effect becomes dominant when
the lattice height is higher than one recoil energy ��
=17±2 s with s=1.15�. In the case of a moving optical lat-
tice this lifetime can be strongly reduced if instability mecha-
nisms are activated.

In particular we found that, also for a very small velocity,
the lifetime measurement is critically affected by the pres-
ence of a residual cloud of noncondensed atoms surrounding
the BEC. Even a barely detectable fraction of thermal atoms
can significantly shorten the lifetime of the condensate and
thus the temperature of the system must be taken into ac-
count. For this reason, in order to control the temperature of
the sample, the radio frequency used in evaporative cooling
is kept on after the production of the BEC �rf shield�.

III. THE ROLE OF THE THERMAL FRACTION:
ENERGETIC INSTABILITY

The effect of a thermal fraction can be seen in Fig. 2.
There we show two series of pictures taken at different lat-
tice quasimomenta ranging from 0 to 0.2qB and for two val-
ues of the final radio frequency used for the evaporation,
corresponding to different temperatures of the atomic cloud.
When we have an almost pure condensate �thermal fraction
below 20%, limited by our imaging sensitivity�, the number
of atoms remaining after 15 s of interaction is not sensitive
to the lattice velocity �bottom part of Fig. 2�, while in the
case of a mixed cloud �thermal fraction �35%� even a small
velocity leads to a strong reduction in the number of atoms
�top part of Fig. 2�. Note that the velocities presented in these

pictures are well below the threshold for the onset of dy-
namical instability for the experimental parameters of Fig. 2
corresponding to q�0.5qB �see Sec. IV�; we will come back
to this point at the end of this section. Clearly, the presence
of a thermal cloud strongly affects the number of atoms re-
maining in the condensate after the interaction with the op-
tical lattice. This effect can be connected to energetic insta-
bility which requires the presence of a dissipative
mechanism: the thermal cloud provides a channel to absorb
the excitations of the condensate and drive it toward a lower-
energy state. When the thermal component is strongly de-
pleted, the condensate experiences a better insulation from
the environment and the effect of instability is less severe.
Note that this process cannot be studied with the Gross-
Pitaevskii equation which does not include any coupling
with the thermal cloud.

In order to test this hypothesis quantitatively we have
measured the number of atoms in the condensed fraction as a
function of quasimomentum for three different times of
BEC-lattice interaction, using a 35% thermal fraction. The
results are shown in Fig. 3. As one can see, the number of
atoms N slowly reduces with increasing q up to a critical
quasimomentum q0, after which it remains constant. The

FIG. 2. �Color online� Absorption images of the condensate interacting for t=15 s with a lattice with s=0.2 for different values of
quasimomentum ranging from 0 to 0.20qB and for, respectively, a condensed fraction of about 65% �top� and no detectable thermal
component �bottom�.

FIG. 3. �Color online� Number of atoms remaining in the con-
densate as a function of quasimomentum in a lattice with s=0.2 for
different interaction times t. The three data sets refer, respectively,
to t=150 �circles�, 300 �triangles�, and 600 ms �squares�. The initial
cloud has a condensed fraction of about 65%. The curves are fitted
to experimental points using Eq. �9� with N0, b, and q0 as free
parameters.
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smooth behavior of N as a function of q below this critical
value seems not to be compatible with the threshold process
expected in �14�. However this behavior can be related to the
inhomogeneity of the condensate with an argument similar to
the one of Ref. �10�. As we already pointed out, the onset of
energetic instability is related to the sound velocity within
the condensate: once the center-of-mass velocity exceeds this
value the system can lower its energy by emitting phononlike
excitations associated with sound propagation along the axial
direction. For an infinite cylindrical condensate this is a
threshold process since the sound velocity, which depends on
the density averaged over the radial direction, takes a finite
value. In particular, in the radial Thomas-Fermi regime it can
be expressed as �26�

vs =
 g̃n0

2m* , �4�

where g̃ is an effective interaction constant which takes into
account the presence of the lattice, m* is the effective mass
for the condensate Bloch state, and n0 /2 is the radially aver-
aged density expressed in terms of the peak density of the
sample n0. Assuming that a similar relation holds locally in
an elongated condensate with peak density n0�z�, we can
argue that the condition for local energetic stability is vs�z�
�vn,q where vn,q is the Bloch velocity of the condensate
loaded in band n with quasimomentum q and vs�z� is the
sound velocity of a cylindrical condensate with peak density
n0�z�. As one can verify, for the values of quasimomentum
and lattice height involved in these measurements, the Bloch
dispersion is only slightly different from the free-particle one
for which vn,q=	q /m, and it is correct to assume g̃=g
=4�	2as /m and m*=m, where m is the mass of a rubidium
atom and as is the s-wave scattering length. The above con-
dition for energetic stability can be recast as

n0�z� �
2	2q2

gm
= Cq2 �5�

where we indicate with n0�z� the density of the condensate
along its axis. One can therefore obtain the fraction of the

condensate that is energetically stable by integrating the den-
sity over the region satisfying Eq. �5�,

fq0
�q� =

1

N0
�

n0�Cq2
dz� � dx dy n�r� , �6�

where N0 is the number of atoms in the condensate and n�r�
its density distribution.

In our experiments the lattice produces a weak modifica-
tion of the density profile. It is therefore correct to assume as
local density �i.e., averaged over the lattice spacing� the
Thomas-Fermi profile of the condensate in the magnetic po-
tential,

n�x,y,z� =
�

g
�1 −

x2 + y2

R�
2 −

z2

Rz
2	 , �7�

where � is the chemical potential of the condensate. This
gives the fraction of the condensate which is energetically
stable,

fq0
�q� =
1 − � q

q0
	2�1 +

1

2
� q

q0
	2

+
3

8
� q

q0
	4


� 
�1 − � q

q0
�	 , �8�

where 
�x� is the Heaviside function and q0=
��m� / �2	2� is
the threshold value for energetic instability in a homoge-
neous cylindrical condensate with peak density n0, namely,
the quasimomentum for which Eq. �5� cannot be satisfied for
any z. The value of q0 can be theoretically calculated also
beyond the approximation of free-particle dispersion and is
independent of the BEC-lattice interaction time provided that
the density is not significantly reduced by the losses induced
by the instability. As shown in Fig. 2, this simple assumption
is not correct for long interaction times: as the condensate
loses atoms it becomes less dense and therefore more un-
stable because q0 tends to zero. However, since the sound
velocity scales with N1/5, it changes only slightly even for a
strong reduction of N and the assumption of treating q0 as

FIG. 4. �Color online� �a� Fitted values for q0

at different interaction times �symbols� and theo-
retical prediction for a homogeneous cylindrical
condensate with the same experimental param-
eters �solid line�. Dashed lines mark the error on
the theoretical value which is due to uncertainty
in the measured peak density of the sample. �b�
Number of atoms above q0 given by the product
N0b obtained from the fit to the experimental data
as a function of interaction time t: continuous line
is a fit to an exponential decay from which we
measure a characteristic time of �EI

=416±55 ms.
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constant in time; we will come back to this point when dis-
cussing our experimental results.

In order to derive a simple expression for N as a function
of q and t one has to make some further assumptions on the
decay induced by energetic instability. We assume that for a
given q the number of atoms in the stable fraction �i.e.,
N0fq0

�q�� is constant in time, while the number of atoms
initially in the unstable fraction �i.e., N0�1− fq0

�q��� decays
with a time behavior b�t�. We thus obtain for N the following
expression:

N�q,t� = N0fq0
�q� + b�t�N0�1 − fq0

�q�� . �9�

Note that N0b�t� can also be viewed as the number of atoms
remaining in the condensate after a time t, once it is entirely
unstable �fq0

=0� and N no longer depends on q. Note also
that we do not make any assumption on the explicit form of
b�t�, which, for a given time t, enters Eq. �9� only as a pa-
rameter. In principle one could think that, as atoms are re-
moved from the unstable fraction, some of the atoms in the
stable fraction are transferred to the unstable part in order to
refill the losses: this case would correspond to considering N0
as time dependent in Eq. �9�.

The lines shown in Fig. 3 are a fit of Eq. �9� to the ex-
perimental data taken for three different values of t with N0,
b, and q0 as free parameters. As one can see, our simple
model reproduces the experimental points very well within
the error bars, which are taken as the standard deviation of a
five-measurement average; in particular, as one can see look-
ing at the values of the fitted functions at q=0, N0 does not
significantly depend on time. In Fig. 4�a� we report the val-
ues of q0 obtained from the fits shown in Fig. 3 together with
the theoretical prediction obtained for a homogeneous cylin-
drical condensate. As expected, the measured values of q0 do
not exhibit a significant dependence on the BEC-lattice in-
teraction time t �see Fig. 4�a��. Notice that throughout the
measurement the number of atoms is reduced at most by a
factor of 1.62 which corresponds to a change in the sound
velocity of around 20%. This is comparable with our uncer-

tainty in the measurement of the density and with the spread
of the values of q0 extracted from the fits. We can directly
compare these values with the theoretical prediction for the
threshold of energetic instability for a homogeneous cylindri-
cal condensate �21�. Given our uncertainty on the density of
the sample, which propagates into the theoretical calcula-
tions, the agreement between theory and experiment is good.
Furthermore one can extract an estimate for the characteristic
time of energetic instability by looking at the decay of the
number of atoms above threshold b�t�. Assuming for b an
exponential decay �i.e., b=b0e−t/�EI� the time scale for ener-
getic instability for the experimental condition of Fig. 3 is
�EI�400 ms, as shown in Fig. 4�b�. Due to the experimental
difficulties in controlling the thermal fraction of the initial
atomic cloud, we did not study the dependence of �EI on the
condensed fraction. This would be a very interesting mea-
surement since it could provide a further insight into the role
of the thermal fraction; by the same token a more accurate
determination of N0 and q0 could allow the investigation of
the transfer of atoms from the stable to the unstable fraction
which is ultimately responsible for the complete destruction
of the condensate. However, as we pointed out in the de-
scription of Fig. 2, as the condensed fraction increases the
number of atoms remaining in the condensate after a fixed t
increases as well.

These results demonstrate that a thermal fraction triggers
the dissipative mechanism connected with energetic instabil-
ity and therefore it is possible to strongly reduce this dissi-
pation using a radio-frequency shield in order to make the
measurement with no discernible thermal fraction. This is
particularly important if we want to separately address the
two regimes of energetic and dynamical instability. The re-
sults of this procedure are shown in Fig. 5 where we plot the
BEC lifetime as a function of quasimomentum for s=0.2
with and without rf shield. Without the use of a rf shield
�open circles� it is impossible to distinguish the onset of

FIG. 5. Lifetime of the condensate with and without rf shield as
a function of quasimomentum for the first Bloch band �logarithmic
plot�. The lattice height is s=0.2 and vertical lines are drawn in
correspondence of the calculated thresholds for a homogeneous cy-
lindrical condensate respectively for energetic �dotted� and dynami-
cal �dashed� instability �21�. Error bars are smaller than point size.

FIG. 6. �Color online� Measured loss rate of the BEC �reciprocal
of lifetime� as a function of quasimomentum in the first Bloch band
with s=0.2 and 1.15, respectively. The vertical lines correspond to
the theoretical values for the threshold of dynamical instability �21�.
The horizontal error bar is due to the presence of the confining
harmonic potential as explained in the Appendix.

UNSTABLE REGIMES FOR A BOSE-EINSTEIN… PHYSICAL REVIEW A 72, 013603 �2005�

013603-5



dynamical instability at q=0.56qB because this feature is
masked by the reduction of the number of atoms caused by
energetic instability. On the other hand, by keeping an almost
pure condensate throughout the experiment �filled diamonds
in Fig. 5� the discontinuity in the lifetime entering the dy-
namically unstable regime becomes clearly visible despite a
residual reduction of the lifetime due to noncomplete effi-
ciency of the rf shield. An important point is that, even
though without a rf shield there is no measurable threshold,
the lifetime deep in the dynamically unstable regime is the
same with or without the rf shield as dynamical instability is
the dominant loss mechanism in both cases. We will show in
the next section, devoted to a deep experimental investiga-
tion of this regime, that indeed dynamical instability takes
place much faster than energetic instability. We note here
that, as already well established in literature �27�, the intro-
duction of a rf shield increases the lifetime even in the ab-
sence of the optical lattice and this explains the difference in
the measured lifetime at q=0.

IV. “ZERO-TEMPERATURE” MEASUREMENTS:
DYNAMICAL INSTABILITY

For q�0.5qB we observed the onset of dynamical insta-
bility characterized by two distinct signatures which we will
discuss in some detail: a threshold value of quasimomentum
above which the lifetime dramatically decreases �as pointed
out above� and, for higher values of quasimomentum, the
presence of complex structures in the density distribution of
the expanded atomic cloud �13�.

In Fig. 6 we plot the reciprocal of the lifetime of the
condensate �loss rate� as a function of quasimomentum in the
first Bloch band for two different values of lattice height. For
both values of s we observe a precise value of quasimomen-
tum for which there is a sudden increase in the loss rate of
atoms from the BEC. For our experimental parameters, this
threshold is almost independent of the condensate density so
that, differently from the case of energetic instability, inho-
mogeneity does not play a significant role in this context.
Indeed there is a remarkable agreement between the experi-
ment and the calculated thresholds for a homogeneous cylin-
drical condensate shown in Fig. 6 as vertical lines.

From a theoretical point of view the onset of dynamical
instability is signaled by the appearance of excitations of

definite wave vector k, which grow exponentially in time,
thus modifying the momentum distribution of the system
characterized by peaks spaced by the periodicity of the lat-
tice in the reciprocal space, 2qB �4,28�. The character of
these excitation modes can be obtained by considering small
deviations from the condensate wave function and solving
the corresponding Bogoliubov equations, as discussed in
�14,29� for the 1D case and in �21� for a 3D system. For the

FIG. 7. �Color online� Calcu-
lated growth rates �Im���� of the
excitation modes of an infinite cy-
lindrical condensate in a periodic
lattice with s=1.15, as a function
of the condensate and excitation
quasimomenta q and k, respec-
tively �first Bloch band�.

FIG. 8. Comparison between the measured loss rates of atoms
from the condensate �reciprocal of lifetime� and the theoretically
calculated growth rates of the most unstable modes in the linear
regime. Lattice height is s=1.15. Note that the measurements span
the first three Bloch bands.
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system considered in this work when q�0.5qB, the fre-
quency of some modes in the excitation spectrum develops a
nonzero imaginary part Im��� �see Fig. 7�, which is the dis-
tinctive feature of dynamical instability and corresponds to
the fact that, once excited, these modes will grow exponen-
tially in time. As is shown in Fig. 7, for a given value of q
there exists a range of such unstable wave vectors k, which is
more and more extended as q approaches the band edge.
Among all these unstable modes the one with the highest
growth rate plays a major role in the dynamics of the un-
stable condensate.

The unambiguous attribution of the observations to the
phenomenon of dynamical instability has been possible by
comparing the measured loss rates �inverse of the lifetime� to
the calculated growth rates of the most dynamically unstable
modes. The results of this comparison are shown in Fig. 8 for
a lattice with s=1.15. We point out that a full quantitative
comparison between theory and experiment cannot be per-
formed because the measurements occur outside the validity
of the linear analysis on which the theory is based. However,
the distinctive agreement between the theory and the experi-
ment indeed shows that the observed phenomenon is dy-
namical instability and that the mode which is most unstable
in the very initial stage of the dynamics �i.e., when linear
theory is correct� imprints its time scale on the following
dynamics.

For those quasimomenta for which dynamical instability
is more severe and thus lifetimes are shorter, we observed the
appearance of complex structures in the expanded density
profiles, shown in Fig. 9 for s=1.15 and q=0.55qB. These
can be the signature either of a density modulation or a phase
fragmentation that leads to the observed fringes through an
interferencelike effect �30�. As already stated in �13� we have
observed the disappearance of the fringes as the condensate
reverts to its initial state if we let it evolve in the magnetic

potential alone, after switching off the lattice. This process,
however, takes place in a much longer time scale than the
one of dynamical instability �lifetime can be of the order of a
few milliseconds�. In order to compare our observations with
the theory, we have simulated the actual experimental proce-
dure by solving the time-dependent 3D GP equation

i	
�

�t
��x,t� = �−

	2

2m
�2 + V�x,t� + gN���2
��x,t� ,

�10�

where V is the sum of the harmonic �2� and periodic poten-
tials �3�. From the solution of Eq. �10� we extracted the axial
power spectrum, defined as �the tilde indicates the Fourier
transform along z� �20�

P�pz� � 2�� r dr��̃�r,pz��2 �11�

which is shown in Fig. 10. The upper frame �Fig. 10�a��
represents the momentum distribution at the end of the initial
ramp, and is characterized by sharp peaks localized at integer
multiples of 2qB as discussed above. Then, in accordance
with the prediction of the linear analysis, some modes of
complex frequency start growing as indicated by the arrow in

FIG. 9. �Color online� �a� Absorption images of the expanded
condensate after different interaction times with a lattice with s
=1.15 for two different values of quasimomentum. Note the sudden
change of time scale crossing the threshold of dynamical instability
at q=0.525qB and the appearance of structures in the density pro-
files for the unstable case �q=0.55qB�. �b� Reabsorption of excita-
tions following 5 ms of interaction with the lattice and different
times of evolution in the pure harmonic potential after switching off
the lattice. In all these pictures the lattice moves from top to bottom.

FIG. 10. �Color online� Calculated axial momentum distribution
P�pz� of the condensate in the combined harmonic trap plus optical
lattice for t=12,33,48,51 ms �from �a� to �d�� �logarithmic plot�.
The simulation is performed with s=1.15 and vL=0.55vB. The ar-
row in �b� marks the appearance of the unstable modes.
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Fig. 10�b� �in the numerical simulation these modes are trig-
gered by the numerical noise�. Afterward, the nonlinear dy-
namics introduces processes of mode mixing and the mo-
mentum distribution gets complicated �Figs. 10�c� and
10�d��. However, the structure is still characterized by well-
localized peaks close to qB, and the position of the peaks still
shows invariance under translation of 2qB. From these results
it is possible to calculate the expanded density profile and
thus make a direct comparison with the experimental obser-
vations. This comparison is shown in Fig. 11 for s=1.15, q
=0.55qB, tR=10 ms, and t=50 ms. The simulation well re-
produces the structure of the central peak observed in the
experiment, but the naive expectation that the expanded den-
sity profile of the condensate would simply reflect the struc-
ture of the momentum spectrum is not correct. We note that
indeed the occurrence of dynamical instability may lead to a
rapid population of the noncondensate �thermal� fraction,
whose behavior in the linear regime is governed exactly by
the same Bogoliubov equations as for the semiclassical fluc-
tuations of the condensate discussed so far �31,32�. This
means that the Gross-Pitaevskii approach may fail when dy-
namical instability yields a strong depletion of the “coher-
ent” condensed fraction. In order to account for this, one
should include in the theory also the interaction between the
condensate and noncondensate fractions, which may become
macroscopically populated for later times �33�. The forma-
tion of a thermal component could strongly affect the ex-
panded density distribution masking the momentum compo-
nent populated by the interaction with the optical lattice.
Actually the experimental density profile reported in Fig. 11
�bottom� shows a uniform tail on the right side of the main
peak compatible with a thermal fraction dragged by the lat-
tice.

V. CONCLUSION

We reported on the experimental observation of energetic
and dynamical instability of a BEC in a moving 1D optical

lattice. A clear separation of the two regimes is obtained by
controlling the temperature of the system and adiabatically
loading the condensate in a Bloch state with precise quasi-
momentum.

On one hand we have shown that energetic instability is
deeply connected with the presence of a dissipative mecha-
nism such as the one provided by thermal atoms around the
condensate. We have derived a simple phenomenological
model to take into account the effects of inhomogeneity of
the atomic density distribution and found a good agreement
between this model and the experiment. On the other hand
we have observed that in the regime of dynamical instability
the lifetime of the condensate is critically dependent on qua-
simomentum. We have compared this distinctive dependence
of the condensate loss rate on quasimomentum with the the-
oretical prediction on the growth rate of unstable modes in
the initial regime of the dynamics. We have found a very
nice agreement thus demonstrating that the observed phe-
nomenon is dynamical instability and that the initial excita-
tions play a dominant role in the following evolution. Fur-
thermore we compared the structure observed in the
expanded density profile with the results of the solution of
time-dependent 3D Gross-Pitaevskii equation finding a sig-
nificant agreement between observation and theoretical cal-
culation. We have been able to make a direct comparison
between the timescales of the mechanisms of instability: we
have experimentally demonstrated that in the regime of low
lattice height and for a mostly condensed cloud, dynamical
instability is one order of magnitude faster than energetic
instability. Finally we note that the critical effect of a thermal
cloud on the lifetime of the condensate in the presence of
energetic instability suggests that it is possible to use a mov-
ing optical lattice to detect the presence of a noncondensed
fraction well beyond the sensitivity of the imaging system
usually employed in this field.

FIG. 11. �Color online� Comparison between the simulated bal-
listic expansion of the momentum distribution shown in Fig. 10�d�
�top� and the cross section of the measured expanded density dis-
tribution of the condensate �bottom�. In both cases the expansion
time is 28 ms, s=1.15, q=0.55qB, t=50 ms, and the lattice is adia-
batically switched off, ramping down its intensity in 2 ms. Vertical
lines mark the three main peaks of the calculated momentum dis-
tribution corresponding respectively to 0, 1.01	qB, and 2	qB. In
both cases the lattice is moving in the direction of positive z.

FIG. 12. �Color online� Plot of the Bloch velocity as a function
of quasimomentum in the first band for s=1.15. The dashed line is
the free-particle velocity �i.e., v=	q /m�. Notice that the deviation
of the Bloch velocity from the free-particle one increases as q
increases.

De SARLO et al. PHYSICAL REVIEW A 72, 013603 �2005�

013603-8



ACKNOWLEDGMENTS

We thank F. S. Cataliotti, F. Dalfovo, C. Tozzo, and T. W.
Hänsch for stimulating discussions. This work has been sup-
ported by the EU under Contract No. HPRN-CT-2000-
00125, by the INFM Progetto di Ricerca Avanzata “Photon
Matter,” and by the MIUR FIRB. J.E.L. was supported by
EU.

APPENDIX: THE EFFECT OF THE HARMONIC
POTENTIAL

As explained in Sec. II, the adiabatic loading of the con-
densate in a moving optical lattice can be viewed as a slow
transformation of the spectrum of the system from the free-
particle parabola to a Bloch band. During this procedure the
wave packet changes from that of a free particle to that of a
Bloch state characterized by a velocity which is related to the
energy spectrum by the well-known relation vn,q=	−1�qEn,q,
where En,q is the energy of the eigenstate with quasimomen-
tum q in band n. As is shown in Fig. 12 the difference be-
tween vn,q and the free-particle velocity increases with in-
creasing q. Since the loading procedure conserves q, this
means that the condensate acquires a finite velocity in the
laboratory frame and starts moving in the harmonic potential.
The center-of-mass motion in the frame of the laboratory
follows the semiclassical laws of motion for a Bloch wave
packet in an external force field �34�

ż = vn,q − vL = vn,q − 	q0/m ,

	q̇ = F , �A1�

where z is the direction of the lattice, m is the mass of a Rb
atom, q0 is the initial quasimomentum at which the conden-

sate is loaded, and F is the external force acting on the at-
oms. In our case this is the harmonic restoring force F=
−m�z

2z. For low values of q, where the band has a parabolic
shape �i.e., En,q=	2q2 /2m*�, Eqs. �A1� can be analytically
solved, leading to

z�t� = −
m*

m

v0

�z
sin�
 m

m*�zt	 ,

q�t� = q0 +
m*v0

	
�1 − cos�
 m

m*�zt	
 , �A2�

where v0=	q0�1/m*−1/m�. This solution is an oscillation in
both real and quasimomentum space at the trap frequency
rescaled by the effective mass m*=	��qvn,q�−1. The ampli-
tude of this oscillation in real space ��1 �m� is too small to
be measured by our imaging system while the amplitude of
oscillation in momentum space cannot be neglected. Increas-
ing q, when the parabolic approximation of the band fails
Eqs. �A1� can be still integrated giving asymmetric oscilla-
tions. Eventually, as shown in Fig. 13, for sufficiently high
values of q, the solution of Eqs. �A1� ceases to be oscillatory:
the condensate motion becomes unbounded and quasimo-
mentum indefinitely grows. We took into account the motion
of the Bloch wave packet in quasimomentum space consid-
ering an uncertainty on q for the data reported in Figs. 6 and
8 given by the amplitude of oscillation in q space, as ob-
tained by numerical solution of Eq. �A1�. These consider-
ations explain also why we did not take data for values of q
close to the band edges for which dynamics due to the har-
monic confinement was not bounded.

FIG. 13. Time evolution of a Bloch wave
packet calculated from semiclassical Eq. �A1� for
s=1.15 and two different quasimomenta q0

=0.3qB and 0.6qB.
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