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We investigate the single-particle properties at T=0 of a trapped superfluid gas of Fermi atoms with a
Feshbach resonance. A tunable pairing interaction associated with the Feshbach resonance leads to the BCS–
Bose-Einstein condensate �BEC� crossover, where the character of superfluidity continuously changes from the
BCS-type to a BEC of composite bosons. In this paper, we extend our previous work for a uniform superfluid
Fermi gas �Y. Ohashi and A. Griffin, Phys. Rev. A 67, 063612 �2003�� to include the effect of a harmonic trap.
We do not use the local density approximation �LDA�, but directly solve the Bogoliubov–de Gennes �BdG�
coupled equations. While our explicit numerical solutions are for a weak �narrow� Feshbach resonance, we
argue that the single-particle BdG excitation spectrum will exhibit the same features for a strong �broad�
Feshbach resonance. Using these equations, we find self-consistent values for the spatially dependent local

density n�r� as well as the composite BCS order parameter �̃�r�, the latter describing both the Cooper-pair and
molecular condensate contributions. Using these results, we calculate the single-particle density of states in the
crossover region, and from this determine the true single-particle energy gap �Eg� of the trapped Fermi
superfluid. This is associated with the in-gap �or Andreev� states in the low-density region at the edge of the
trap. We calculate the laser-induced tunneling current I��� into another hyperfine state, as measured in recent
rf spectroscopy experiments. This rf spectrum gives a direct probe of the quasiparticle spectrum. We show how

the high-energy part of I��� gives information about �̃�r=0� at the center of the trap �which is comparable to
the Fermi energy �F in the crossover region�. We show that I��� is very dependent on the spatial profile of the

pair potential �̃�r� that is used. We also emphasize that the narrow “unpaired atom� peak in the rf data gives
information about Eg and the low-energy ���F� in-gap states of a Fermi superfluid. While our calculations are
limited to T=0, we use them to discuss the recent data of Chin et al. and the LDA calculations of Törmä and
co-workers. The LDA, while useful, can lead to an incorrect physical picture of the low-density surface region
of the Fermi superfluid.
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I. INTRODUCTION

Recently, the BCS–Bose-Einstein condensate �BEC�
crossover in a trapped gas of Fermi atoms near a Feshbach
resonance has attracted much attention �1–5�. Molecular
bosons associated with a Feshbach resonance can mediate a
tunable pairing interaction between atoms, which becomes
stronger with decreasing threshold energy �denoted by 2�� of
the Feshbach resonance �6,7�. The BCS-BEC crossover can
be studied as a function of 2�, with the character of super-
fluidity continuously changing from the conventional BCS
type of Cooper pairs to a BEC of composite bosons �consist-
ing of a superposition of Cooper pairs and molecules�, as one
approaches the strong-coupling regime �1–4�. This situation
contrasts with the “classic” crossover physics originally stud-
ied in the superconductivity literature �8–15�, where Cooper-
pair bosons are always dominant in the whole crossover re-
gime, from the BCS to the BEC limits. Recent experiments
on ultracold gases of 40K and 6Li have used this tunable
interaction near the resonance �16,17�, to produce a large
number of bound states or molecules when as

2b�0 �as
2b is the

two-body s-wave scattering length� �18,19�. Using this tun-
able interaction, a BEC of these molecular bosons has been
observed in 40K and 6Li �20,21�, and more recently, evidence
for superfluidity was found in the BCS side of the crossover
regime �loosely defined as as

2b�0� �22–26�. Both single-

particle excitations �27� and collective modes �25,28� have
been experimentally studied in the crossover regime in the
case of 6Li.

In this paper, we present a detailed study of BCS-type
single-particle excitations in the BCS-BEC crossover of a
trapped gas of Fermi atoms with a Feshbach resonance. This
extends our previous work for a uniform gas �3� in a major
way, since we now include the effect of discrete eigenstates
due to confinement in a harmonic trap. However, in contrast
to Ref. �3�, we limit our discussion to T=0 in this paper.
Because of the inhomogeneity of a gas due to the trap po-
tential, the single-particle threshold excitation gap Eg is no
longer simply related to the position-dependent superfluid

pair potential �̃�r�. This contrasts with the case of a uniform
Fermi superfluid �3,9,12�, where Eg and the order parameter

�̃ are related in a very direct way �Eg= ��̃� for 	�0, Eg

=�	2+ ��̃�2 for 	�0, where 	 is the chemical potential of

the fermions�. We compute �̃�r� self-consistently by solving
the Bogoliubov–de Gennes �BdG� coupled equations and
then use it to calculate the single-particle density of states
N��� for a trapped superfluid gas. We present results through
the BCS-BEC crossover by varying the threshold energy 2�.
We also calculate the rf-tunneling current, which can be used
to probe the spectrum of the single-particle excitations. We
compare our T=0 results with recent experimental data on
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6Li �27�. These data agree with the calculations of Törmä and
co-workers �29�, using a local density approximation �LDA�.
While the LDA is useful, we feel that it gives an incorrect
picture of the surface region of the trapped superfluid.

As reviewed in Sec. II, the present paper is based on an
interacting fermion-boson �FB� Hamiltonian, in which mol-
ecules �bosons� created from two Fermi atoms are explicitly
introduced. It is worthwhile to make a few remarks about
this approach, to put it into contact with recent discussions of
BCS-BEC crossover physics. At the two-body level, a Fesh-
bach resonance �FR� can always be described by a coupling
between a molecular state and free-atom states. One can dis-
cuss two limits of a FR, a weak �or narrow� FR in which the
molecular channel dominates and a strong �or broad� FR in
which the free-atom channel dominates. Because of this, one
often sees in the literature the statement that an interacting
fermion-Bose model, described as a two-channel model, is
most appropriate to deal with a narrow FR. In contrast, an
interacting fermi gas model, described as a one-channel
model, is often viewed as sufficient to describe a broad FR
�which most recent experiments deal with�.

However, this distinction should not be overemphasized
since recent work has shown that as long as the model pa-
rameters are chosen to reproduce the low-energy two-body
physics correctly, both the one-channel �Fermi gas� and two-
channel �FB gas� approaches can lead to an identical descrip-
tion of the BCS-BEC crossover. This equivalence is espe-
cially well described in Ref. �30�. In particular, with the
proviso that the low-energy two-body physics is reproduced,
the BCS-BEC crossover at the mean-field level we are using
in this paper is equally valid for both narrow and broad Fesh-
bach resonances.

The goal of the present paper is very modest, namely, to
extend our previous study �3� of the BCS-BEC crossover for
a uniform Fermi superfluid with a FR to include the effect of
a trapping potential. Within a mean-field-type T=0 theory as
summarized in Sec. II, the Bogoliubov–de Gennes single-
particle equations with a self-consistent composite order pa-
rameter defined in Eq. �2.5� is valid for all values of the FR
coupling strength. What does change with the coupling
strength is the relative magnitude of the Cooper-pair and
molecular BEC contributions to the composite order param-
eter. This is explicitly shown in our earlier studies in a uni-
form Fermi superfluid �3�, which treated both a narrow and a
broad FR. The only difference was that in the case of a broad
FR, the relative contribution to the composite order param-
eter from Cooper pairs still dominated over the FR-induced
molecule condensate contribution in the crossover region.
However, these two-particle bound states are strongly hy-
bridized with each other, and cannot be viewed as physically
distinct BCS and BEC phases.

Because of computational difficulties dealing with high-
energy states in the case of a trapped superfluid Fermi gas, in
the present paper, we only discuss the case of a weak �or
narrow� FR. However, as in the case of a uniform superfluid,
as far as the single-particle BCS-type excitations are con-
cerned, we do not expect any qualitative differences between
a broad or narrow FR when dealing with a trapped Fermi
superfluid. Some further comments on this are made in Sec.
IV.

This paper is organized as follows. In Sec. II, we intro-
duce the usual coupled fermion-boson Hamiltonian including
an isotropic harmonic potential and derive the mean-field
BdG equations. The single-particle Green’s functions in a
trap are expressed in terms of the solutions of the BdG equa-
tions in Sec. III. In Sec. IV, we discuss the BCS-BEC cross-
over in the cases of broad and narrow Feshbach resonances.
We review different definitions of the s-wave scattering
length. In Sec. V, we calculate the equilibrium properties in a
self-consistent way, such as the chemical potential 	 �which
plays a crucial role�, the atomic density profile n�r�, and

spatial variation of the composite order parameter �̃�r�. The
single-particle density of states N��� for different values of
2� is calculated and discussed in Sec. VI. In Sec. VII, we
compare our results �both BdG and LDA� with the rf-
tunneling spectroscopy data obtained in recent experiments
on 6Li. Some of our results were briefly reported earlier in
Refs. �31,32�.

II. EXTENSION OF THE BOGOLIUBOV–de GENNES
EQUATIONS „T=0…

We consider a two-component Fermi gas with a Feshbach
resonance trapped in a harmonic potential, using the coupled
fermion-boson model �1–4,6,7,33�

H = �


� dr �


†�r�	−
�2

2m
− 	 + Vtrap

F �r�
�
�r�

− U� dr �↑
†�r��↓

†�r��↓�r��↑�r� +� dr �†�r�

	−
�2

2M
+ 2� − 2	 + Vtrap

M �r�
��r�

+ gr� dr��†�r��↓�r��↑�r� + H.c.� . �2.1�

Here �
�r� is the fermion field operator with pseudospin 

= ↑ ,↓. The Bose quantum field operator ��r� describes mo-
lecular bosons associated with the Feshbach resonance. U is
a nonresonant interaction, which we take attractive �−U
�0�. The Feshbach resonance gr describes resonance be-
tween one molecule and two Fermi atoms. The effect of this
resonance is controlled by adjusting the energy 2� of the
molecules, also referred to as the threshold energy. �To avoid
confusion, we note that in many recent papers, this threshold
energy is denoted by �.� Since a molecule consists of two
Fermi atoms, we take M =2m and impose the conservation of
the total number of atoms,

N = NF + 2NM =� dr nF�r� + 2� dr nM�r�

= �


� dr��


†�r��
�r�� + 2� dr��†�r���r�� .

�2.2�

This constraint has already been taken into account in Eq.
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�2.1�, with the Fermi chemical potential 	 and Bose chemi-
cal potential 	M 2	 �1�. Vtrap

F �r� and Vtrap
M �r� are the har-

monic trap potentials for Fermi atoms and Bose molecules,
respectively, which are assumed to be isotropic

Vtrap
F =

1

2
m�0

2r2, Vtrap
M =

1

2
M�0M

2 r2. �2.3�

In addition, in this paper, we assume that the atoms and
molecules experience the same trap frequency �0=�0M
�which correctly describes recent experiments�.

To study the BCS-BEC crossover phenomenon, we ex-
tend the theory at T=0 developed by Leggett �9� in the con-
text of superconductivity to include a Feshbach resonance as
well as the effect of a harmonic trap potential. The key point
of this theory is to solve the mean-field gap equation for the
order parameter together with the equation for the number of
particles, which determines the Fermi chemical potential 	.
In the BCS-BEC crossover, 	 decreases from the usual BCS
limit given by the Fermi energy �F and can become negative.
The thermal fluctuations in the Cooper channel and the ther-
mal excitations of Bose condensate fluctuations, crucial in
considering the BEC-BEC crossover at finite temperatures
close to Tc �1–4,10,12–15�, are not important at T=0. Such
fluctuations will not be considered in the present paper.

The gap equation is obtained from the mean-field approxi-
mation for Eq. �2.1� in terms of the BCS Cooper-pair con-
densate ��r�U��↓�r��↑�r�� as well as the molecular BEC
condensate �M�r����r��. The Hartree-Fock-Bogoliubov
�HFB� mean-field Hamiltonian for the fermions is given by

HHFB = �


� dr �̂


†�r�	−
�2

2m
−

U

2
nF�r� + Vtrap

F �r� − 	

�
�r� −� dr ��r���̂↑

†�r��̂↓
†�r� + H.c.�

+ gr� dr �M�r���̂↑
†�r��̂↓

†�r� + H.c.�

= �


� dr �̂


†�r�	−
�2

2m
−

U

2
nF�r� + Vtrap

F �r� − 	

�
�r� −� dr �̃�r���̂↑

†�r��̂↓
†�r� + H.c.� . �2.4�

In Eq. �2.4�, the Cooper-pair order parameter ��r� and the
molecular condensate �M�r� are taken to be real, without
loss of generality. nF�r��
��


†�r��
�r�� is the local num-
ber density of Fermi atoms. Equation �2.4� clearly has the
same form as the usual BCS-Gor’kov Hamiltonian, but now
with the Cooper-pair order parameter ��r� replaced with the
composite order parameter,

�̃�r�  ��r� − gr�M�r� . �2.5�

Because of the spherical symmetry of our harmonic trap,

��r�, �M�r�, �̃�r�, and nF�r� only depend on �r�.

Since we are only discussing T=0 in this paper, the mol-
ecules described by ��r� are all Bose condensed. As noted
above, we ignore excitations of this molecular condensate.
Thus the HFB mean-field Hamiltonian in Eq. �2.4� does not
involve the dynamics of the molecular condensate. The latter

only enters through the equilibrium value �̃�r�.
Superfluidity in our coupled fermion-boson model is char-

acterized by the two broken-symmetry order parameters, i.e.,
the BCS order parameter ��r�=U��↓�r��↑�r�� and the mo-
lecular BEC condensate �M�r�= ���r��. However, these are
strongly coupled to each other and hence are not indepen-
dent. One finds from Eq. �2.1� that their equilibrium values
satisfy

gr

U
��r� + 	−

�2

2M
+ Vtrap

M �r� + 2� − 2	
�M�r� = 0.

�2.6�

This is in fact an exact identity, and can be obtained from the
equation of motion

0 =
d�M�r,t�

dt
=

i

�
��H,��r,t��� . �2.7�

In the absence of a trap, Eq. �2.6� reduces to

gr

U
� + �2� − 2	��M = 0, �2.8�

a result discussed at length in Refs. �1,3�. As a result of this
strong coupling, the Cooper-pair and Feshbach molecule
condensates are hybridized by the Feshbach resonance, and
are both finite throughout the superfluid phase.

In a uniform gas, the composite order parameter appear-
ing in Eq. �2.4� and defined in Eq. �2.5� can be written in the
form

�̃ = Ueff�
p

�c−p↓cp↑� , �2.9�

where cp
 is the annihilation operator of a Fermi atom in
momentum space, and �1,3�

Ueff  U +
gr

2

2� − 2	
. �2.10�

Ueff describes an effective pairing interaction in a BCS-type
Hamiltonian in Eq. �2.4�, which can be tuned by adjusting
the molecular threshold energy 2�. We note that the expres-
sion in Eq. �2.9� has the same form as the usual definition of
a BCS Cooper pair, apart from the effective pairing interac-
tion Ueff.

The molecular Bose excitations are described by the field
operator ���r���r�− ���r��=��r�−�m�r�. When we
substitute this expression into the boson kinetic term �the
bilinear term involving ��r�� in Eq. �2.1�, the terms linear in
���r� are canceled out by another term which is linear in
���r� arising from the last term in Eq. �2.1�. This is a con-
sequence of the key relation in Eq. �2.6�. This leaves a term
in Eq. �2.1� that is bilinear in ���r�, namely,
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HM =� dr ��†�r�	−
�2

2M
+ 2� + Vtrap

M �r� − 2	
���r� .

�2.11�

Equation �2.11� gives the lowest molecular excitation energy
E0

M 2�+ �3/2��0−2	. A self-consistent calculation shows
that this threshold energy is always positive �i.e., 2�
+ �3/2���0�2	�. As discussed in Ref. �3� for the uniform
case, this contradicts the fact that the excitation spectrum
must be gapless in a uniform interacting Bose gas �of mol-
ecules�. Although Eq. �2.1� does not explicitly involve an
interaction between the molecules, an effective repulsive in-
teraction is induced by the Fermi gas �3,34,35�. This effec-
tive repulsive interaction will lead to a Bogoliubov phonon
as the collective mode in the molecular gas in the BEC re-
gime.

In an interacting Bose gas, it is well known that the only
low-energy excitations are collective modes. This is because
the single-particle excitations are strongly hybridized �36�
with the two-particle excitations �including collective
modes�. When we include the effective molecule-molecule
interaction in a consistent way, the gapless or phonon behav-
ior of molecular Bose excitations in a uniform gas must be
recovered. This requires an extended version of the present
theory, as we shall discuss in a future paper �37�. The present
paper is mainly concerned with the single-particle excitations
of a Fermi superfluid, and does not deal with the collective
modes. The fact that our present treatment does not include
the correct interaction �34,35� between molecules in the BEC
limit is of little importance when discussing the spectrum of
the single-particle Fermi excitations �which disappear as we
approach the BEC limit�.

The mean-field HFB Hamiltonian in Eq. �2.4� is formally
identical to a trapped superfluid Fermi gas in the standard
BCS treatment, apart from the replacement of ��r� by the

�self-consistent� composite order parameter �̃�r�. Bruun and
co-workers have presented detailed numerical results for the
Cooper-pair order parameter and the single-particle BCS ex-
citations in a BCS superfluid at T=0 �38–41�. Our present
work may be viewed as a natural extension to include the
effect of the Feshbach resonance, based on the model in Eq.

�2.4� involving the effective pair potential �̃�r�. The latter, of
course, involves the molecular condensate �M�r� and must
be computed self-consistently.

As usual, the HFB Hamiltonian in Eq. �2.4� can be diago-
nalized as HHFB=�n
En�n


† �n
 by solving the
Bogoliubov–de Gennes equations �42�

	 H0 �̃�r�

�̃�r� − H0

	un�r�

vn�r�

 = En	un�r�

vn�r�

 , �2.12�

where H0 is the diagonal component of HHFB. The Bogoliu-
bov quasiparticle excitations are described by the fermion
operators �n
, which are related to the fermion field operator
�
�r� as �42�

�↑�r� = �
n

�un�r��n↑ + vn
*�r��n↓

† � ,

�↓�r� = �
n

�un�r��n↓ − vn
*�r��n↑

† � . �2.13�

As noted above, the solutions of these BdG equations for
a trapped Fermi gas have been discussed extensively by Br-
uun and co-workers �38–41� in the BCS limit and where

�̃�r�=��r�. It is convenient to expand the fermion field op-
erator �
�r� with respect to the eigenfunctions of a harmonic
potential Vtrap

F �r� as

�̂
�r� = �
nlm

fnlm
F �r�cnlm
. �2.14�

Here, fnlm
F �r�Rnl

F �r�Ylm��̂�, where Ylm��̂� is a spherical har-
monic and Rnl

F �r� is the usual radial wave function, given by

Rnl
F �r� = �2�m�0�3/4� n!

�n + l + 1/2�!
e−r̄2/2r̄lLn

l+1/2�r̄2�

�r̄  �m�0r� , �2.15�

where Ln
l+1/2�r̄2� is a Laguerre polynomial. The HFB Hamil-

tonian HHFB in Eq. �2.4� can then be reduced to

HHFB = �
nlm,


�nl
F cnlm


† cnlm
 −
U

2 �
nn�lm,


Jnn�
l cnlm


† cn�lm


− �
nn�lm

Fnn�
l �cnlm↑

† cn�l,−m↓
† + H.c.� . �2.16�

Here �nl
F =��0�2n+ l+3/2�−	 are the single-particle excita-

tion energies of the atoms in the harmonic potential. Fnn�
l and

Jnn�
l describe the mean-field effects associated with the com-

posite pair potential �̃�r� �which plays the role of an “off-
diagonal” potential� and the Hartree potential −�U /2�nF�r�,
respectively. These are given by

Fnn�
l  �

0

�

r2dr Rnl
F �r��̃�r�Rn�l

F �r� , �2.17�

Jnn�
l  �

0

�

r2dr Rnl
F �r�nF�r�Rn�l

F �r� . �2.18�

We note that Fnn�
l and Jnn�

l include both the intrashell terms
�n=n�� as well as the intershell terms �n�n��. The local
Cooper-pair order parameter and fermion density are given
by �38�

��r� = U�
nn�l

2l + 1

4�
Rnl

F �r�Rn�l
F �r��cnl0↓cn�l0↑� , �2.19�
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nF�r� = �
nn�l


2l + 1

4�
Rnl

F �r�Rn�l
F �r��cnl0


† cn�l0
� . �2.20�

In Eq. �2.20�, we have taken advantage of the spherical sym-
metry of our model, which leads to �cnlm↓cn�l,−m↑�
= �cnl0↓cn�l0↑� and �cnlm


† cn�lm
�= �cnl0

† cn�l0
�.

It is important to remember that Eq. �2.16� includes the
effect of the molecular condensate �M�r�, since it enters the

composite order parameter �̃�r�=��r�−gr�M�r�. Since
�M�r� only depends on r, we need only consider the l=0
quantum number. Thus we can expand �M�r� in terms of the
radial components

�M�r� =
1

�4�
�

n

�nRn0
M �r� . �2.21�

Here fnlm
M �r�Rnl

M�r�Ylm��̂� is a molecular eigenfunction for
the isotropic harmonic potential Vtrap

M �r�, with the molecular
energy Enl

M =��0�2n+ l+3/2�. The radial component Rnl
M�r� is

identical to that given in Eq. �2.15�, except that the atom
mass m is now replaced by the bound state mass M =2m.
Substituting Eq. �2.21� into Eq. �2.6�, we obtain an expres-
sion for �n in terms of ��r�,

�n = −
gr

U

�4�

En0
M + 2� − 2	

�
0

�

dr r2��r�Rn0
M �r� . �2.22�

The magnitude of the various expansion coefficients �n
clearly determines to what extent the molecular condensate
�M�r� in Eq. �2.21� is similar to the BEC order parameter

�M
ideal�r� of a noninteracting Bose gas of molecules in a har-

monic trap. The latter is given by the macroscopic occupa-
tion of the lowest �n=0� state

�M
ideal�r� =

1
�4�

�0R00
M �r� , �2.23�

where ��0�=�N /2 for a noninteracting Bose gas.
Since Eq. �2.16� can be written as HHFB=�mlHHFB

ml , one
may independently diagonalize each HHFB

ml , i.e., for each set
of values �l ,m�, by a unitary transformation. This is the Bo-
goliubov transformation

�
c0lm↑

. . .

cNllm↑

c0l,−m↓
†

. . .

cNll,−m↓
†

� = Ŵl�
�0lm↑

. . .

�Nllm↑

�0lm↓
†

. . .

�Nllm↓
†
� . �2.24�

Here Ŵl is a 2�Nl+1�2�Nl+1� orthogonal matrix, and the
fermion operator �nlm
 describes the Bogoliubov quasiparti-

cles. Physically, the matrix elements of Ŵl describe the hy-
bridization of particle and hole excitations in the Bogoliubov

quasiparticles described by �nlm
. Ŵl is determined by the

requirement that Ŵl†HHFB
ml Ŵl be diagonal. The matrix ele-

ments Wij
l are then obtained from the eigenfunctions of the

following BdG equations for HHFB
ml �43�:

�
�0l

F −
U

2
J00

l . . . −
U

2
J0Nl

l − F00
l . . . − F0Nl

l

. . . . . . . . . . . . . . . . . .

−
U

2
JNl0

l . . . �Nll
F −

U

2
JNlNl

l − FNl0
l . . . − FNlNl

l

− F00
l . . . − F0Nl

l − �0l
F +

U

2
J00

l . . .
U

2
J0Nl

l

. . . . . . . . . . . . . . . . . .

− FNl0
l . . . − FNlNl

l U

2
JNl0

l . . . − �Nll
F +

U

2
JNlNl

l

�� W0,n
l

. . .

WNl,n
l

WNl+1,n
l

. . .

W2Nl+2,n
l

� = Enl
F�

W0,n
l

. . .

WNl,n
l

WNl+1,n
l

. . .

W2Nl+2,n
l

� . �2.25�

As usual, we introduce a cutoff �c��0�Nc+3/2� in the
energy summation in the gap equation �see Eq. �2.27� be-
low�. This defines Nc. The maximal radial quantum number
Nl in Eq. �2.25� is then given by the largest integer bounded
by �Nc− l� /2. As with the usual BdG equations, positive and
negative eigenenergies �Enl

F and −Enl
F � are obtained from Eq.

�2.25�. The diagonalized Hamiltonian can be written using
only the positive energy eigenenergies �Enl

F �0�, namely,

HHFB
F = �

n=0

Nl

�Enl
F�nlm↑

† �nlm↑ − Enl
F�nlm↓�nlm↓

† �

= �
n=0

Nl

Enl
F + �

n=0,


Nl

Enl
F�nlm


† �nlm
. �2.26�

In the following discussion, we only take the positive
eigenenergies Enl

F as in Eq. �2.26�. According to Eq. �2.26�,
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the operator �nlm

† describes creating a Fermi single-particle

excitation from the ground state, with excitation energy Enl
F

�0. Because of the assumed spherical symmetry of our trap,

Enl
F and Ŵl do not depend on the quantum number m. Sub-

stituting Eq. �2.24� into Eqs. �2.19� and �2.20�, we obtain �at
T=0�

��r� = U�
nn�l

�
2l + 1

4�
Rnl

F �r�Rn�l
F �r��

j=0

Nl

W
N̄l+n,N̄l+j

l
W

n�+1,N̄l+j

l
,

�2.27�

nF�r� = �
nn�l

2l + 1

4�
Rnl

F �r�Rn�l
F �r��

j=0

Nl

�W
n+1,N̄l+j

l
W

n�+1,N̄l+j

l

+ W
N̄l+n,j+1

l
W

N̄l+n�,j+1

l � , �2.28�

where N̄lNl+2 and the prime in �� refers to the finite
cutoff �c in the summation �see above�.

In the BCS-BEC crossover region, we shall find that the
Fermi chemical potential 	 deviates strongly from the usual
BCS limit, where it equals the Fermi energy �F. This effect is
taken into account by considering the equation for the num-
ber of atoms in addition to the BdG equations �9�. Since
noncondensed molecules are absent at T=0, the total number
density of Fermi atoms n�r� is simply given by

n�r� = 2��M�r��2 + nF�r�  2nM�r� + nF�r� , �2.29�

where each molecule counts for two Fermi atoms. The equa-
tion for the total number of atoms, which determines 	, is
then obtained by integrating Eq. �2.29� over r. The result is

N = 2�
n

�n
2 + �

nn�l

�2l + 1���W
n+1,N̄l+n�

l �2 + �W
N̄l+n,n�+1

l �2�

 2NM + NF. �2.30�

Here NM and NF are the number of �Feshbach� molecular
bosons and number of Fermi atoms in the form of Cooper
pairs, respectively. Equations �2.25� and �2.30� are the basic
equations of our theory at T=0, taking into account a Bose
condensate of Cooper pairs and molecules in a self-
consistent manner. We numerically solve the BdG equations
�2.25� together with the generalized number equation in Eq.
�2.30�, determining the coefficient �n �see Eq. �2.22��, ��r�,
�M�r�, nF�r�, and 	 self-consistently.

In order to understand the essential physics, we end this
section by recalling what the above formalism reduces to for
a uniform superfluid Fermi gas. In this case, the simple pair-
ing mean-field approximation �MFA� gives the usual BCS-
Gor’kov expressions for the diagonal and off-diagonal
single-particle Green’s functions,

G11�p,�� =
� + �p

�2 − Ep
2 , G12�p,�� = −

�̃

�2 − Ep
2 , �2.31�

with the BCS-Bogoliubov excitation energy given by

Ep = ���p − 	�2 + ��̃�2. �2.32�

Here �p�p−	 �where �p= p2 /2m� is the kinetic energy
measured from the chemical potential. Using G12�p ,�� to

calculate �, one finds that �̃ in Eq. �2.9� satisfies the usual
“gap equation” �but now with the pairing interaction Ueff
given by Eq. �2.10��,

�̃ = Ueff�
p

�
�̃

2Ep
tanh

1

2
�Ep, �2.33�

valid at finite temperatures. As usual, a cutoff is introduced
in the momentum summation. At this MFA level, the total
number of atoms at T=0 has the same form as Eq. �2.30�,

N = 2NM + NF. �2.34�

The number of Fermi atoms, including Cooper pairs, in Eq.
�2.34� is now given �using G11�p ,��� by the BCS expression

NF = �
p,


�cp

† cp
� = �

p
	1 −

�p

Ep
tanh

1

2
�Ep
 , �2.35�

while the number of condensed molecules is NM = ��M�2.

In the uniform gas, the values of 	 and �̃ are determined
by the self-consistent solutions of the MFA gap equation
�2.33� and the number equation given by Eqs. �2.34�. This
simple “pairing approximation” for the single-particle Fermi
excitations is expected to give a quantitative description at
T=0 �where tanh 1

2�Ep→1 in Eqs. �2.33� and �2.35��, since
fluctuations are small and all the molecules are Bose con-
densed. This T=0 limit was first studied by Eagles �8� and
Leggett �9� in the absence of a Feshbach resonance. As we
mentioned earlier, for T approaching Tc, the fluctuations as-
sociated with exciting molecules out of the condensate and
coupling to the particle-particle �Cooper-pair� channel be-
come dominant.

These fluctuations �rather than the breaking up of two-
particle bound states� were first included by Nozières and
Schmitt-Rink �NSR� �10� to determine Tc. In Ref. �3�, we
extended this NSR approach to discuss the superfluid phase
below Tc in a uniform Fermi gas, including a Feshbach reso-

nance and associated molecular bosons. Both �̃ and 	 are
obtained by solving Eqs. �2.33� and �2.34� self-consistently,

but now we include the depletion of �̃ through the presence
of non-Bose-condensed molecules. This procedure gives the
simplest extension of the MFA-BCS single-particle results,

in that now Eqs. �2.31� and �2.32� involve values of 	 and �̃
which include �in an average way� the effect of fluctuations
around the MFA theory. The effect of such fluctuations is of
considerable current interest �44,45� and lead to what is
called the “pseudogap” regime �for a recent review, see Ref.
�46��. In this region, strong low-energy fluctuations in the
Cooper channel suppress the density of states around the
Fermi energy, which has the same effect as if there was an
effective pair potential, even outside the superfluid region

�T�Tc� where �̃�r� vanishes. In a future paper, we will use
this generalized NSR approach to include fluctuations and
extend the results of the present paper to finite temperatures.

Y. OHASHI AND A. GRIFFIN PHYSICAL REVIEW A 72, 013601 �2005�

013601-6



III. SINGLE-PARTICLE GREEN’S FUNCTIONS

In ordinary BCS superfluidity, the single-particle excita-
tions �BCS quasiparticles� are associated with dissociation of
weakly bound Cooper pairs. In the coupled fermion-boson
model in Eq. �2.4�, these Cooper pairs are replaced by com-
posite bosons, consisting of Cooper pairs and molecular

bosons associated with the Feshbach resonance ��̃�r�
��r�−gr�M�r��. Even in the BEC regime �2��0�, Fermi
excitations can still exist �31� as well as collective modes
�which form a Bose spectrum�. As more and more fermions
pair up to form bosons, the spectral weight of the Fermi
branch vanishes, shifting to the Bose collective branch.

Single-particle properties are most conveniently discussed
in terms of Green’s functions. The “diagonal” single-particle
thermal Green’s function G11�r ,r� , i�m� is defined by
�47–49�

G11�r,r�,i�m� = − �
0

�

d� ei�m��T���↑�r,���↑
†�r�,0��� ,

�3.1�

where i�m is the fermion Matsubara frequency associated
with the imaginary time �. One needs three other single-
particle Green’s functions to describe a Fermi superfluid, as
summarized by the 22 matrix Green’s function �48�

Ĝ�r,r�,i�m� = 	G11�r,r�,i�m� G12�r,r�,i�m�
G21�r,r�,i�m� G22�r,r�,i�m�



= − �

0

�

d� ei�m�	�T���↑�r,���↑
†�r�,0��� �T���↑�r,���↓�r�,0���

�T���↓
†�r,���↑

†�r�,0��� �T���↓
†�r,���↓�r�,0���


 . �3.2�

In Eq. �3.2�, G22 gives the single-particle excitation spectrum
of Fermi atoms of pseudospin ↓. The off-diagonal compo-
nents G12 and G21 arise as a direct consequence of the broken
symmetry and the presence of a condensate of Cooper pairs.
Using the BdG equations in Eq. �2.12�, one can show that
these Green’s functions are related to each other as
G22�r� ,r , i�m�=−G11�r ,r� , i�m� and G21

* �r� ,r ,−i�m�
=G12�r ,r� , i�m�. From the definition of the Cooper-pair or-
der parameter ��r�=U��↓�r��↑�r��, we find the important
self-consistency condition �the gap equation�

��r� =
1

�
�
�m

�G12�r,r,i�m� . �3.3�

Using the eigenfunctions f lmn
F �r� defined in Eq. �2.14�, we

can write 22 single-particle Green’s function in Eq. �3.2�
as

Ĝ�r,r�,i�m� = �
lm

Ylm��̂�ĝl�r,r�,i�m�Ylm
* ��̂�� , �3.4�

where ĝl�r ,r� , i�m� is the 22 Green’s function for a given
value of the angular momentum l,

ĝl�r,r�,i�m� = �
j=0

Nl �� jl�r�� jl
† �r��

i�m − Ejl
F +

�̄ jl�r��̄ jl
† �r��

i�m + Ejl
F � .

�3.5�

The two-component spinor � jl�r� in Eq. �3.5� is defined in
terms of the solutions of the BdG equations in Eq. �2.25�,
namely,

� jl�r� = �
n=0

Nl 	Wn+1,j+1
l

W
N̄l+n,j+1

l 
Rnl
F �r�, �̄ jl�r� = i�2� jl�r� .

�3.6�

Here �2 is the Pauli matrix.
A very useful quantity is the Fermi single-particle excita-

tion spectrum N���, also referred to as the density of states
�DOS�. This is related to the spectrum of the single-particle
Green’s function,

N��� = −
1

�
� dr Im�G11�r,r,i�m → � + i��� . �3.7�

Substituting Eqs. �3.4� and �3.5� into Eq. �3.7�, this spatially
averaged density of states �per pseudospin� is given by
�Ejl

F�0�

N��� = �
l

�2l + 1��
n,j

�Wn+1,j+1
l �2��� − Ejl

F� ��� 0� .

�3.8�

It is also useful to introduce the local density of states, de-
fined as

N��,r�  −
1

�
Im�G11�r,r,i�m → � + i���

= �
nn�l

2l + 1

4�
Rnl

F �r�Rn�l
F �r��

j

Wn+1,j+1
l Wn�+1,j+1

l

��� − Ejl
F� . �3.9�

The local density of states in Eq. �3.9� is simply related to
the spatially averaged total DOS in Eq. �3.8� by
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N���  �
0

�

4�r2dr N��,r� . �3.10�

The gap equation �2.27� is easily obtained from the
present Green’s function formalism. When we use the off-
diagonal �1,2� component of Eq. �3.5� in Eq. �3.3�, we obtain

��r� = − U�
nn�l

�
2l + 1

4�
Rnl

F �r�Rn�l
F �r��

j=0

Nl

W
N̄l+n,j+1

l
Wn�+1,j+1

l .

�3.11�

Once one has ��r�, one can calculate the coefficients �n in
Eq. �2.22� and then find �M�r�. By this procedure, one finally

obtains the value of �̃�r�, with the total number equation in
Eq. �2.30� determining the self-consistent values. As with the
usual BdG equations in a uniform BCS model, there is a
relation between the eigenfunctions for Enl

F �0 and Enl
F �0,

which is given by �42�

�
n
	 W

N̄l+n,j+1

l

− Wn+1,j+1
l


Rnl
F �r� = �

n
	W

n+1,N̄l+j

l

W
N̄l+n,N̄l+j

l 
Rnl
F �r� .

�3.12�

Substituting Eq. �3.12� into Eq. �3.11�, we find that the gap
equation �2.27� for the Cooper-pair order parameter ��r� is
reproduced.

IV. SCATTERING LENGTHS, GAP EQUATION,
AND STRENGTH OF FESHBACH RESONANCES

The Hamiltonian in Eq. �2.1� involves the bare energies
U, gr, and 2�. As usual in dealing with ultracold atomic
gases, it is convenient to work in terms of renormalized in-
teraction energies which incorporate the effect of high-
energy processes. This procedure naturally leads to the two-
body scattering length as

2b which describes the effective
interaction between low-energy atoms, even in the case of a
Feshbach resonance. The two-body scattering length as

2b can
be measured directly in a variety of ways.

In this section, we briefly review the standard theory for
renormalized low-energy parameters �see, for example, Sec.
IV A of Ref. �2� and Refs. �4,7,12��. We also point out that in
the presence of a Feshbach resonance, the self-consistent gap
equation which determines the order parameter naturally in-
troduce a different s-wave scattering length as, which has a
crucial dependence on the Fermi chemical potential 	. As a
result, in dealing with the BCS-BEC crossover in Fermi su-
perfluids, it seems most natural to treat as as the control
parameter, rather than as

2b.
There is a second reason that makes it useful to discuss

properties in the crossover region as a function of as. Before
doing so, we discuss the parameters we use in this paper. We
take the total number of atoms to be N=10 912 �=N↑+N↓
=2N↑�. In a noninteracting Fermi gas, this corresponds to
filling atoms �per spin� up to E=31.5��0 ��F�, where �0 is
the trap frequency. As the unit of length, we use the Thomas-
Fermi radius RF�2�F /m�0

2 for a free Fermi gas in the trap.

We take the Feshbach coupling constant gr /�RF
3 =0.06�0

�ḡrgr��N /RF
3�=0.2�F�. The nonresonant pairing interac-

tion values we use are either U /RF
3 =0.001�0 �Ū

U�N /RF
3�=0.35�F� or 0.0015�0 �Ū=0.52�F�. For the high-

energy cutoff, we take �c=161.5��0 ���F�.
The explicit calculations presented in this paper are for

what is called a narrow Feshbach resonance, while all current
ultracold Fermi gas experiments are done using broad Fesh-
bach resonances. However, in a uniform Fermi gas, several
quantities are found to have values very similar if viewed as
a function of as, for both weak �ḡr��F� and strong �ḡr

��F� Feshbach resonances. At the present time, numerical
calculations are only able to deal with a narrow Feshbach
resonance in the case of a trapped Fermi gas. This is due to
the fact that one is limited to dealing with a finite number of
excited states in a trap and this makes it difficult to deal with
a broad Feshbach resonance, which couples molecules to
Fermi atoms in very high-energy eigenstates. This approxi-
mate independence of the strength of the Feshbach resonance
�for a given value of as� is thus very useful.

We first recall the standard case of two Fermi atoms in-
teracting in a vacuum �49� with a bare interaction denoted by
−U. In this case, the effective low-energy ��=0� renormal-
ized s-wave scattering length is given by

−
4�as

2b

m
=

U

1 − U��0,�c� �1/2�p�
 UR. �4.1�

Effectively the renormalized interaction UR incorporates all
high-energy scattering processes. In the absence of a Fesh-
bach resonance �gr=0� and in a uniform gas, the gap equa-
tion �2.33� can be written in terms of this renormalized in-
teraction as follows:

1 = UR �
�0,�c�

	 1

2Ep
tanh

Ep

2T
−

1

2�p

 . �4.2�

Here we have written the gap equation at finite temperatures.
The summation in Eq. �4.2� converges, so we can safely take
�c→�. This gives a cutoff-independent gap equation as a
function of the renormalized interaction UR or, equivalently,
the two-body scattering length as

2b defined in Eq. �4.1�. As
first discussed by Leggett �9� and Randeria �12�, it is conve-
nient to discuss the BCS-BEC crossover region in terms of
the dimensionless parameter �kFas

2b�−1. As the bare attractive
interaction U increases, �kFas

2b�−1 goes from −� �BCS� to �
�BEC�.

In the case of a Feshbach resonance, one can introduce a
renormalized s-wave scattering length describing low-energy
atoms which is the analog of Eq. �4.1�, namely,

−
4�as

2b

m


Ueff
2b

1 − Ueff
2b��0,�c� �1/2�p�

, �4.3�

where the bare Feshbach resonance is described by
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Ueff
2b  U +

gr
2

2�
. �4.4�

Once can rewrite Eq. �4.3� in the form

−
4�as

2b

m
= UR +

�gr
R�2

2�R , �4.5�

which now involves the renormalized parameters for U, gr,
and 2� �for details, see, for example, Sec. IV A of Ref. �2��.
These low-energy renormalized parameters can be directly
measured.

However, in contrast to Eq. �4.2�, the cutoff-independent
energy gap equation in the presence of a Feshbach resonance
is not given simply in terms of the usual two-body s-wave
scattering length as defined in Eqs. �4.3� and �4.5�. Instead,
one finds �1–4�

1 = Ueff
R �

�0,�c→��
	 1

2Ep
tanh

Ep

2T
−

1

2�p

 , �4.6�

where

Ueff
R 

Ueff

1 − Ueff��0,�c� �1/2�p�
 UR +

�gr
R�2

2�R − 2	
 −

4�as

m
.

�4.7�

Ueff is defined in Eq. �2.10�. We first restrict the following
discussion to the case of a uniform Fermi superfluid. Com-
paring this new s-wave scattering length as involved in the
gap equation �4.6� with the two-body scattering length as

2b

defined by Eqs. �4.3� and �4.5�, we see that as depends cru-
cially on the Fermi chemical potential 	. This in turn is a
strong function of the threshold energy 2� and hence will
change value in the BCS-BEC crossover. One may think of
as as including many-body effects related to the coupling of
the fermions to molecular bosons �50�. We note in passing
that it is wrong to simply use as

2b �given in Eq. �4.5�� in the
gap equation �4.6� in the general case.

The fact that the cutoff-free gap equation �4.6� depends
only on as, irrespective of detailed values of the nonresonant
interaction U and the Feshbach resonance strength gr, is very
useful. In particular, a broad Feshbach resonance �ḡr��F�
and a narrow Feshbach resonance �ḡr��r� give approxi-

mately the same values for Tc and �̃ for the same value of as.
As an example, we show in Fig. 1�a� the phase transition
temperature Tc in the BCS-BEC crossover for a uniform gas
for a broad and a narrow Feshbach resonance. In a broad
Feshbach resonance, the BCS-BEC crossover occurs at the
value of ���F. In the case of a narrow Feshbach resonance,
the crossover occurs at ���F. However, when we express Tc
as a function of �kFas�−1, both cases give almost the same
result over the whole BCS-BEC crossover region, as shown
in Fig. 1�a� �51�. In addition, Fig. 1�b� shows that the change
from a gas of Fermi atoms to a molecular Bose gas in the
BCS-BEC crossover is also almost the same for both large
and small values of ḡr when viewed as a function of �kFas�−1.
The region of �kFas�−1�0 can thus be regarded as a BEC of
molecular bosons for both broad and narrow Feshbach reso-

nances. Using as in Eq. �4.7�, we find the same crossover
physics irrespective of the width of the Feshbach resonance.
This is useful since, as we noted earlier, our numerical cal-
culations are limited to ḡr��F, while recent experiments
deal with a broad Feshbach resonance. We also note that in
the case of a broad Feshbach resonance, the crossover occurs
at a value of ���F�	. In this region, we can omit the
chemical potential in Eq. �4.7� and then one finds as�as

2b,
the usual renormalized low-energy two-body scattering
length which can be measured directly.

In contrast to Tc, the character of the Feshbach resonance
�broad or narrow resonance� does show up somewhat when
we consider the number of molecules NM in Fig. 1�b�. With
increasing �kFas�−1 from the BCS side, Fig. 2�b� shows that
the number of Feshbach molecules with a finite lifetime in-
creases in the case of a narrow Feshbach resonance. Stable
molecules �NB

�=0� become dominant in the region of negative
chemical potential 	�0 �see Fig. 2�a��. Although stable
Cooper pairs given by the NC

�=0 curve also exist in this re-
gion, we see that NC

�=0�NB
�=0. Thus, in the case of a narrow

Feshbach resonance �small ḡr�, superfluidity in the region of

FIG. 1. �a� Superfluid transition temperature Tc as a function of
the scattering length �kFas�−1 for a uniform gas. The solid line
shows the case of a narrow Feshbach resonance �gr

�n��F�, while
the dashed line is for the case of a broad Feshbach resonance
�gr

�n��F�, where n is the density of atoms. The peak structure
around �kFas�−1�0.25 is an artifact of the approximation and is not
intrinsic �15�. The solid circle shows Tc as a function of the two-
particle scattering length as

2b in the case of gr
�n=20�F �broad Fes-

hbach resonance�. We take the cutoff �c=2�F. �b� The number of
Fermi atoms NF and the number of Bose molecules NM at Tc in the
BCS-BEC crossover. �NM includes both Cooper pairs and real two-
body molecules.� The total number of particles is given by N=NF

+2NM. Irrespective of whether one is dealing with a broad or nar-
row Feshbach resonance, one notes that bound states �NM� become
dominant when �kFas�−1�0.
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	�0 is largely associated with a BEC of stable Feshbach
molecules.

On the other hand, in the case of a broad Feshbach reso-
nance, the number of Cooper pairs with a finite lifetime �NC

sc�
first rapidly increases as one increases �kFas�−1 �see Fig.
2�c��. When 	�0, stable long-lived Cooper pairs �NC

�=0� be-
come the dominant bound states. Below Tc, the tightly bound
molecules around 	�0 are now Cooper pairs. As shown in
Fig. 2�c�, the Feshbach molecules �NB

�=0� eventually become
dominant deep inside the BEC regime �defined by �kFas�−1

�1�. The difference between the two cases is due the fact
that, in a broad Feshbach resonance, the BCS-BEC crossover
occurs around ���F, where the formation and dissociation
of Feshbach molecules only appears as a virtual process. In
contrast, the crossover region is located in the region �

��F in the case of a narrow Feshbach resonance, where a
large number of Feshbach molecules can form as quasistable
entities.

The preceding discussion was limited to a uniform Fermi
superfluid. A discussion on Tc and the composite order pa-
rameter in terms of the scattering length as is also possible in
a trapped gas, if we use the LDA �2,52�. In this case, the

spatially dependent order parameter �̃�r� is self-consistently
determined by the cutoff-dependent gap equation, given by

1 = Ueff�r� �
�0,�c�

1

2Ep�r�
tanh

Ep�r�
2T

. �4.8�

Here Ep�r� is the energy of a BCS excitation with density
and other quantities evaluated locally at position r. This is
given by Eq. �2.32�, with 	 being replaced by 	�r�	
−m�0

2r2 /2. The bare pairing interaction strength at r in Eq.
�4.8� is defined as

Ueff�r�  U +
gr

2

2� + �3/2��0 − 2	�r�
, �4.9�

where we have included the zero-point energy �3/2��0 for
later discussion. From our preceding analysis, the LDA gap
equation �4.8� can be written in a cutoff-independent form,
but it now involves the renormalized pairing interaction
given by

Ueff
R �r� 

Ueff�r�

1 − Ueff�r���0,�c� �1/2�p�
. �4.10�

In particular, since 	�r=0�=	, Ueff
R �r=0� equals Ueff

R given
in Eq �4.7� �apart from the zero-point energy term �3/2��0 in
Eq. �4.9��. Thus, recalling that Tc in the LDA �2� is deter-
mined by the gap equation �4.8� at r=0, we conclude that the

crossover behavior of Tc and �̃�r=0� at the center of the trap
can be described �as in a uniform Fermi gas� as functions of
the renormalized scattering length as defined in Eq. �4.7�.
Indeed, Fig. 3�a� shows that both narrow and broad Feshbach
resonance cases give almost the same Tc as a function of
�kFas�−1 in the whole BCS-BEC crossover regime.

As in a uniform gas discussed above, in a trap some quan-
tities will depend on the strength of the Feshbach resonance.
The LDA gap equation �4.8� involves a position-dependent
as�r� because of the spatial dependence of 	�r�. In a broad
Feshbach resonance �ḡr��F�, the crossover occurs at �
��F, so that 	�r� ���F� can be neglected in this regime. On
the other hand, Ueff�r� decreases as we go from the center of
the trap in the case of a narrow Feshbach resonance �ḡr

��F�, since now the crossover occurs at ���F and hence
	�r� cannot be ignored in Ueff�r�. This explains why the total
number of molecules in slightly smaller in the case of a
narrow Feshbach resonance, as shown in Fig. 3�b�.

In this paper, we present results as a functions of the
renormalized uniform gas scattering length as in Eq. �4.7�,
with the result that the theory is approximately cutoff-free
within LDA. The dependence on �kFas�−1 also gives a de-
scription for Fermi superfluids around the center of the trap,
irrespective of the width of the Feshbach resonance. We refer

FIG. 2. �a� Chemical potential in the BCS-BEC crossover for a
uniform gas at Tc, based on Ref. �1�. The parameters are the same as
in Fig. 1. �b� and �c� show the detailed character of particles at Tc

for a uniform gas in the cases of a narrow Feshbach resonance and
a broad Feshbach resonance, respectively. NB

��0 is the number of
Feshbach molecules with a finite lifetime, and NB

�=0 is the number of
stable Feshbach molecules. The number of stable Cooper pairs is
NC
�=0; NC

sc is the contribution from the scattering states or Cooper
pairs with a finite lifetime. For precise definitions of NB and NC, see
Ref. �1�.
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to the region of �kFas�−1�0 as the BCS regime and the re-
gion of �kFas�−1�0 as the BEC regime. We note that the
“real” or bare pairing interaction in the gap equation is not
4�as /m, but −Ueff defined in Eq. �2.10�. This is always at-
tractive even in the positive �BEC� region of as�0, as we
show in Fig. 4�a�. In Fig. 4�b�, we give the relation between
as and �, for the parameters gr and U used in this paper. In
the numerical results discussed in this paper, for the conve-
nience of the reader, we give both the value of � as well as
the corresponding value of �kFas�−1.

V. EQUILIBRIUM PROPERTIES IN THE CROSSOVER
REGION

Figure 5 shows the calculated atomic density profile at
different places in the BCS-BEC crossover region at T=0. In
the BCS regime shown in Fig. 5�a�, the number of Fermi
atoms is much larger than the number of �Feshbach� mol-
ecules. Although these atoms form Cooper-pair bosons, the
Pauli exclusion principle is still relevant. As a result, the
Fermi gas spreads out to a distance of the order of the
Thomas-Fermi radius RF, just as in the case of a trapped
noninteracting Fermi gas. We recall that in contrast to
bosons, interactions have a negligible effect on the density
profile of a trapped Fermi gas in the normal phase. The rela-
tive number of Cooper-paired fermions �nF�r�� and bound
�Feshbach� dimers �nM�r�� continuously changes as the

threshold energy 2� is lowered �or �kFas�−1 increases�. On
the BCS side of the crossover regime shown in Fig. 5�b�, the
molecular density nM�r� has become very large in the center
of the trap. This shows that the Pauli exclusion principle, as
expected, is less important in this region where Bose mol-
ecules start to dominate. However, the Fermi atoms still
dominate for r�0.2RF. This feature persists on the BEC side
of crossover regime shown in Fig. 5�c�, where nF�r� is seen
to be dominant for r�0.3RF. The tail of the density profile
consisting of unpaired atoms finally disappears in Fig. 5�d�,
where almost all the atoms have formed Feshbach molecules.

Figure 6 shows how the Fermi chemical potential 	
changes in the BCS-BEC crossover. As one approaches the
BEC regime, 	 decreases from the weak-coupling �BCS�
result given by 	��F �=31.5�0 in our case�. In the BEC
regime, the molecular Bose chemical potential 	M =2	 ap-
proaches the lowest molecular energy, given by 2�
+ �3/2��0, as shown in the inset in Fig. 6. We note that this
limiting case of 	M =2�+ �3/2��0 is just the condition for
the BEC of a noninteracting Bose gas in a harmonic trap.

In Fig. 6, the Fermi chemical potential is seen to go
through zero at �kFas�−1�0.65, which corresponds to �=0.
To understand this, let us consider the case of a uniform gas.
In this case, the single-particle excitation spectrum is given
by the usual BCS expression �but now with the composite

order parameter �̃� �3,9,12,31�

FIG. 3. �a� Superfluid transition temperature Tc as a function of
the scattering length �kFas�−1 for a trapped gas. The cases of a
narrow Feshbach resonance and broad Feshbach resonance are
shown by the solid line and dashed line, respectively. In this figure,
nN /RF

3 , and we take the cutoff �c=2�F. �b� The number of Fermi
atoms NF and the number of Bose molecules NM at Tc in a har-
monic trap.

FIG. 4. �a� Comparison between the bare attractive interaction
−Ueff between Fermi atoms in the gap equation �as defined in Eq.
�2.10�� and the interaction 4�as /m defined in Eq. �4.7�. We take the
cutoff frequency �c=161.5�0 and the Fermi energy �F=31.5�0 in
this and later figures. �b� Relation between the scattering length as

and the bare threshold energy 2�, for the parameters we use in this
paper. The Feshbach coupling strength is taken as ḡr=0.2�F.
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Ep = ���p − 	�2 + �̃2. �5.1�

In the weak-coupling BCS regime, where 	 is positive, the
energy gap of the BCS excitations at the Fermi energy is

equal to ��̃�. However, this relation is no longer valid when 	
is negative, as in the strong-coupling crossover regime
�9,13�. In this regime, the energy gap is given by

Eg = �	2 + �̃2. �5.2�

In the BEC limit ��→−��, the composite order parameter is
described by a pure BEC condensate of molecules, given by

�̃→gr
�N /2. In the same limit, the chemical potential

approaches the threshold energy 	��→−�. Thus, the exci-
tation gap Eg given by Eq. �5.2� approaches ���. This makes
sense, since 2���0� is the lowest molecular energy, and
hence 2��� is the excitation energy to dissociate a molecule
into two Fermi atoms.

In a trapped gas, within the LDA, the chemical potential
	 and the order parameter �̃ in Eq. �5.2� are replaced by the
position-dependent ones, 	�r�	−m�0

2r2 /2 and �̃�r�, re-
spectively. In the extreme BEC limit ��→−��, the lowest
single-particle excitation energy is given as the energy to
dissociate a molecule into two Fermi atoms and put them at
the lowest �unpaired� fermion state. In the LDA, this lowest
state is at r=0, because the trap potential has its minimum at
the center �Vtrap

F �r=0�=0�. This again leads to Eg��	�����
in the BEC limit �when �̃�0�� �	��. As a result, we find that
�kFas�−1�0.65 �at which 	=0� gives a characteristic scatter-
ing length which separates the region dominated by weakly
bound Cooper pairs �	�0� and the region dominated by
tightly bound molecules �	�0�. Equivalently, this boundary
occurs at �=0.

Figure 7 shows the profile of composite order parameter

�̃�r�. As expected from Fig. 5, �̃�r� is dominated by the
Cooper-pair component ��r� in the BCS regime shown in
panel Fig. 7�a�. This calculated profile agrees with previous
results in the BCS limit, as obtained by Bruun and co-
workers �38�. However, in the presence of a Feshbach reso-
nance, even in the BCS regime, the molecular condensate
�M�r� is found to be finite everywhere ��r� is finite, due to
the identity given in Eq. �2.6�. In an ideal Bose gas BEC,
�M�r� is simply proportional to the ground-state wave func-
tion of the harmonic potential given by Eq. �2.23�. However,
since the molecular bosons are strongly hybridized with the

FIG. 5. Density profile in the
BCS-BEC crossover. nF�r� and
nM�r� represent the Fermi atom
density and Bose molecule den-
sity, respectively. n�r�=nF�r�
+2nM�r� is the total density pro-
file. r is normalized by Thomas-
Fermi radius RF=�2�F /m�0

2 for a
free Fermi gas in a trap. We take

ḡr=0.2�F, Ū=0.35�F, and �0B

=�0. These values are are also
used in Figs. 6–8.

FIG. 6. Fermi chemical potential 	 in the BCS-BEC crossover
at T=0. The inset shows 	 as a function of the threshold energy 2�.
The dashed line in the inset is the lowest energy of molecular ex-
citation spectrum in a trap.
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Fermi atoms by the Feshbach resonance, in the BCS regime,
we find that �M�r� is no longer given by the ground state of
the harmonic potential as in Eq. �2.23�. Indeed, as shown in
Fig. 8�a�, �M�r� in this regime is given by a superposition of
excited molecular states �n�1�, as indicated in Eq. �2.21�.
The molecular condensate �M�r� continuously increases in

magnitude as one approaches the BEC regime, as shown in
Figs. 7�b� and 7�c�. At the same time, Fig. 8 shows that the
contribution of excited states �n�1� decreases, indicating
that �M�r� approaches the ideal BEC described by Eq.
�2.23�. However, because of the identity in Eq. �2.6�, the
Cooper-pair component ��r� remains finite even in the BEC

FIG. 7. Spatially dependent

composite order parameter �̃�r� in
a trap in the BCS-BEC crossover.
The Cooper-pair order parameter
��r� and molecular condensate
�m�r� are also shown �all in units
of �0�.

FIG. 8. Expansion coefficient
�n of the molecular condensate
wave function �M�r�
= �1/�4���n�nRn0

M �r� given by
Eqs. �2.21� and �2.22�. BEC in a
noninteracting Bose gas corre-
sponds to all �n=0 for n�0.
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regime. Indeed, as shown in Fig. 7�d�, ��r=0��15�0 when
�=0.

In Fig. 9, we compare the total atomic density profile
n�r�=2nM�r�+nF�r� with the profile of the composite order

parameter �̃�r�, which clearly shows that the composite or-
der parameter is always finite in the region where n�r� is
finite. In addition, we expect that n�r����M�r��2 in the BEC
regime. This is confirmed by the calculated values shown in

the inset in Fig. 9�b�, which show that n�r����̃�r� /gr�2.
We note that when the LDA is used in calculating the

density profile as well as the order parameter at T=0, it has
been shown that the LDA is a good approximation in the
BCS regime �38�. In contrast, the shrinkage of the density
profile n�r� shown in Fig. 7, as well as the profile of the

composite order parameter �̃�r�, is poorly overestimated by
the LDA �52� as we enter the BEC regime. This is because
the LDA underestimates the kinetic energy, which results in
the density profile of atoms spreading out more.

At T=0, such a LDA calculation correctly predicts that
the resulting composite order parameter is finite in all re-
gions where n�r� is finite. This reflects the fact that the Fermi
surface is unstable against an infinitesimally weak attractive
interaction at T=0, which leads to a superfluid phase transi-
tion everywhere �as long as n�r� is positive� in a trap in the
LDA. However, this situation is no longer satisfied at finite
temperatures. As we have discussed in Ref. �2�, only the
center of the trap �r=0� is in the superfluid phase just below
Tc in the LDA, with this superfluid region becoming wider
with decreasing temperatures. Thus, for 0�T�Tc, an LDA
calculation predicts a spatial region where the order param-

eter vanishes, even though the particle density is still finite.
�This feature is shown in Fig. 1 of Ref. �29�.� However, the
presence of such a “two-phase” trapped Fermi gas �super-
fluid at the center and normal phase at the edge of the trap� is
clearly an artifact of the LDA. In fact, the entire gas is in the

superfluid phase below Tc, with �̃�r� finite everywhere
where n�r� is finite.

VI. SINGLE-PARTICLE EXCITATIONS IN THE
CROSSOVER REGION

Figure 10 shows the single-particle density of states N���
given in Eq. �3.8�. One sees that the excitation spectrum in a
Fermi superfluid has a finite energy gap �Eg�. Although the

FIG. 9. Comparison of the calculated atomic density profile n�r�
and composite order parameter �̃�r�. The results are normalized by
the values at the center of the trap. �a� BCS and �b� BEC regime.

The inset compares n�r� with �̃�r�2 in the BEC regime.

FIG. 10. Single-particle density of states �DOS� at T=0. We take

ḡr=0.2�F and Ū=0.52�F. In calculating the DOS, we have intro-
duced a small imaginary part ��=0.005�0� in the eigenenergies.
The fine structure in DOS is due to the discrete levels of harmonic
trapping potential. The peaks are the single-particle Bogoliubov
quasiparticle energies in a trapped gas. Note that 	�0 in �c�.
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pairing interaction becomes stronger with decreasing thresh-
old energy 2�, the magnitude of Eg�1.2�0 is almost the
same in panels �a� and �b� of Fig. 10. We also note that there
is a characteristic sharp increase or shoulder around Eg. Re-
calling the case of a uniform BCS superfluid �where the en-

ergy gap is equal to ��̃��, one has the well-known result

N��� =  ��F�
�

��2 − �̃2
!�� − ��̃�� , �6.1�

where !�x� is the step function. The normal-state density of
states is given by  ���m�2m� /2�2. �We have approxi-
mated this by the value at the Fermi energy, �=�F, in Eq.
�6.1�. This is a good approximation in the BCS limit. The
more correct expression for N���, including the effect of the
energy dependence of  ���, is given in Ref. �3�.� Equation

�6.1� predicts that N��� is singular at �= ��̃�. The sudden
increase in N��� at �=Eg in the trapped gas shown in Figs.
10�a� and 10�b� may be viewed as the remanent of this sin-
gular behavior of the single-particle excitations in the uni-
form BCS case.

Figure 10�c� shows the change in the density of states
N��� as we enter into the BEC region ���0�. One finds that
the energy gap now sharply increases �Eg�5�0� and the
sudden jump in the magnitude of N��� at the energy gap Eg

is absent.
In Fig. 11, we plot the single-particle excitation gap Eg in

the BCS-BEC crossover region �54�. This figure shows that
Eg rapidly increases when the chemical potential 	 becomes
negative ��kFas�−1�0.65�. In this region, 2Eg is the dissocia-
tion energy of a molecule. This energy 2Eg��	M��2��� be-
comes large as we decrease the threshold energy 2�→−�.
Indeed, we find that Eg approaches �	� �given by the dashed
line in Fig. 11� when we take 	→−�, which is consistent
with Eq. �5.2� valid for a uniform gas. We also see from Fig.
12 that the number of molecules becomes much larger than
the number of Fermi atoms for ��0 or �kFas�−1�0.65, as
expected.

One can understand �in the case of a uniform gas� why the
“coherence peak” �i.e., the sudden jump� in N��� at Eg is
absent in the crossover region shown in Fig. 10�c�. In the
BEC region one finds �see Eq. 5.4 of Ref. �3��

N��� =
m�2m

4�2 	1 +
�

��2 − �̃2
���2 − �̃2 + 	�1/2

!�� − �	2 + �̃2� , �6.2�

where the factor ���2− �̃2+	�1/2 comes from the normal-
state density of states  ���"��. When 	 is negative, the
threshold energy of the N��� is determined not by the factor
��2− �̃2, but by the threshold energy of the normal DOS
 ���. This leads to the step function in Eq. �6.2�. As a result,
the density of states N��� of a Fermi superfluid is finite only

for ���	2+ �̃2. The expected coherence peak at �= ��̃�
��	2+ �̃2 actually occurs in a region where N��� vanishes.

When we compare the single-particle excitation gap Eg

for 	�0 in Fig. 11 with the magnitude �̃�r=0� of the com-
posite order parameter shown in Fig. 13, we see that Eg

� ��̃�0����F in the crossover region. Since the excitation

FIG. 11. Single-particle excitation gap Eg appearing in the den-
sity of states N��� in the BCS-BEC crossover in a trap. The dashed
line shows �	� in the negative 	 region ��kFas�−1�0.65�. The re-
gion around the minimum of Eg shown in the inset is discussed in

the text. We take ḡr=0.2�F and Ū=0.52�F.

FIG. 12. A plot of the calculated number of atoms �NF� and
molecules �NM� at T=0. The total number of atoms is given by N
=NF+2NM. We find NM �N /2=10 912/2 in the negative 	 region

�see also Fig. 6�. We take ḡr=0.2�F and Ū=0.52�F.

FIG. 13. Change in the maximum value of composite order

parameter �̃�0� at the center of the trap in the crossover region.
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gap Eg equals the order parameter �when 	�0� in a uniform
gas, this difference clearly originates from the inhomogene-
ity of a superfluid Fermi gas in a trap. To understand the
origin of this very small value of the single-particle excita-
tion gap Eg in a trapped superfluid Fermi gas, it is very
useful to compare N��� and the local density of states
N�� ,r� given by the expression in Eq. �3.9�. Figure 14�b�
shows that no low-energy spectral weight comes from the
center of the trap. In fact, panel �d� clearly shows that the
low-energy spectral weight in N��� shown in panel �a�
mainly comes from the region r�0.6RF, which is close to
the bottom of the effective potential well composed of the

�composite� pair potential �̃�r� and the harmonic trap mea-
sured from the chemical potential 	, given by Vtrap

eff �r�
�Vtrap

F �r�−	�!(Vtrap
F �r�−	) �see the inset of Fig. 14�b��.

Strictly speaking, this effective potential is a combination of
an ordinary �diagonal� and an anomalous �off-diagonal� po-

tential in the BdG equations. This situation is analogous to
the boundary problem in superconductivity, as schematically
indicated in Fig. 15. As first discussed by de Gennes and
Saint-James �53� in the context of superconductivity, “An-
dreev” bound states can appear well below the bulk energy

gap ���̃�, around the minimum of the effective potential
well. Thus Eg may be viewed as the energy of the lowest
Andreev bound state formed in the effective potential well

�=�̃�r�+Vtrap
eff �r��. These are also called the “in-gap” states

�58�.
The role of such surface excitations was first discussed by

Baranov �58� in connection with a BCS superfluid gas in a
trap, using the WKB semiclassical solution of the BdG equa-
tions. More recent papers in the context of the BCS-BEC
crossover are by Kinnunen, Rodriguez, and Törmä �29� using
the LDA, and by Heiselberg �59� using the WKB approxi-
mation. We note that bound-state energies decrease when the
effective potential width d in Fig. 15�b� increases. In a
trapped Fermi gas, the analogous effective potential well be-
comes wider as we enter the crossover regime because the

spatial width of the composite order parameter �̃�r� shrinks
in this region, as shown in Fig. 7. In addition, the decrease of
chemical potential 	 leads to a more gradual slope of the
diagonal potential Vtrap

eff �r� around Vtrap
eff �r�=0. These are the

reasons why Eg slightly decreases �see the inset of Fig. 11�
with increasing �kFas�−1, in the region 0.65� �kFas�−1�0.
We note that the lowest Andreev-bound-state energy level
does not determine Eg once we are in the BEC region �	
�0�. In this case, 2Eg is dominated by the dissociation en-
ergy of tightly bound molecules and thus we find Eg��	�
���� ��→−�� in Fig. 11.

In connection with the WKB approximation �58,59�, we
remark that this should be quite good in the extreme BCS

FIG. 14. Localized density of states N�� ,r� given by Eq. �3.9�
in the crossover regime. The peaks correspond to the Andreev or
in-gap states. The inset in �b� shows the combined potential well

consisting of the composite “off-diagonal” pair potential �̃�r� and
“diagonal” trap potential measured from the chemical potential,
given by Veff

trap�r��Vtrap
F �r�−	�!(Vtrap

F �r�−	). Actually, atoms also
experience the Hartree potential −�U /2�nF�r�, but this is not plotted
in the inset.

FIG. 15. �a� Combined potential well formed by the off-diagonal

pair potential �̃�r� and the diagonal trap potential Vtrap
F �r�. The com-

bined potential is given by the sum of �̃�r� and Veff
trap�r��Vtrap

F �r�
−	�!�Vtrap

F −	�. The low-energy states appear around the bottom of
this effective potential well. �b� Simplified model of the combined
potential well which gives rise to Andreev bound states �53,58�.
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limit, where there is still a well-defined Fermi surface. How-
ever, this approach seems less justified in the crossover re-
gion, where the important single-particle states are no longer
close to the Fermi energy. Further studies are needed of the
validity of the semiclassical approximation to the BdG equa-
tions in the crossover region.

VII. rf-TUNNELING SPECTROSCOPY IN A TRAPPED
FERMI SUPERFLUID

In this section, we discuss recent work using rf-tunneling
spectroscopy. As with any tunneling experiment, this clearly
gives information about the single-particle excitations in fer-
mion superfluids �27,29,55–57,59–61�. In particular, one can
extract information about both the energy gap of the single-
particle excitations as well as the value of the pair order
parameter, but this can only be done by comparison with
theoretical calculations. The rf-tunneling spectroscopy cross
section is calculated by considering the tunneling current in-
duced by laser radiation. In the rotational wave approxima-
tion, the tunneling Hamiltonian is given by �29,55–57�

Ht = Ht
F + Ht

M = tF� dr�ei�qL·r−�Lt��a
†�r��↑�r� + H.c.�

+ tM � dr�ei�qL·r−�Lt��a
†�r��↓

†�r���r� + H.c.� . �7.1�

Here qL and �L represent the momentum and frequency of
the laser light, respectively. The first term Ht

F describes the
usual tunneling of an atom in the ↓-spin state to another
hyper-states described by the fermion field operator �a�r�,
with a strength given by the tunneling matrix element tF. �We
assume that tF has no spatial dependence.� This new hyper-
fine state �a is described by the Hamiltonian

Ha =� dr �a
†�r�	−

�2

2m
+ �a − 	a + Vtrap

F 
�a�r� ,

�7.2�

where �a is the threshold energy and 	a is the chemical
potential of this state. In Eq. �7.2�, we assume that atoms in
this state are noninteracting and experience the same trap
frequency as the other hyperfine states ↑, ↓. The second term
Ht

M in Eq. �7.1� describes the tunneling into state �a associ-
ated with the dissociation of a bosonic molecule, with the
matrix element tM. This process is the signature of a Fesh-
bach resonance. In the superfluid phase at T=0, the Bose
quantum field operator ��r� can be replaced by the macro-
scopic wave function �M�r�. In this case, the molecule com-
ponent in Eq. �7.1� reduces to

Ht
M = tM � dr�ei�qL·r−�Lt��M�r��a

†�r��↓
†�r� + H.c.� .

�7.3�

The tunneling current operator is obtained from Î�t�
= Ṅa�t�= i�H ,Na�t��, where Na�dr �a

†�r��a�r� is the num-
ber operator of the �a state �for details, see, for example,

Chap. 9 of Ref. �47��. The resulting current operators origi-
nating from Ht

F and Ht
M are given by, respectively,

ÎF�t�  − itF� dr�ei�qL·r−�Lt��a
†�r��↑�r� − H.c.� , �7.4�

ÎM�t�  − itM � dr�ei�qL·r−�Lt��M�r��a
†�r��↓

†�r� − H.c.� .

�7.5�

Assuming the tunneling matrix elements tF and tM are small,
we can evaluate the tunneling current using first-order per-
turbation in Ht. The current associated with the usual tunnel-
ing term Ht

F induced by the rf field is given by �we set qL
=0�

IF��� = �ÎF���� = 2tF
2 Im� dr dr�#F�r,r�,− �� , �7.6�

where

�  �L − �a − 	 + 	a �7.7�

defines the effective detuning frequency. The two-particle
Green’s function #F�r ,r� ,�� in Eq. �7.6� is obtained from
the analytic continuation �47� of the thermal Green’s func-
tion

#F�r,r�,i�n�

 − �
0

�

d� ei�n��T���a
†�r,���↑�r,���↑

†�r���a�r����

=
1

�
�
i�m

G11�r,r�,i�m + i�n�Ga�r�,r,i�m� . �7.8�

Here, Ga is the single-particle thermal Green’s function for
the �a state quantum field operator,

Ga�r,r�,i�m� = �
nlm

Ylm��̂�Rnl
F �r�Rnl

F �r��Ylm
* ��̂��

i�m − �nl
F . �7.9�

Here �nl
F =�0�2n+ l+3/2�−	a describe the energy levels of

the �a atomic hyperfine states. We note that Eq. �7.9� does
not explicitly involve the threshold energy �a or the chemi-
cal potential 	a, because these have been included in the
effective detuning � as defined in Eq. �7.7�. Hopefully, there
will be no confusion with the label of the Fermi Matsubara
frequency �m=�T�2m+1� and the azimuthal quantum num-
ber m.

We substitute the diagonal Green’s functions G11 in Eq.
�3.4� and Ga in Eq. �7.9� into Eq. �7.8�, and carry out the
Matsubara �m frequency summation in the usual way �47�.
After doing the analytic continuation to real frequencies, we
obtain �at T=0 and ��0�
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IF��� = 2�tF
2�

l

�2l + 1��
j=0

Nl

�
n=0

Nl

�W
n+1,N̄l+j

l �2

!��nl
F ����nl

F + Ejl
F − �� , �7.10�

where Ejl
F is the energy eigenvalue given by the self-

consistent solutions of the BdG equations.

The tunneling current from molecules IM���= �ÎM���� can
be calculated in the same way. Within first-order perturbation
in Hf

M, we find

IM��� = 2tM
2 Im� dr dr��M�r��M�r��#B�r,r�,− �� ,

�7.11�

where

#B�r,r�,i�n�

 − �
0

�

d� ei�n��T���a
†�r,���↓

†�r,���↓�r���a�r����

=
1

�
�
i�m

G22�r,r�,i�m + i�n�Ga�r�,r,i�m� . �7.12�

Carrying out the �m frequency summation in Eq. �7.12� and
the analytic continuation, we obtain

IM��� = 2�tM
2 �

l

�2l + 1��
j=0

Nl

�
n=0

Nl

�$nj
F �2!��nl

F ����nl
F + Ejl

F − �� ,

�7.13�

where the matrix element is given by

$nj
F  �

n�=0

Nl

W
N̄l+n�,N̄l+j

l �
0

�

r2dr Rnl
F �r��M�r�Rn�l

F �r� .

�7.14�

The analog of these results was first worked out by Törmä
and co-workers �29,55–57�, for both a uniform gas and a
trapped gas within the LDA. References �29,57� only include
the molecular tunneling current originating from the disso-
ciation of excited molecules, which only becomes important
at finite temperatures close to Tc. In the case of T=0, which
we are considering, all the molecules are Bose condensed. In
this case, the contribution in Eq. �7.13� associated with the
dissociation of the Bose-condensed molecules gives the
dominant contribution to the molecular current.

In order to illustrate the physics of the preceding expres-
sions for IF��� and IM���, it is useful to consider a uniform
superfluid Fermi gas at T=0. In this case, it is convenient to
evaluate IF��� and IM��� in momentum space. In a uniform
gas, the two-particle Green’s function # in Eq. �7.6� only
depends on the relative coordinate as #�r−r� ,−��, so that
Eq. �7.6� can be written as

IF��� = 2tF
2 1

�
�

p,i�m

Im�G11�p,i�m + i�n�Ga�p,i�m�� ,

�7.15�

where G11 is given in Eq. �2.31�, and Ga
−1�p , i�m� i�m−�p

is the single-particle Green’s function of a free uniform
Fermi gas of atoms in the hyperfine state a. After doing the
�m and p summations, one finds �55�

IF��� = �tF
2 	% =

1

2

�2 − �̃2

�
+ 	
 �̃2

�2

!�� − �̃�!	1

2

�2 − �̃2

�
+ 	
 . �7.16�

Here,  �%�"�% is the normal-state density of states given
below Eq. �6.1�. Equation �7.16� clearly has a peak at the

FIG. 16. The rf-induced current IF��� in the BCS-BEC cross-

over region at T=0. We take ḡr=0.2�F and Ū=0.52�F, and intro-
duce a finite imaginary part �=0.5�0 to the Bogoliubov eigenstate
energies to smooth out the results. The small but finite intensity at
�=0 in �a� and �b� is due to this imaginary part. The dashed line in

�b� is obtained by fitting Eq. �7.20� to ĨF���=�2IF��� around �

� �̃�r=0� �see Fig. 19� to extract the high-energy “hidden” peak

associated with the large composite order parameter �̃�r=0� at the
center of the trap. The rapid oscillations in the tunneling spectrum,
also seen in Figs. 19 and 20, originate from discrete quasiparticle
energy levels in a harmonic trap potential.
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energy gap given by �= ��̃� as long as 	�0 �BCS region�.
On the other hand, when 	�0 �BEC region�, the threshold
energy is given by the last factor in Eq. �7.16�,

�th = �	� + �	2 + �̃2, �7.17�

rather than �th= ��̃�. In this BEC limit, the expression in Eq.
�7.17� approaches the binding energy of a molecular boson
as �th→2�	��2���, which is twice as large as the threshold
energy �or energy gap� of the single-particle Fermi excita-
tions �in a uniform gas�. As one might expect, the threshold
energy of the rf-induced tunneling current IF��� continu-

ously changes from the single-particle excitation gap ��̃� in
the BCS regime to the threshold of the two-particle con-
tinuum in the BEC limit. In a trap, the tunneling current
IF��� in the LDA �29� is given simply by the spatial integra-

tion over Eq. �7.16�, where �̃�r� and 	�r�	− 1
2m�0

2r2 now
depend on the position r. The sharp peak at the excitation
threshold then becomes broadened, as first discussed in Ref.
�29�.

Figure 16 shows our calculated results for the rf-induced
current IF��� in the BCS-BEC crossover at T=0 in a trapped
gas. Since we take into account the discrete energy levels of
the harmonic trap potential �see Fig. 10�, the spectrum shows
rapid oscillations. In panel �a� describing the BCS region,
one sees that the lowest tunneling current frequency is at �
�0.08�F �62�. This corresponds to the single-particle excita-
tion gap Eg discussed in Sec. VI. A broad peak is also evi-
dent, centered at ��0.3�F. This peak energy is seen to de-
crease as one enters the crossover region �Fig. 16�b��. Since
the profile of the composite order parameter shrinks and the
chemical potential 	 decreases in this regime �see Figs. 6
and 7�, the width of the combined potential well ��̃�r�
+Veff

trap�r�; see also the inset in Fig. 14�b�� increases. In this
case, a large number of low-energy excitations appear, which
are localized at the minimum of the potential well. These
low-energy excitations lead to the large value of IF��� at low
�, as shown in Fig. 16�b�. In contrast, once we enter the
BEC regime, the single-particle excitation gap Eg quickly
becomes large �see Fig. 11�. This shows up in the rf-
tunneling currents in panels �c� and �d�, where the low-
energy Andreev surface excitations no longer determine the
pair threshold in IF���, even though these states still exist. In
Fig. 16�d�, we see the threshold energy of the Fermi spec-
trum becomes quite large, at �th�2�F, a result of being in
the BEC region. This value is approximately twice as large
as Eg �see Fig. 11� for this value of �, and is consistent with
the discussion given above for the case of a uniform super-
fluid.

For comparison, Fig. 17 shows the rf-tunneling spectros-
copy calculated using the LDA, which is given by �see Eq.
�7.16��

IF��� = �tF
2 � dr  	% =

1

2

�2 − �̃�r�2

�
+ 	�r�
 �̃�r�2

�2

!„� − �̃�r�…!	1

2

�2 − �̃�r�2

�
+ 	�r�
 . �7.18�

Here 	�r�=	− 1
2m�0

2r2+ �U /2�nF�r�, where �U /2�nF�r� is

the Hartree term. The values of 	, �̃�r�, and nF�r� which are
used in Eq. �7.18� are obtained by solving the BdG coupled
equations in a self-consistent manner, as discussed in earlier
sections.

Comparing Fig. 17 with Fig. 16, we find that when these
self-consistent solutions of the BdG equations are used, the
LDA gives a good overall approximation in the whole cross-
over regime for the rf-tunneling spectroscopy. However, it
does not give the true energy gap �Eg�0.08�F��F� in the
BCS regime, in contrast to the microscopic results shown in
Figs. 16�a� and 16�b�. Since this energy gap Eg originates
from the Andreev bound states, it is no surprise that a LDA
calculation does not reproduce it.

Although the peak energy in the tunneling current is very
small in Fig. 16�b�, this does not mean that the “average”
magnitude of the composite order parameter is small. When
we extract the contribution coming from the central region of
the trap �0�r�rc, where rc�RF�, IF��� has a peak at a high

energy, reflecting the large magnitude of �̃�r�0�. This is

FIG. 17. The rf-induced current IF��� evaluated using the LDA.
The parameters are the same as in Fig. 16. In calculating the spec-

trum, we have used the correct values of nF�r�, �̃�r�, and 	 ob-
tained from the solutions of the BdG coupled equations. In �b�, �1�
shows the spectral contribution from the trap region 0�r�0.3RF,
and �2� shows the contribution from the larger trap region 0�r
�0.6RF. These results clearly show that tunneling from the low-
energy surface states is the origin of the large low-frequency peak.
The inset in �b� shows the profile of the computed composite order

parameter �̃�r� used for �=0.6�F.
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shown in Fig. 17�b� for the case rc=0.3RF �line 1�, where
IF

LDA��� has a peak around ���F. In this restricted spatial

region �0�r�0.3RF�, �̃�r� is of the order of the Fermi en-
ergy, as shown in the inset of Fig. 17�b�. As one increases rc,
the contribution of the low-energy excitations localized
around the surface region of the cloud begin to “hide” this
high-energy peak. When we take rc=0.6RF in Fig. 17�b� �line
2�, the peak in the spectrum is still dominated by the low-
energy excitations. It would be very useful in future experi-
ments if one could measure the rf-tunneling current from the
central region of the trap. In principle, such selective mea-
surements could give detailed information about the spatial

dependence of �̃�r�.
When the profile of the composite order parameter

spreads out up to RF �namely, when �̃�r� is large even close
to the trap edge�, one expects that the effect of high-energy

excitations with an energy gap close to �̃�r=0� will domi-
nate over low-energy excitations in the rf spectrum IF���. To
confirm this expectation, we show a calculation in Fig. 18

using an ad hoc model for �̃�r� shown in the inset. One finds
that, as expected, the rf-tunneling spectrum for this broad

order parameter has a high-energy peak at �� �̃�0���F.

This kind of slowly decreasing �̃�r� might be obtained when
the effective repulsive molecule-molecule is strong, which
our calculations have ignored. We also note that our explicit
calculations are for a narrow Feshbach resonance, in which
case molecules are dominant in the crossover region. �Our

self-consistent expression for �̃�r� is shown in the inset of
Fig. 17�b�.� In a broad Feshbach resonance, where Cooper
pairs are dominant in the crossover regime and the size of
these Cooper pairs is still fairly large, such a broad profile of

�̃�r� may be possible. In the recent calculations of rf tunnel-
ing by Kinnunen et al. �29�, a high-energy peak was obtained
in the low-temperature limit. The difference between the re-

sult obtained in Ref. �29� and ours �Figs. 16 and 17� thus
seems largely due to the difference in the spatial profile of

the composite order parameter �̃�r� used in the two calcula-
tions.

As shown in Fig. 18 and the discussion above, the rf-
tunneling current IF��� is very sensitive to the detailed spa-

tial structure of �̃�r�. This is simply because the factor �−2 in
IF��� �see Eq. �7.16�� tends to emphasize the role of the
low-energy excitations of the superfluid gas. To extract in-
formation about the high-energy region and the magnitude of

�̃�0� in the center of the trap, it is useful to consider the

function ĨF����2IF���. In a uniform gas, when we neglect
the energy dependence of the normal-state density of states

 ��� for simplicity, we find that ĨF���"!��− ��̃��, so that

one can directly determine the magnitude of �̃ from the en-
ergy at which the spectrum shows a sudden jump. Using the

LDA, this discontinuity at �= ��̃� is broadened in a trap due

to the inhomogeneity of �̃�r�. However, one can still expect

that ĨF��� would start to decrease from an energy of the
order of the maximum gap, since most atoms are at the cen-
ter of the trap. This behavior is clearly shown in Fig. 19,

where ĨF��� is seen to be suppressed for ���̃�r=0�. At the

center of the trap, �̃�0� is of the order 1.5–2�F �see Fig. 13�.
We conclude that a plot of ĨF��� can be used to estimate the
magnitude of the composite order parameter at the center of
the trap, even if there is a low-energy peak in IF���.

Figure 20 shows the spectrum at T=0 of the molecular
current IM��� given by Eq. �7.13�. This Bose rf-tunneling

spectrum is seen to be very similar to ĨF���, as defined above
�see Fig. 19�. In particular, we see that the frequency where
the rf spectrum starts to be suppressed corresponds quite

closely to the maximum value of the order parameter �̃�r
=0� at the center of the trap �as shown by the arrows in Fig.
20�. In a uniform gas, one can calculate IM��� explicitly,

FIG. 18. The solid line shows the rf-induced current IF��� based

on the ad hoc “broad” composite order parameter �̃�r� shown in the

inset. This has the same maximum value �̃�0� at the center of the
trap as the correct order parameter shown in the inset of Fig. 17�b�.
However, the width is broader. In this calculation, we have also
used an ad hoc broad density profile nF�r�, with a width of the same

order as �̃�r�. The dashed line shows the rf spectrum plotted in Fig.

17�b�, based on the self-consistent values of �̃�r� and nF�r�.

FIG. 19. Spectrum of ĨF����2IF��� versus the detuning fre-
quency �, for �=0.6�F. Parameters are the same as in Fig. 16�b�.
The arrow shows the value of �̃�r=0� at the center of the trap. The
dashed line shows a fit to Eq. �7.20� around the high-energy region

��� �̃�0��.
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IM��� = �tM
2 �M

2  	% =
1

2

�2 − �̃2

�
+ 	


!�� − �̃�!	1

2

�2 − �̃2

�
+ 	
 . �7.19�

Thus in a uniform gas, we find that IM���" ĨF���, since the
factor �−2 in Eq. �7.16� is not present in IM���. Thus, mea-
suring the molecular dissociation current IM��� would ap-
pear to give a more direct way of probing the spectrum of the
high-energy excitations, and hence the magnitude of the

composite order parameter �̃�r=0�. Recently �57�, a general
expression for the molecular tunneling current was dis-
cussed, but it was not evaluated in Ref. �29�. This neglect
was justified by the assumption that in the BCS region of
interest, the number of molecules was small. For a broad
Feshbach resonance considered in Ref. �29�, this may be cor-
rect but further studies are needed.

Since we can eliminate the effect of low-energy excita-
tions on the rf spectroscopy and extract the information

about �̃�0� by considering ĨF��� and IM���, it is interesting
to see where this “hidden peak” coming from this high-
energy contribution is in the spectrum of IF��� in cases
where it may be masked by the low-energy spectral weight

�as in Fig. 16�. For this purpose, we can simply model the

ĨF��� spectrum using the Lorentzian form

ĨF��� =
C�2

�� − �p�2 + �2 . �7.20�

The parameters C, �, and �p can then be determined from

the best fit to the calculated ĨF��� around the high-energy

region �� �̃�0�. As an example, such a fit is shown by the
dashed line in Fig. 19. The corresponding rf-tunneling spec-
trum IF��� is shown by the dashed line in Fig. 16�b�. The
energy of the “hidden” broad peak in IF��� is given by the
value of �p found by this procedure. The results for �p using
this procedure are plotted in Fig. 21. We find reasonable
agreement with the experimental data for 6Li �27�, especially

for the case Ū=0.35�F. Our peak energy at �kFas�−1=0 oc-
curs at ��0.3�F, which is in agreement with the results of
the recent theoretical analysis using the LDA by Törmä and
co-workers �29�, who found a broad peak at ��0.3�F near
the unitarity limit. We also recall that the calculations in Ref.
�29� were for a broad resonance. It would be very useful to
have the calculations in Ref. �29� extended to cover the
whole crossover region �results were only reported for �
=0.5�F�.

In the recent rf-spectroscopy data at finite temperatures of
Grimm and co-workers �27�, one finds a strong narrow peak
at zero detuning as well as a broad peak at positive detuning.
As the temperature decreases, the spectral weight shifts to
the broad peak. It is argued in Ref. �27� that the peak at zero
detuning is due to unpaired or free Fermi atoms at the edge
of the trap, which have no energy gap. The fact that the peak
is narrow is further argued to be evidence that these states
come from the region of low density, consistent with negli-
gible mean-field broadening. The pioneering theoretical
work of Törmä and co-workers based on the LDA �29� leads
to the same interpretation. However, as discussed at the end
of Sec. V, the LDA at finite temperatures incorrectly predicts
a region at the edge of the trap where the order parameter

FIG. 20. Molecular dissociation current IM��� as a function of
the effective detuning frequency �. The arrow shows the value of

the composite order parameter �̃�0� at the center of the trap. Pa-
rameters are the same as in Fig. 19.

FIG. 21. Peak energy in the rf-tunneling current. In the cross-
over regime �0.2�	 /�F�1�, the current is peaked at an energy

evaluated using Eq. �7.20�. The solid line shows �̃�0� in the case of

Ū=0.35�F �see also Fig. 13�. Experimental data �open circles� are
taken from Figs. 1 and 2 of Ref. �27�.
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�̃�r� has vanished even though the density of atoms n�r� is
still finite �see Fig. 1 of Ref. �29��. In fact, the BdG equations
show that the entire trapped gas is in a superfluid state below

Tc, with �̃�r� being finite everywhere where n�r� is finite.
As we discussed in Sec. VI, very low-energy states �with

a finite but small excitation gap Eg� arise which are localized
in the low-density tail of the superfluid gas, the analog of
Andreev states �53,58�. These in-gap surface states �56,59�
are a true signature of the Fermi superfluid phase, since they
involve a coherent mixture of particle and hole components
�53�. In particular, these excitations exist even at T=0. At
finite temperatures below Tc, the rf-tunneling current IF���
involves two contributions, coming from thermally excited
Bogoliubov quasiparticles and from the Cooper-pair conden-
sate. The former contribution disappears at T=0, because all
the atoms are paired and Bose condensed, and there are no
excitations. However, the latter contribution exists even at
T=0.

The low-energy rf-current spectrum IF��� is in fact domi-
nated by excitations from the condensate associated with the
low-energy Andreev or in-gap states. Indeed, we can clearly
see the true very small excitation gap Eg��F from the
lowest-energy peaks in panels �a� and �b� of Fig. 16. Törmä
and co-workers �29� have argued that the normal-phase at-
oms at the trap edge in their LDA calculation can be viewed
as a crude approximation to these in-gap low-energy states,
which arise in a more accurate theory based on the BdG
equations. However, in an LDA analysis, the low-frequency
�free-atom� peak is predicted to disappear at very low tem-
peratures when the entire trapped gas becomes superfluid.
This picture is different from what our microscopic calcula-
tions give, as discussed above. For the same reason, we feel
that the data in Ref. �27� do not give any convincing evi-
dence for the pseudogap phase discussed in Refs. �44,46�.

A proper discussion of the low-energy states in the edge
of a trapped superfluid gas requires the kind of microscopic
calculations presented in this paper. One is losing a huge
amount of physics by thinking of the central peak �at zero
detuning� simply as the contribution from unpaired atoms �or
atoms experiencing the effect of a “pseudogap”�. This low-
energy peak at ���F is due to the characteristic low-energy
states ��Eg��F� of a trapped superfluid gas in the BCS
region �see Fig. 10�. The BEC region is quite different. We
recall from Fig. 11 that Eg rapidly increases as we pass from
the BCS to the BEC region. In the BEC region, the large
energy gap Eg is determined by the magnitude of the chemi-
cal potential, rather than the low-energy Andreev in-gap
states. It would be very useful to attempt a higher-resolution
study of the “unshifted peak” in the rf-induced current mea-
surements as presented in Ref. �27�. This could give more
detailed information about the low-energy in-gap excitations
of a trapped Fermi superfluid in the BCS region.

VIII. CONCLUDING REMARKS

In this paper, we have presented a detailed study of the
equilibrium properties and single-particle excitations in the

BCS-BEC crossover regime of a trapped Fermi gas with a
Feshbach resonance, at T=0. We extended the crossover
theory developed by Leggett �9� to include the effect of a
Feshbach resonance in a trapped Fermi gas. In our work, the
composite order parameter �̃�r�, the atomic density profile
nF�r�, and the chemical potential 	 are all calculated self-
consistently. Our theory does not use the LDA, but works
with the correct eigenstates of the harmonic trapping poten-
tial given by the Bogoliubov–de Gennes coupled equations.
In a uniform BCS Fermi superfluid, the single-particle exci-
tations have an energy gap which is equal to the pair poten-
tial �. In contrast, in the BCS-BEC crossover region, this
single-particle energy gap is not directly proportional to the

pair potential �̃. In a trapped Fermi superfluid, there is never
a simple relation between the energy gap Eg and the under-

lying spatially varying order parameter �̃�r�. One of the
themes of our paper is how to extract information about both
these quantities.

We showed that the spatially dependent local density and
the order parameter become more localized at the center of
the trap as one decreases the threshold energy �2�� of the
Feshbach resonance. This reflects the fact that the character
of the particles is continuously changing, from unpaired
Fermi atoms to bound states �molecules� associated with the
Feshbach resonance. The threshold energy Eg of single-
particle excitations was shown to be much smaller than the
magnitude of the composite order parameter at the center of

the trap in the crossover region, where �̃�r=0���F. This is
because Eg in this region is determined by the lowest An-
dreev �or in-gap� bound states �58� near the bottom of the
combined potential well composed of the off-diagonal pair
potential and the trap potential. We have emphasized that
these states are a characteristic signature of a trapped super-
fluid Fermi gas and hence are of special interest.

We also used our results for the single-particle excitation
spectrum to discuss recent rf-tunneling experiments. As dis-
cussed recently �27,29�, the data at finite temperatures in the
crossover region can be usefully described in terms of a nar-
row unshifted peak ���0� and a broad peak at a detuning

frequency � comparable to the expected pair potential �̃�r
=0� at the center of the trap. While LDA calculations for the
case �=0.5�F �29� appear to confirm this kind of rf spectrum,
our present calculations based on the explicit solutions of the
BdG equations at T=0 lead to somewhat different predic-
tions about the low-� region. We have verified that our re-
sults are essentially reproduced by a LDA calculation if we

base it on our self-consistent values of nF�r� and �̃�r� given
by the BdG equations. The major difference between our
results and those in Refs. �27,29� is that we find a strong
low-frequency contribution to the fermionic tunneling cur-
rent in the BCS-BEC crossover region. However, we find
that the rf-tunneling current IF��� is very dependent on the

precise spatial dependence of �̃�r�. This dependence is good
news since it means that fits to the rf-tunneling data may be
used in the future to obtain detailed information about the

spatial dependence of the composite order parameter �̃�r� in
the crossover region.
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Further work is needed to clarify the role of the Andreev
bound states in determining the low-frequency peak in the
rf-spectrum data. These single-particle states continue to ex-
ist even at T=0, and are clearly left out of a LDA-type cal-
culation, which is based on the results for a uniform Fermi
superfluid.

In Sec. VII, we showed that the low-frequency peak in the
rf spectrum was due to the contribution from the edge of the
trap, where �̃�r� is very small �see Fig. 17�b��. Subtracting
out this “surface” contribution, the remaining rf spectrum
was peaked at high energies comparable to the value of
�̃�r=0� at the center of the trap. These peak energies were in
reasonable agreement with the observed position of the
broad peak in the tunneling data reported in Ref. �27�, as
shown in Fig. 21.

We have also evaluated the rf spectrum due to the current
produced by dissociation of molecules �see Fig. 20� and
found that it did not have an unshifted component at ��0.
Thus it gives a more direct measurement of �̃�r=0� at the
center of the trap. This contribution, which was discussed but
not explicitly evaluated in Ref. �29�, deserves further study,
both experimentally and theoretically. In future work, we ex-
tend our present calculations to the case of a broad Feshbach
resonance.

Besides the single-particle properties, collective excita-
tions in trapped Fermi superfluids �25,28,63� are also of great
interest in the crossover region. The single-particle Green’s
function evaluated in the present paper form the basis for the
calculation of the collisionless collective modes in a trapped
Fermi gas using linear response theory. In a future paper
�37�, we will extend the approach given in Ref. �3� for a
uniform gas and discuss the quadrupole and monopole
modes in the BCS-BEC crossover region �32�. A detailed
discussion of the Kohn mode has been recently given in Ref.
�64�.

As discussed in Sec. VII, rf-tunneling spectroscopy ex-
periments can give information about the true quasiparticle
excitation gap Eg. However, very high resolution would be
necessary in the BCS and crossover regimes because Eg
��0��F �see Figs. 11 and 16�. As a result, an interesting
problem remains as to how to measure Eg in this region. An
alternative method might be through the study of the collec-
tive mode frequencies, which typically have a very low en-
ergy comparable to the trap frequency �0 and are, in fact,
bounded by the two-particle continuum at 2Eg. We show a
plot of the calculated frequency of the monopole mode in
Fig. 22 �the details are discussed in Refs. �32,37��. The
monopole mode frequency is seen to be suppressed, so that it

always lies below the two-particle continuum at 2Eg. In par-
ticular, the suppression is quite striking around the region
where Eg shows a minimum as a function of �. This effect of
the two-particle continuum on the monopole mode frequency
appears to be an attractive way of obtaining information
about the single-particle excitation gap Eg in a trapped su-
perfluid Fermi gas in the crossover region.
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