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General optimal coherent control of dissipative N-level systems in the Markovian time regime is formulated
within Pointryagin’s principle and the Lindblad equation. In the present paper, we study feasibility and limi-
tations of steering of dissipative two-, three-, and four-level systems from a given initial pure or mixed state
into a desired final state under the influence of an external electric field. The time evolution of the system is
computed within the Lindblad equation and a conjugate gradient method is used to identify optimal control
fields. The influence of both field-independent population and polarization decay on achieving the objective is
investigated in systematic fashion. It is shown that, for realistic dephasing times, optimum control fields can be
identified which drive the system into the target state with very high success rate and in economical fashion,
even when starting from a poor initial guess. Furthermore, the optimal fields obtained give insight into the
system dynamics. However, if decay rates of the system cannot be subjected to electromagnetic control, the
dissipative system cannot be maintained in a specific pure or mixed state, in general.
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I. INTRODUCTION

In view of the prospects for data encryption, secure infor-
mation transfer, enhanced computation power and related ap-
plications, the ability to coherently manipulate quantum sys-
tems in a controlled fashion has become one of the highest
priorities in todays research �1�. While a substantial number
of powerful quantum algorithms exist on paper, only rather
basic schemes have been implemented in real systems to this
day. Several important issues have to be resolved to achieve
useful implementation of quantum algorithms �2�. Some of
the most important practical issues are fabrication of suitable
quantum systems �qubit�, including controllable coupling
mechanisms, scalability, and isolation. The latter is important
for maintaining quantum coherence, however, frequently,
conflicts with effective coupling among qubits and
scalability.

In the present paper we investigate theoretically the extent
to which simple dissipative quantum systems can be steered
into a selected pure or mixed target state by means of an
external electric field. This objective is phrased as an opti-
mum control problem. The content of this paper is twofold:
First, we develop a numerical approach to optimal control of
dissipative quantum systems for a large class of cost func-
tionals. Second, we present results regarding feasibility of
optimum coherent control in the presence of dissipation
when the system’s dynamics can be phrased within the Lind-
blad equation. Recently, the Lindblad equation has been
used, for example, to study optimum feedback control, quan-
tum error correction, or laser cooling of molecules �3–6�.
Here we consider primarily the objective of preparation of a
dissipative quantum system in a specified target state at some
specified target time. In particular, we study to what extent
decoherence can be defeated by optimum coherent control.

This paper is organized as follows. In Sec. II, we formu-
late the optimum control problem for a general cost func-
tional within Pontryagin’s principle, and formulate the spe-
cific objective of driving the system into a selected target
state. In Sec. III, we present the numerical approach in form

of a conjugate gradient method. A brief review of the Lind-
blad equation as a quantum optical master equations is given
in Sec. IV. The construction of Lindblad operators is re-
viewed for the dissipative two-level system. In Sec. V, we
present our numerical results for “ladder-type” N-level sys-
tems, as well as a three-level and four-level � system, as
used in stimulated-Raman-adiabatic-passage �STIRAP� ex-
periments. The summary and conclusions are given in
Sec. VI.

II. QUANTUM OPTIMAL CONTROL PROBLEM

A. General formulation of the problem

Optimum control theory has a long-standing tradition in
various fields of physics �7�. To our knowledge, one of the
first applications to a quantum system has been in the field of
quantum chemistry �8�. More recently, optimum control
studies have been extended to nonlinear coherent systems �9�
and dissipative systems �10,11�. A variety of schemes has
been proposed for quantum systems �8,12–16�. In this paper
we consider the following model quantum control problem.
Let time t be in �0,T�, for T fixed. ��t� is the density operator
acting on H=CN, the Hilbert space of dimension N. ��t�
represents the state �density operator� of the system interact-
ing with its environment. Making the Markov approximation
for the system-environment interaction, the time evolution of
a dissipative quantum system is described by a Lindblad
equation of the form �17�

i�
d

dt
��t� = �H0 + HI„��t�…, ��t�� + LD���t�� , �1�

with initial condition ��0�=�0, where H0 is the internal sys-
tem Hamiltonian, HI(��t�) is the control Hamiltonian, and
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LD���t�� = i��
�=1

N2 �L���t�L�
† −

1

2
�L�

† L�,��t��	 �2�

is the dissipation superoperator. L� ,�=1¯N2 are the Lind-
blad operators. As the dimension of the Hilbert space N is
finite, all the operators appearing in the Lindblad equation
are bounded. They are represented by N�N matrices. ��t�
�L2�0,T� is the �electric� control field. It is real valued.

The objective is formulated by means of a cost functional
for which we choose the general form

J��� = Tr��o„��T�…� + 

0

T

dt L��,�,t� , �3�

where L is the performance index �7�,

L��,�,t� = Tr��„��t�,t…� +
1

2
	�t��2�t� . �4�

The functionals �o(��T�) and ����t� , t� are bounded from
below and differentiable with respect to ��T� and ��t�, re-
spectively. They account for the specific objective at target
time T and intermediate times t� �0,T�. They are examples
for what has been termed final cost functional and running
cost functional in the literature �7�. The third contribution to
the cost functional J penalizes large control fields. It is re-
quired to make the problem well posed �8�. 	�t� is a given
�real-valued� function of time which determines the relative
importance of the third contribution at time t. In the simplest
case, it may be a constant. As will be shown below, it may be
used to force the control field to approach zero near the end
points of the time interval in accordance with experiment
where light fields are of finite duration. An optimum control
field is one which minimizes the cost functional.

B. Formulation within Pontryagin’s principle

Consider the quantum optimal control problem of mini-
mizing the functional �3� subject to the dynamical constraint
�1�. An optimal solution of this problem is characterized by
first-order optimality conditions in the form of the Pontrya-
gin’s minimum principle �7,18,19�. These conditions are for-
mulated with the the help of the Hamilton function that has
the following form in our problem:

H��,�,
� ª L��,�,t� + Tr�
�t�
i�

�H,��t�� + LD���t��� ,

�5�

with H=H0+HI. The matrix 
 is called the adjoint state.
Pontryagin’s minimum principle states that a necessary con-
dition for �� ,�� to be a solution of the above optimal control
problem is the existence of an adjoint state 
 such that


d

dt
��t� =

�H„��t�,��t�,
�t�…
�
�t�

, t � �0,T�

d

dt

�t� = −

�H„��t�,��t�,
�t�…
���t�

, t � �0,T�

��0� = �i, 
�T� = ��o„��T�…

0 =
�H„��t�,��t�,
�t�…

���t�
, t � �0,T� ,

� �6�

where �o�(��T�)���o /���T�. The stationarity conditions �6�
are derived in the Appendix. Sufficient conditions for a “lo-
cal minimum” with respect to the control � are the optimality
condition

�H„��t�,��t�,
�t�…
���t�

= 0, �7�

and

�2H„��t�,��t�,
�t�…
��2�t�

� 0. �8�

If �2H /��2�0, the implicit function theorem states that the
relation �7� is equivalent to

� = �„��t�,
�t�… . �9�

The differential system �6� is thus equivalent to the differen-
tial system with differential variables �� ,
�,


d

dt
��t� =

�H���t�,�„��t�,
�t�…,
�t��
�
�t�

, t � �0,T�

d

dt

�t� = −

�H���t�,�„��t�,
�t�…,
�t��
���t�

, t � �0,T�

��0� = �i, 
�T� = �o�„��T�… .
�
�10�

In this form, the quantum optimal control problem is equiva-
lent to a two-point boundary value problem. It is extremely
difficult to solve because of the apparent nonlinearity in the
system of differential equations �10�.

For the general cost functional �3� and the Lindblad equa-
tion �1� the necessary conditions for an extremum �6� take
the following form:

�i� ��t� with 0 tT is the state variable and the solution
of the Lindblad equation �1�.

�ii� The adjoint-state variable is the solution of the differ-
ential equation

i�
d

dt

�t� = �H0 + HI„��t�…,
�t�� + LD

† �
�t�� + ��„��t�… .

�11�

�iii� The optimally condition for the external field ��t�,
regardless of the specific form of the cost functional, is

	�t���t� + Tr�
�t�
i�

� �HI„��t�…
���t�

,��t��� = 0. �12�
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Equation �12� is obtained after integration of the adjoint-
system Eq. �11� backward in time which is a backward-time
linear Cauchy problem. Note that from its initial condition at
t=T it is clear that the adjoint-state matrix 
�t�, in general,
cannot be interpreted as a density matrix. The variation of
the cost functional �3� is given by

�J

���t�
= 


0

T �H
��

dt

= 

0

T

dt�	�t���t� + Tr�
�t�
i�

� �HI„��t�…
���t�

,��t���	 .

�13�

In summary, the prescription is as follows: select an initial
guess for the control field ��t� and compute ��t� by integra-
tion forward in time. Use ��T� in the initial condition for the
computation of 
�t� backward in time. Use Eq. �12� to up-
date the electric field, as detailed below, and run through this
loop until convergence is reached.

C. Specification of the cost functional for final-state selection

In this work, we consider one specific objective: control
of the system evolution from a given initial state ��0� into a
desired final state at specified T�0 when the system starts in
a given initial state. It may be desirable to prepare a quantum
system in a specific �pure or mixed� state �T for various
reasons. For example, one may wish to ionize an atom or
molecule, initiate a certain molecular dissociation, prepare a
qubit, transfer an electron from one state of a quantum dot
into another, etc. In this case, we need to minimize the de-
viation of the state of the system at final time ��T� from the
desired state �T. For the cost functional we choose

J =
1

2
���T� − �T�F

2 +
1

2



0

T

	�t��2�t�dt . �14�

Here, �(��t�)=0, t� �0,T� and

Tr��o„��T�…� =
1

2
���T� − �T�F

2 , �15�

where �T is the target density matrix and � · �F is the Frobe-
nius norm.1 This cost functional requires 
�T�=��T�−�T as
the initial condition in Eq. �11� for the backward integration
of the adjoint state variables 
�t�.

III. NUMERICAL ALGORITHM

A. Introduction

There are two main approaches for solving optimal con-
trol problems �19�. The so-called indirect method, based on
Pontryagin’s minimum principle, constructs the Hamiltonian
and adjoint system corresponding to a given optimal control
problem and then solves the resulting boundary value prob-

lem for the optimal control field. The latter is to be deter-
mined throughout the time interval �0,T�. In the direct
method, the control field is parametrized in a lower dimen-
sional space and the resulting nonlinear problem is solved
directly.

In the present work we implement a version of the gradi-
ent method. More precisely, the optimization is performed
using the gradient method with the step length chosen by a
line search technique which is based on a minimization rule
followed by the conjugate gradient method with Poalk-
Ribiere update of the search direction �21�.

B. Gradient method

Gradient methods represent the most frequently used ap-
proach for solving an optimal control problem �7,8,21�. They
are characterized by iterative algorithms for improving esti-
mates of the control histories, (��t� ,��t�), so as to come
closer to satisfying the optimally and boundary conditions.
An obvious advantage of this approach over, for example,
the shooting method is that any guess �i�t� for the control
field will produce manageable values for the state ��t� during
integration regardless of initial conditions. The resulting
value ��t� can be used to integrate the co-state equation
backward in time, providing an approximation of the state-
adjoint-state trajectory (��t� ,
�t�) consistent with �i�t�. Since
in general �i will be different from an optimal control field,
an iteration scheme which provides convergence must be
employed. Gradient methods use the gradient information for
the cost functional to obtain �i+1�t� such that �i�t� converges
to an optimal solution as i→� �7�.

Numerical solution of the optimal control problem is dif-
ficult as, in principle, it involves the determination of the
control field ��t� at an infinite number of mesh points in the
time interval I= �0,T�. In order to find a numerical solution
of the problem, we convert the infinite-dimensional problem
into a finite-dimensional optimization approximation �7,21�.
For this purpose, we first discretize I into M equal-sized
subintervals �Ik with I=�k=1

M �Ik and then approximate ��t�
as ��t�→��tk�=�k , k=1¯M. Thus the problem becomes
that of finding �= ��1 ,�2 ,�3 ,… ,�M�T such that

J��� = inf
��RM

J��� . �16�

As the cost functional now depends on �1 ,�2 ,�3 ,… ,�M, we
define the gradient of the cost functional by

G = � �J

��1
,

�J

��2
,…,

�J

��M
�T

, �17�

where

�J

��k
=

1

��k
�J��1,�2,…,�k + ��k,…,�N�

− J��1,�2,…,�k,…,�N�� . �18�

We have, by applying the Riemannn-rule integration scheme
to Eq. �13�,

1Given a matrix n�nA=aij , �A�F
2 =�ij�aij�2=�ijaijaij

* =Tr�AA†�
�20�.
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�J

��k
= �	k�k + Tr�
k

i�
� �Hint��k�

��k
,�k��	�tk, �19�

where �k and 
k are, respectively, the solution of the Lind-
blad equation and the adjoint system corresponding to time
subinterval �Ik. ��Ik�=�tk is the length of the subinterval
�Ik. With the gradient obtained, the following type gradient
algorithm determines the optimal value of � based on the
Polak-Ribiere method �7,19,21,22�:

1. Choose the initial control field �0. Solve the state and
adjoint systems and compute G��0�. If G��0�=0, stop here.
�0 is the solution of the problem. Otherwise go to step 2.

2. Set the first searching direction S0=−G��0�.
3. Set �1=�0+�0S0, with �0 being the optimal step length

in the searching direction S0. Set i=1 and go to step 4.
4. Find G��i� by solving the state and adjoint systems and

then set Si=−G��i�+�iSi−1, with �i= ���G��i�
−G��i−1��G��i�� / �G��i−1�G��i−1��.

5. Compute the optimum step length �i in the searching
direction Si and update �i+1=�i+�iSi+1.

6. Test the optimality of �i+1. If �i+1 is the optimum, stop
the process. Otherwise, set i= i+1 and go to step 4.

C. Discretization of the adjoint-state system

To determine the gradient of the cost functional, we have
to solve the Lindblad equation for ��t� and then the co-state
equation for 
�t�. Both, equations are initial value problems.
Various numerical methods based on standard time stepping
schemes, such as the Crank-Nicholson procedure or Runge-
Kutta can be used to solve the Lindblad equation and the
associated adjoint system. In the present work, the discreti-
zation of the adjoint-state system is done by the classical 4

5
order explicit Runge-Kutta-Fehlberg method �23�. Once the
initial conditions are specified, the values of �k=��tk� and

k=
�tk� are evaluated at every discrete time tk=k�tk, k
=1¯M.

IV. QUANTUM OPTICAL MASTER EQUATION

The interaction of matter with electromagnetic radiation
in the quantum optical limit provides a typical field for the
application of the Lindblad equation. We use this physical
situation as an example to show how Lindblad operators can
be constructed from a microscopic model for the environ-
ment. However, the same formalism is applicable to a mul-
titude of bipartite systems, provided that the Markov ap-
proximation holds for the system-system interaction �24,25�.
The radiation field represents a reservoir with infinite degrees
of freedom which interacts with a quantum bound system,
such as an atom, a molecule, or a quantum dot. The Hamil-
tonian describing the interaction between the physical system
and the radiation field in the dipole approximation is given

by HI=D� ·E� , where the D� is the dipole operator of the system

under consideration and E� is the electric-field operator. Rep-
resented in the Schrödinger picture, HI is an operator on the
Fock space F=HS � FE of basis �n� � �nk
� �k� and 
=1, 2
are, respectively, the photon wave vector and its polariza-

tion�. In the rotating-wave approximation, the Markovian
quantum master equation describing the evolution of the
physical system has the Lindblad form �24,25�

i�
d

dt
��t� = �HS,�� + i� �

�,��0
�����L�����L�

† ���

−
1

2
�L�

† ���L����,��	 , �20�

where HS is the Hamiltonian of the physical system and ����
is the Fourier transforms of the correlation functions of the
electric-field operator

���� =
1

�2

0

+�

dt ei�t�E�t�E�0�� . �21�

The imaginary part of ���� leads to a renormalization of the
system Hamiltonian which is induced by the vacuum fluc-
tuation of the radiation field �Lamb shift�. Its real part leads
to two types of dissipation, namely, a population relaxation
�decay of the diagonal elements of the density matrix� and
phase decoherence �decay of the off-diagonal elements of the
density matrix�. At zero temperature

���� =
1

2
����, ���� =

1

4��0

4�3�d� �2

3�c3 , �22�

where d� is the matrix element of the dipole moments
operator. Thus the Lindblad operators L��� describe
spontaneous emission which occurs with rate ����= �1/

4��0��4�3�d� �2 /3�c3�. Considering a two-level system, we
write the unperturbed Hamiltonian as HS= ���0 /2���2��2�
− �1��1��= ���0 /2��z and HI=D� E� as the interaction with the
fluctuating field operator. In an N-level system there are at
most N2 independent Lindblad operators. Here, we discuss
two cases. When the environment couples level �1� to level

�2� only, i.e., D� =d� �1��2�, one obtains

L��0� = ��0�1��2� = ��0�+,

L†��0� = ��0�2��1� = ��0�−, �23�

with �0= �1/4��0��4�0
3�d� �2 /3�c3�. �−=1/2��x− i�y�, �+

=1/2��x+ i�y�, where �x ,�y, and �z are the Pauli matrices.
Neglecting the Lamb shift, we can now write the dissipative
superoperator in the form

LD���t�� =
�0

2
��+��t��− −

1

2
��+�−,��t��	 . �24�

The contribution to the evolution of the density-atrix ele-
ments from the environment �E� is thus

�t�11E = �0�22, �25�

�t�12E = −
�0

2
�12, �26�
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�t�22E = − �0�22. �27�

We observe that the population decays exponentially with
rate �0=1/T1, while coherence decays with �0 /2=1/T2
=1/2T1. The population relaxation �T1 process� induces also
the destruction of coherence �T2 process�. Now, if the envi-
ronmental coupling is diagonal in ground and excited state,
we have

D� = d�g�1��1� + d�e�2��2� = d�gI + �d�e − d�g��2��2� , �28�

where we have used the closure relation I= �1��1�+ �2��2�.
The unity operator I commutes with the system Hamiltonian
and cannot cause any relaxation. Thus the Lindblad operator
takes the form

L��0� = ��0�2��2� = ��0

�I + �z�
2

,

L†��0� = L��0� , �29�

with �0= �1/4��0��4�0
3��d�e−d�g��2 /3�c3� and leads to

LD���t�� = �0�I + �z

2
��t�

I + �z

2
−

1

2
�I + �z

2
,��t��	 .

�30�

The environmental contribution to the evolution of the sys-
tem is thus

�t�11E = 0, �31�

�t�12E = −
�0

2
�12, �32�

�t�22E = 0. �33�

In this case, there is pure-T2 dephasing involving only the
destruction of coherence �12 but there is no direct effect on
population �11 and �22.

In atomic systems, the magnitude of typical wave vectors,
k=� /c, is of the order of 10−5 cm−1 �optical domain�. If we

approximate the dipole moment by Bohr’s radius, �d� ��aB,
the lifetime �=1/� is roughly 10−8 s which is much larger
than the typical period of oscillation T= �c�k��−1=10−15 s. At-
oms decay rather slowly and the energy levels are relatively
stable. In case of atomic transitions, the interaction of the
physical system with the environment �vacuum fluctuations�
should be controllable. Contrary to atoms, solids are charac-
terized by very short electron-hole dephasing times due to
carrier-carrier and carrier-phonon scattering, sometimes as
low as a few tens of femtoseconds �26–28�. On this time
scale, the interplay between coherent and incoherent dynam-
ics is very strong. Consequently, coherent control of the elec-
tron dynamics in these systems is a difficult task and optimi-
zation of the control fields is essential.

V. NUMERICAL RESULTS

We demonstrate the effectiveness of our optimum control
schemes at several examples of dissipative N-level systems.

We consider the following model for the driven N-level sys-
tem. The free evolution of N-level system is governed by the
internal Hamiltonian whose form is

H0 = �
n=1

N

En�n��n� . �34�

We choose the level sequence to be

En+1 = En +
�E

n
, n = 1,2,3,… .

The ground state E1=0 and �E=�eV. The interaction of the
system with the control field, in the dipole approximation, is
chosen to be

HI = �
n,m=1

N

DnmE�t��n��m� = d E�t��
n=1

N−1

��n��n + 1� + �n + 1��n��

= ���t��
n=1

N−1

��n��n + 1� + �n + 1��n�� , �35�

where d is the dipole matrix element between the levels n
and n+1 and ��t�=dE�t� /�.

We consider a situation in which the electric field is small
�zero� at the initial time, as will usually be the case in ex-
periment. As discussed in Sec. II this is enforced by the
time-dependent weight factor 	�t� in the cost functional Eq.
�3�. Specifically, it is given by the form

	�t� = 	0 + W0exp�− t/n� + WTexp�− �M − t�/n� , �36�

where M is the number of mesh point �the dimension of the
optimal problem�. In our numerical simulation we take 	0
=10−3, W0=102, and n=50. In the dissipation-free case WT
=102, else it is set equal to zero.

In all cases discussed below, the initial guess for an opti-
mum electric field for the dissipation-free case is a weak
random field with constant distribution between zero and
one. When we increase dissipation in the system step by step,
we use the final optimal solution from the previous case for
the initial guess.

The interaction of the physical system with its environ-
ment is represented by the Lindblad operators, as detailed in
the previous section at the example of the two-level system.
In all examples below, we consider the Lindblad operators to
be of the form

L� = ���n���m�� , �37�

that is, proportional to one and the same factor ��, where
�=1/�D and �D=10nT, with n=1, 0, −1, −2.

For example, considering the Lindblad operators

L� = ���n���m�� , �38�

for n��m�, with n�=1,…N−1, and m�=2,…N, one ob-
tains for the environmental contribution

�̇		E = � �
l=	+1

N

�ll − ��	 − 1��		, for 	 = 1,…N �39�

and
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�̇	�E = −
�

2
�	 + � − 2��	�, for 	 � � = 1,…N . �40�

In this paper we consider the time evolution of dissipative
two-, three-, and four-level systems. We study a time evolu-
tion which takes the system from its ground state at time zero
into a specified final state at target time T. In all cases the
target time T is chosen to be 50 fs and the time step is
10−2 fs. For the three- and four-level � configuration the
target state is the second energy level. In all other cases, the
target state is the uppermost energy level. The various situa-
tions are sketched in Fig. 1. Our aim is to find a control field
that achieves perfect population transfer by solving the opti-
mal control problem with the indirect method outlined
above.

A. Two-level system

We first consider the case without dissipation. From ana-
lytic solutions within the rotating-wave approximation we
know that there are many solutions to this problem, such as a
series of solutions with constant field amplitudes and a fre-
quency which is resonant to the transition. In this particular
calculation, we suppress the electric field at initial and target
time via the weight factor 	�t� in Eq. �36� to limit the num-
ber of solutions and provide a framework which is more
realistic with respect to experiment. Furthermore, we strive
for weak electric fields in the initial guess and by our choice
for 	�t� favor weak electric fields for our optimum fields.
Without dissipation, this objective was met perfectly by our
approach. Within half a “Rabi oscillation” the population is
transferred from ground to excited state in the most economi-
cal way. As expected, the optimal electric field peaks near the
fundamental frequency of the two-level system. Note, how-
ever, that here the transfer is achieved by a pulsed electric
field, rather than a plane-wave electric field.

For the dissipative two-level system, we consider two dis-
tinctly different cases: �i� pure dephasing and �ii� population
decay, which is inevitably associated with dephasing. The
first case is achieved by a Lindblad operator which is diag-
onal in the two-level basis states, Eq. �29�, such as

L = ���1��1� = ��� 0

0 0
	 . �41�

For the second case, we choose the Lindblad operator

L = ���1��2� = �0 ��

0 0
	 . �42�

In case of pure dephasing, Fig. 2 shows the energy level
population versus time for the optimum control field and
increasing dephasing rate, as obtained by the gradient
method. According Figs. 2�a� and 2�b� one finds that, as long
as the coherence time is larger than the target time T, almost
perfect transfer into the upper level is achieved. As the co-
herence time decreases, population transfer becomes less
complete and occurs at an increasingly higher rate as shown
in Figs. 2�c� and 2�d�. This is facilitated by pulses of decreas-
ing duration and increasing amplitude. We have also com-
puted the power spectrum of the electric field. We find that
the spectral width of the electric field increases around the
two-level resonance with the decay rate of polarization. The
physical explanation is as follows. For the present model of
dissipation and in the absence of the external electric field,
the target state is a stable state. Once the transfer has been
accomplished it will be maintained indefinitely. When the
coupling to the reservoir is increased the decay rate of the
interband polarization increases accordingly and a short
strong electric pulse which leads to a polarization which is
also peaked in time is more efficient in achieving the task,
since there is less time for unwanted polarization decay.
Once the transfer has been achieved as completely as pos-
sible, decay of interband polarization is of no further con-
cern. The present numerical results for the final population of
the upper level can be improved by reducing the value for 	o
in Eq. �36�, which is a measure for the relative importance of
reaching the target state and keeping electric fields at mod-
erate values. In this sense, pure dephasing places a relatively
simple problem to achieving optimum control. Remarkably,
near perfect transfer can be achieved even when �D is less
than the intrinsic oscillation period T of the two-level sys-

FIG. 1. Various configurations used in our simulation: two-level
system �a�, three-level-� system �b�, three-level-ladder system, �c�
and four-level-ladder system �d�.

FIG. 2. Dissipative two-level system �pure dephasing effect�: �a�
and �b�, respectively, show the population transfer from the ground
state �1� to the stable excited state �2� and the optimal control field
for �D=10T �weak damping regime�. �c� and �d�, respectively, show
the population transfer from the ground state �1� to the stable ex-
cited state �2� and the optimal control field for �D=10−1T �strong
damping regime�. E2−E1=3.14 eV, �=4.7�103 THz, oscillation
period T=1.31 fs, target time T=50 fs, and time step 10−2 fs.

H. JIRARI AND W. PÖTZ PHYSICAL REVIEW A 72, 013409 �2005�

013409-6



tem. When �D�T the system tends to seek a state of equal
population of the two levels for less than optimal electric
fields. Figure 2�d� shows that if one can generate electric-
field pulses shorter than the �D and of sufficient strength, the
desired population can be achieved to a high degree. This is
in agreement with the so-called “bang-bang?” method where
one seeks pulse durations shorter than the shortest character-
istic dephasing time �29–32�.

The second case considers the situation of both polariza-
tion and population decay. Now the target state of the dissi-
pative two-level system is no longer stable and early popu-
lation of the target state is undesirable. In these simulations
we do not suppress the electric field near target time T via
	�t�. Figure 3 displays our results for this situation. Again,
increasing the coupling to the environment and thus making
�D shorter increases the electric field and decreases its dura-
tion. In addition, the “time of arrival” of the main field con-
tribution is shifted closer and closer to target time T. The
reason is that the instability of the final state and the require-
ment of small electric fields make it favorable that it be
populated only just at target time to avoid premature decay.
Even in case of strong dissipation ��D=10−1 T� one achieves
good control, provided that sufficiently strong and short
pulses can be generated. As will be discussed later, based on
the present model for dissipation, the electric field cannot
stabilize the target state from decay and this “last-minute”
driving represents the only option within the present model.

B. Three-level system

The three-level system offers a much higher parameter
space and richness in physics than the two-level system. We
apply the simplifications as outlined in the introduction
above. Electromagnetically driven three-level systems have
been widely studied in the literature, both theoretically and

experimentally. They offer a basic understanding of stimu-
lated Raman adiabatic passage �STIRAP� and related phe-
nomena, such as electromagnetically induced transparency,
slowing of light, optical gain without inversion, and state
trapping �33,34�.

We first consider the elementary � configuration as
sketched in Fig. 1�b�. The three-level system has a stable
ground state �1� and a stable target state �2� between which
direct dipole transitions are forbidden. There is dipole cou-
pling between �1� and �3�, as well as �2� and �3�. The upper-
most level �3� is unstable with respect to decay into levels �1�
and �2�, which is represented by the Lindblad operators from
�3� to �1�.

For the dissipation-free case which was studied with the
conjugate gradient method and a random initial electric-field
“perfect” transfer can be achieved. This is to be expected
since we are in the adiabatic regime. Inspection of the se-
lected optimal electric field, however, shows a small surprise.
While the spectral composition corresponds to the two reso-
nant dipole transitions, the algorithm did not select the
“counterintuitive” STIRAP sequence of pulses, first the low-
frequency pulse which couples levels 2 and 3 and then the
high-frequency pulse coupling 1 to 3. Rather, it selected an
“intuitive” sequence where one has the high-frequency pulse
first and then the low-frequency contribution at the tail end
�right end� of the pulse. The chosen pulse scheme leads to
significant population of level 3 �about 0.4�, which in this
case has not been discouraged or suppressed since this level
is stable. Frequency contributions peak at �32=2.38
�103 THz and �31=7.15�103THz, corresponding to the
dipole-allowed transitions. Moreover, there is level-1-2 po-
larization which is comparable in size to the other interlevel
polarizations which correspond to dipole-allowed transitions.

The situation changes, when level 3 is made unstable by
increasing the coupling strength � from value zero. This is
shown in Fig. 4. With decreasing �D, population of level 3
becomes less and less desirable and the electric field is
forced to follow the STIRAP scheme, with the high-
frequency contribution trailing the low-frequency contribu-
tion, as seen in Fig. 4�d�. As for the two-level system, a
decrease of �D goes hand in hand with an increase in electric
field and the width of the peaks, however, not as dramatic as
in the two-level case. A third small peak at high frequency
centered at about 2�31−�32 emerges at the expense of the
peak near �32. While polarizations �13 and �12 perform
simple driven harmonic Rabi-type oscillations, �23 is found
to undergo anharmonic �multifrequency� oscillations, with
frequency contributions from �32,�31, and 2�31−�32. We
interpret this as the emergence of a two-photon process
which avoids level 3. Photons of frequency 2�31−�32 get
absorbed in conjunction with the emission of a photon of
frequency �31. This allows a direct population transfer from
level 1 to level 2, by passing the unstable level 3.

Figure 5 shows an open three-level � system where 3 is
unstable to decay into a fourth level which does not couple to
the electromagnetic field. The dash-dotted line shows the
population of level 4 �probability of escaping the system�.
Control in this system is more demanding since particles lost
from the three-level system cannot be recovered and there is
“nonfriendly” decay which helps to transfer particles from

FIG. 3. Dissipative two-level system �relaxation effect�: �a� and
�b�, respectively, show the population transfer from the ground state
�1� to the unstable excited state �2� and the optimal control field for
�D=10T �weak damping regime�. �c� and �d�, respectively, show the
population transfer from the ground state �1� to the unstable excited
state �2� and the optimal control field for �D=10−1T �strong damp-
ing regime�. E2−E1=3.14 eV, �=4.7�103 THz, oscillation period
T=1.31 fs, target time T=50 fs, and time step 10−2 fs.
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level 3 into target state level 2. This is evident from a com-
parison of Figs. 4 and Fig 5.

We now return to the discussion of the ladder-type con-
figuration, now consisting of three levels. Starting with the
dissipation-free situation, the optimum field selected by start-
ing from a random field is one which, essentially, first pumps
particles from level 1 into level 2 and subsequently from
level 2 into level 3. Complete transfer into level 3 is
achieved.

In order to study a dissipative three-level ladder system,
we use the Lindblad operators

L1 = ���1��2�, L2 = ���1��3�, L3 = ���2��3� �43�

to incorporate coupling to the environment. Now both levels
2 and 3 are unstable, with levels 2 and 3, respectively, having
a lifetime of �D and �D /2. Again, we successively increase
the coupling and use the optimum solution from the previous
case as the starting point for the next case. The results are
summarized in Fig. 6. Since the goal is to arrive at maximum
population at target time T=50 fs, the action of the electric
field is successively delayed with increasing �. However,
comparing with the dissipation-free case, the population dy-
namics changes its nature. The intermediate level gets popu-
lated and depopulated several times, however, only to a
smaller and smaller degree. The system is preconditioned for
the big boost in the electric field which eventually drives the
population into the target state. As � increases the frequency
spectrum of the electric field rapidly gains complexity. Up to
�D�T, the two frequency peaks corresponding to the dipole-
allowed transitions dominate, then higher frequency compo-
nents gain equal weight. The success rate of at least 90% up
to �D�10−2 T is quite remarkable. It is also remarkable that
for the three-level system the electric-field strength increase
is less dramatic as in the two-level case, but the frequency
spectrum becomes less peaked. In the two-level case, it is
essentially field strength and pulse duration which is used to
achieve the task. In the three-level case, it is to a large extent
the increase in frequency contributions to the electric field
which compensates for increased dissipation.

C. Four-level system

We also explored open and closed four-level � schemes
consisting of a stable ground state �1� and a stable target state

FIG. 4. Dissipative three-level-� system �population decay from
�3� to �1� and from �3� to �2��: �a� and �b�, respectively, show the
population transfer from the ground state �1� to the stable state �2�
and the optimal control field for �D=10T �weak damping regime�.
�c� and �d�, respectively, show the population transfer from the
ground state �1� to the stable state �2� for �D=10−1T �strong damp-
ing regime�. E3−E1=4.71 eV, E3−E2=1.57 eV, �31=7.15
�103 THz, �32=2.38�103 THz, oscillation periods T31=0.87 fs,
T32=2.63 fs, target time T=50 fs, and time step 10−2 fs.

FIG. 5. Dissipative three-level-� system �population decay from
�3� to auxiliary state �4��: �a� and �b�, respectively, show the popu-
lation transfer from the ground state �1� to the stable state �2� and
the optimal control field for �D=10T �weak damping regime�. �c�
and �d�, respectively, show the population transfer from the ground
state �1� to the stable state �2� for �D=10−1T �strong damping re-
gime�. E3−E1=4.71 eV, E3−E2=1.57 eV, �31=7.15�103 THz,
�32=2.38�103 THz, oscillation periods T31=0.87 fs, T32=2.63 fs,
target time T=50 fs, and time step 10−2 fs.

FIG. 6. Dissipative three-ladder system: �a� and �b�, respec-
tively, show the population transfer from the ground state �1� to the
unstable excited state �3� and the optimal control field for �D=10T
�weak damping regime�. �c� and �d�, respectively, show the popula-
tion transfer from the ground state �1� to the unstable excited state
�3� and the optimal control field for �D=10−1T �strong damping
regime�. E3−E2=1.57 eV, E2−E1=3.14 eV, �32=2.38�103 THz,
�21=4.7�103 THz, oscillation periods T32=2.63 fs, T21=1.31 fs,
target time T=50 fs, and time step 10−2 fs.
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�2� between which direct dipole transitions are forbidden.
Considering an open four-level scheme, there are two inter-
mediate states �3� and �4�, from which there is decay to levels
outside of the system introduced by Lindblad operators

L1 = ���5��3�, L2 = ���6��4� , �44�

where �5� and �6� denote states outside the four-level system
which serve as a sink for the particle. In this case, once the
particle is lost from the system, it cannot be “recycled” by
the electric field. There is dipole coupling between levels �1�
and �3� , �1� and �4�, as well as �2� and �3�, and �2� and �4�.
Levels 5 and 6 do not interact with the electric field.

In the dissipationless case, we again obtain the “intuitive”
solution transferring the particle via levels 3 and 4. Results
for the dissipative case with �=1/T and �=10/T are shown
in Fig. 7. Again, transfer can be achieved to a high degree. In
the strong damping regime a transfer occurs in bursts �a step-
like fashion�. Now dissipation enforces the “counterintui-
tive” pulse sequence. Note, however, that in contrast to ana-
lytical studies, here we do not rely on the rotating-wave
approximation nor do we distinguish between different field
components which are coupled solely to a particular transi-
tion �15�.

Finally, we discuss results obtained for the ladder-type
four-level system. For the dissipationless case we find the
step-by-step transfer of population which was seen already
for the three-level system. Hence the optimum electric field
starts with high-frequency contributions and ends with low-
frequency contributions, as seen in Fig. 8. Moreover, the goal
of complete population of the fourth level was accomplished

by a pulsed field which is zero at t=0 and at target time T It
should be noted that the average field intensity is higher than
in case of two- and three-level systems. The reason is that
intermediate levels 2 and 3 need to be populated within a
fraction of the target time T.

The dissipative four-level system was investigated for the
Lindblad operators

L1 = ���1��2�, L2 = ���1��3� , �45�

L3 = ���1��4�, L4 = ���2��3� , �46�

L5 = ���2��4�, L6 = ���3��4� . �47�

The corresponding lifetimes of levels 2, 3, and 4, respec-
tively, are �D ,�D /2, and �D /3. Polarization �12,�13, and �23
decay with a lifetime �D /2 ,�D, and 3/2�D, respectively. With
increasing dissipation, it becomes less favorable to do the
simple sequential transfer from level to level. Rather, and as
already observed for the dissipative three-level ladder sys-
tem, several cycles of pumping between ground state and
intermediate levels are performed. It should be kept in mind
that population lost in upper levels shows up in lower levels.
Finally, population is transferred from level 3 and, to a lesser
extent, from level 2 into the target state level 4. In this rela-
tively complicated system, the success rate is more sensitive
to dissipation. Nevertheless, for �D=10T, �D=T, �D=10−1T,
and �D=10−2T, respectively, we still obtain success rates of
about 90%, 80%, 70%, and 60%. In case that a direct dipole
transition between level �1� and �4� is allowed, the optimal
field selects essentially this direct transition.

The main difference between the STIRAP and the ladder
systems considered here is that for the former the target state

FIG. 7. Dissipative four-level � system �population decay from
�3� to auxiliary state �5� and population decay from �4� to auxiliary
state �6��: �a� and �b�, respectively, show the population transfer
from the ground state �1� to the stable excited state �2� and the
optimal control field for �D=10T �weak damping regime�. �c� and
�d�, respectively, show the population transfer from the ground state
�1� to the stable excited state �2� and the optimal control field for
�D=10−1T �strong damping regime�. E4−E1=1.04 eV, E3−E2

=1.57 eV, E2−E1=3.14 eV, �43=1.59�103 THz, �32=2.38
�103 THz, �21=4.77�103 THz, oscillation periods T43=3.94 fs,
T32=2.63 fs, T21=1.31 fs, target time T=50 fs, and time step
10−2 fs.

FIG. 8. Dissipative four-level-ladder system: �a� and �b�, respec-
tively, show the population transfer from the ground state �1� to the
unstable excited state �4� and the optimal control field for �D=10T
�weak damping regime�. �c� and �d�, respectively, show the popula-
tion transfer from the ground state �1� to the unstable excited state
�4� and the optimal control field for �D=10−1T �strong damping
regime�. E4−E1=1.04 eV, E3−E2=1.57 eV, E2−E1=3.14 eV, �43

=1.59�103 THz, �32=2.38�103 THz, �21=4.77�103 THz, os-
cillation periods T43=3.94 fs, T32=2.63 fs, T21=1.31 fs, target time
T=50 fs, and time step 10−2 fs.
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is stable with respect to decay. Due to the present model for
dissipation, in form of Lindblad operators with constant de-
cay rates, the electric field can do nothing to stabilize the
target state. In particular, an electric field could not trap the
system in an instable target state. This can be seen using the
concept of purity in conjunction with the present dynamic
equation. One may define purity P , 0 P1, as

P = 2Tr��2� − Tr��� . �48�

The rate of change of P is given by

Ṗ�t� = �
�

Tr���t�L���t�L�
† − ��t�L�

† L���t�� . �49�

Due to the cyclicity of the trace, the unitary contribution to
the time evolution containing the control field does not enter.
The electric field merely influences the evolution of ��t�.
Within the present model for the Lindblad operators in Eq.
�38�,

Ṗ�t� = �
�

����i�i�
� j�j�

− ��2� j�j�
� . �50�

For a pure state to be stationary with respect to decay chan-
nel �, the state needs to fulfill ��i�i�

−1�� j�j�
=0.

Consider, for example the two-level system and the den-
sity operator

� =
1

2
�1 + � · p�, 0  p2  1, �51�

where � is the Pauli vector and purity P= p2. For the Lind-
blad operator Ł=���1��2�, the stationarity condition is p2

+ pz
2−2pz=0 and the only stable pure state is the ground state

�1�. A stationary mixed state is px= px= px=1/2, with purity
P= 3

4 . For the ”pure-dephasing” Lindblad operator Ł

=���2��2�, the stationarity condition is p2= pz
2. Hence px

= py =0 and pz= ±1, corresponding to levels �1� and �2�, re-
spectively, are the only stable states.

VI. SUMMARY AND CONCLUSIONS

In summary, we have formulated a general class of opti-
mization problems where the constraint is a dynamical evo-
lution of the system under the Lindblad equation within Pon-
triyagin’s minimum principle. This formulation of problem
leads to an indirect method equivalent to the Lagrangian
multiplier method which leads to the an introduction of an
adjoint field �co-state� for which the time evolution needs to
be solved backwards in time. The kinetic equations and the
initial conditions at target time T for the co-state depend,
next to the kinetic equations for the density operator, on the
cost functional. The co-state enters the expressions for the
optimum field solution and the gradient of the cost func-
tional.

For the numerical part, we have adapted the conjugate
gradient method to study optimum coherent control in dissi-
pative N-level systems. In the present study, the problem
posed was to transfer population from the �nondegenerate�
ground state of the system in which it resides at t=0 to a

target state at specified time T, using weak electric fields
whenever possible. We concentrated on a ladder-type N-level
system for which an electric field can induce dipole transi-
tions between adjacent energy levels and � schemes, as used
in STIRAP experiments. For the former, the ground state of
the system was chosen to be stable and excited states were
chosen unstable to account for interaction with the “environ-
ment” whose action was characterized by Lindblad opera-
tors. For simplicity of presentation of results, we considered
only cases where the coupling strength is the same for all
Lindblad operators. The main difference to the � scheme is
that for the latter the target state was assumed to be stable
�on the time scale of the simulation�.

Our studies demonstrate that the conjugate gradient
method is a powerful tool for optimum control in quantum
systems. Even when starting from random fields which do
not account for the intrinsic structure of the quantum system,
we have been able to reach convergence, albeit, after as
many as 500 iterations. “Educated guesses” when going from
one optimum solution to the case of stronger dissipation or
starting from optimal solution from direct methods using a
small parameter set lead to convergence within typically 100
iterations.

For the dissipation-free case we find that perfect transfer
can be achieved most economically by a successive level-to-
level transfer. Our calculations for up to N=8, not shown
here for brevity, confirm this scenario also for more compli-
cated systems. For the dissipation-free case, we were able to
present suggestions for optimal control based on electric
fields whose amplitude goes to zero smoothly at the bound-
aries of the time interval, as one would wish in experiment.
In the dissipation-free � scheme, the optimum solution se-
lected by this indirect method was inevitably the intuitive
pulse sequence following the dipole-allowed transitions and
not the STIRAP sequence. The reason is that our cost func-
tional penalizes field intensity. It is less intensity-effective to
establish the adiabaticity condition for a given time interval
T via intensity than to resonantly transfer the particle via the
intermediate levels.

For all systems studied, i.e., two-, three-, and four-level
systems, we find that the weak-dissipation limit as it is rel-
evant for atomic and many molecular systems, poses no se-
rious threat to success. Electric fields tend to be larger than
for the dissipation-free case and their onset is delayed closer
and closer to target time. As the complexity of a system, such
as the number of �unstable� levels and decay channels, in-
creases the degree of success decreases, as expected. How-
ever, even for rather unrealistic decay times which are
shorter than the characteristic periods of the N-level system,
optimum control has success rates well in excess of 50%,
making, for example, majority voting a meaningful error cor-
rection scheme. These ultrashort lifetimes were chosen not
so much for physical reasons, but to test the prowess of the
numerical approach. Nevertheless, our results give encour-
agement that in realistic systems which are characterized by
short decoherence times, such as semiconductor-based meso-
scopic structures, coherent steering of the system’s dynamics
should be accomplishable with high fidelity.

Since the target state was, in general, not a stable state,
electric fields at target time were not equal to zero. More-
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over, had the field been turned off, the target state would
have decayed according to its lifetime. An interesting ques-
tion is to what extent an external �electric� field can stabilize
a system in a prescribed quantum state in the presence of
dissipation, in other words, to what extent an electric field
can trap a quantum system in an otherwise unstable state.
Inspection of the Lindblad equation with fixed decay rates �
shows that the electric field cannot control the decay of pu-
rity. Due to the cyclicity of the trace, the unitary contribution
to the time evolution, to which the electric field contributes,
does not contribute to decay of purity. Hence within the
present model of decay, the electric field is not able to coun-
teract the decay of the target state. This is the reason why, for
the ladder system in the high dissipation regime, the optimal
field is the one which accomplishes the transfer “in the last
minute.” In the � scheme the situation is different from the
ladder scheme in that the target state is stable. This eases the
optimization problem and allows electric fields of longer
pulse duration as compared to the ladder system, where the
field has to cope with decay of the target state.

One of the drawbacks of the present numerical approach
is that the iteration loop contains a backwards integration in
time for the adjoined state. For linear systems, this equation
is similar in its structure to the forward-in-time equation for
the physical state of the system. In nonlinear systems, such
as relevant in the description of interacting many-body sys-
tems, the backwards-equation in time may be considerably
different from the forward equation and its derivation and
execution cumbersome. Therefore we have also developed
direct methods which rely on some physical intuition and use
a small number of parameters. We found that direct param-
etrization can be very successful. A comparison to the indi-
rect method used here and application to interacting many-
body systems will be given elsewhere.
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APPENDIX: EXPLICIT DERIVATION OF THE
STATIONARITY CONDITIONS

The stationarity conditions �6� are derived by computing
the variation of the augmented cost functional,

J̄ ª Tr��o„��T�…� + 

0

T

�H„��t�,��t�,
�t�… − Tr�
�t��t�t���dt .

�A1�

The integrant in the second term of J̄ is the Legendre trans-
formed of the canonical Hamiltonian H �35–37�. We use

with �·�t��d /dt��·�. The minimization of J̄ leads to a link
between the objective functional J and the optimal solution
��t� supplied by the Lagrange multiplier matrix. Integration
by parts of the last term on the right side of Eq. �A1� yields

J̄ ª Tr��o„��T�…� − Tr�
�T���T�� + Tr�
�0���0��

+ 

0

T

�H„��t�,��t�,
�t�… + Tr�
t�t���t���dt . �A2�

Now consider the variation in J̄ due to the variations in the
control field ��t� and ��T� �keeping 
�t� constant�

�J̄ ª Tr����o„��T�… − 
�T�����T��

+ 

0

T

Tr�� �H
��

+ 
t	���dt + 

0

T �H
��

�� dt ,

�A3�

where we have used ���0�=0, since � is fixed at initial time.

For an extremum, �J̄ must be zero for arbitrary ���t� ,���t�,
and ���T�. So, the adjoint equation


t = −
�H„��t�,��t�,
�t�…

���t�
, �A4�

with the initial condition 
�T�=��o(��T�) and the optimally
condition

�H„��t�,��t�,
�t�…
��

= 0, �A5�

must hold.
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