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I. INTRODUCTION

Resonances are one of the most striking and ubiquitous
phenomena in scattering experiments �e.g., in nuclear,
atomic, or molecular physics, physical chemistry, as well as
in the physics of conductors or semiconductors, quantum
dots, or Bose-Einstein condensates; see Refs. �1–5�, and ref-
erences therein�. They appear as pronounced structures of
spectra in energy-resolved experiments and are associated
with a time delay of the fragmentation process in time-
resolved experiments. Mathematically, they are associated
with poles, zres=�res− i�res /2, of the scattering S-matrix in
the complex-energy plane. �res and �res are called the posi-
tion and width of the resonance. In practice, determining zres
is usually a difficult numerical task �for which different
methods are available like Stieltjes imaging �6�, stabilization
method �7�, shooting methods �8�, complex scaling �9�, com-
plex absorbing potential �3�, etc.�. Resonances are associated
with the resonance component of the cross section. The cel-
ebrated Breit-Wigner formula �10�,

�res =
1

�

�res
2

�� − �res�2 + �res
2 /4

,

can usually be fitted to the resonance component of the cross
section. This formula is of course not valid in the vicinity of
fragmentation threshold or in the case of overlapping reso-
nances. It has been generalized by Kapur and Peierls �11�,
Wigner and Eisenbud �12�; Fano �13�, and Feshbach �14,15�,
introducing energy-dependent parameters �res�����d+����
and �res�������� ��d is the discrete-state energy, ���� is the
energy-dependent level shift, and ���� is the energy-
dependent width�. The poles of the S-matrix can be found as
a solution of implicit equation,

�d + ��zres� −
i

2
��zres� − zres = 0. �1�

Every solution of this equation corresponds to a pole of the
S-matrix but may not represent any experimentally observ-
able resonant phenomenon. The Feshbach-Fano �FF� method
allows us to associate square integrable wave functions,

within a physically relevant linear functional space Q, with
the resonances. This approach permits us to determine the
physically relevant resonances only, their corresponding
wave functions and cross sections. Once the subspace Q is
determined on the basis of the particular physical context,
the FF method provides a detailed and intuitive understand-
ing of the resonant process �for recent comprehensive discus-
sion, see Refs. �16–19��. The basic idea of the Feshbach-
Fano R-matrix �FFR� method introduced in Nestmann’s
seminal article �20� is to define Q as a subset of the scatter-
ing states fulfilling the Wigner-Eisenbud boundary condi-
tions on the surface of the R-matrix sphere complemented
with a set of additional particular conditions.

The major reason why we consider the FFR method is its
capability to construct necessary potentials and coupling el-
ements to be used in the application of the nonlocal reso-
nance model �NRM� to electron-molecule scattering. NRM
is based on the assumption that a temporary molecular
negative-ion state �resonance� is formed in the process of the
collision and that this resonance accounts for the coupling of
the electronic scattering dynamics with the nuclear motion
�see Ref. �21� for a comprehensive review�. The nonlocal
resonance theory yields cross sections for vibrational excita-
tion �VE�, dissociative electron attachment �DEA�, as well as
associative electron detachment �AED� in very good agree-
ment with experimental data describing all the complexity of
the problem, i.e., the theory reproduced successfully thresh-
old peaks in VE, Wigner cusps in the process of DEA, iso-
tope effect in DEA, etc. The theory predicted even other
interesting features—oscillations in VE cross sections below
the opening of the DEA channel—the existence of which
was confirmed subsequently by experiment �22�.

In NRM the resonance is represented by a square-
integrable discrete state ��d�—spanning the Q space—which
interacts with a continuum of background scattering states
�bg���—spanning the complementary space P—via coupling
matrix elements Vd�. The discrete state-continuum coupling
term Vd� is related to the energy-dependent width via ����
=2��Vd��2. Once the discrete state ��d� and the coupling Vd�

are known the cross sections can be very efficiently calcu-
lated �see Ref. �23�, and references therein�. The construction
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of the discrete state is, however, complicated and the calcu-
lation of the coupling Vd� from first principles is a very dif-
ficult task. Several methods of determining the energy-
dependent resonance widths associated with resonance states
have been discussed recently by Sommerfeld and Meyer
�24�. The FFR method �20� makes it possible to extract from
the R-matrix results the discrete state, its potential curve, the
background phase shift, and the corresponding coupling
terms with the electronic continuum. The connection be-
tween the R-matrix theory and the FF formalism was dis-
cussed by Feshbach �15� and more recently by Kazansky
�25� and Rotter �26�. In order to apply the FFR formalism to
electron-molecule scattering, Nestmann �20� developed an
approximation of practical importance. This approximation
was applied to several molecules at the equilibrium geometry
of the ground state �N2, C3H6, N2O�. In addition this ap-
proach was later applied successfully by Beyer et al. to study
the DEA spectrum of CF3Cl �27–29�, by Brems et al. to
study a long-standing problem—the problem of DEA and VE
of the fluorine molecule �30�. More recently Nestmann et al.
applied the FFR methodology to the DEA spectrum of ozone
�31,32�. Calculations of this type are a very complex task
involving several approximations the role of which has not
been controlled and studied in detail.

The purpose of this paper is twofold: first, to test Nest-
mann’s method on clearly defined cases, i.e., to use well-
known potentials in one dimension which support several
resonance states and which have been studied by other au-
thors, and to establish the limits of the FFR method; second,
to propose an improvement of the Nestmann’s approximation
which makes the calculation more stable and more robust.
The paper is organized as follows: In Sec. II, a brief over-
view of the projection-operator approach and R-matrix
theory is given, followed by detailed derivation of the FFR
method. In particular, in Secs. II C and II D, two substantial
improvements to Nestmann’s FFR are proposed. In Sec. III
the method is applied to two qualitatively different potential
scattering problems and the results are carefully analyzed.
The paper is summarized in Sec. IV.

II. THEORY

A. Projection-operator approach

In this section we give a brief outline of the projection-
operator formalism �13–15� as applied to resonant potential
scattering. A more detailed description can be found in Ref.
�33�. The main idea of the approach is to divide the whole
Hilbert space into two subspaces, H=Q � P. The resonant
part Q corresponds to all rapid variations of the scattering
phase shifts and cross sections, while the scattering corre-
sponding to the remaining part P �background scattering� is
expected to produce only smooth and slowly varying phase
shifts in the energy interval of interest and can be therefore
treated using different approximations.

The separation is done by introducing the projection op-
erators P and Q,

P2 = P, Q2 = Q, P + Q = 1, PQ = QP = 0. �2�

For energy near resonance the wave function can be de-
scribed by a square integrable function since the amplitude

of the oscillatory tail is expected to be much smaller than the
values of the wave function in the interaction region. This
suggests the choice of the projector Q in the form

Q = �
n=1

Nd

��d,n�	�d,n� , �3�

where the �d,n�r� are square integrable functions �often
called discrete states�. The separation of the Hilbert space
into the resonant and nonresonant parts leads to correspond-
ing separation of the T-matrix, T=Tres+Tbg.

In case of a spherically symmetric scattering potential the
P component of the scattering wave function at energy � can
be obtained as follows. By projections of the Schrödinger
equation �H−���	�

�±��=0 we get a system of coupled equa-
tions

�� − HPP�P�	�
�±�� = HPQQ�	�

�±�� , �4�

�� − HQQ�Q�	�
�±�� = HQPP�	�

�±�� �5�

�we have used the abbreviation HQP for QHP, etc.� for each
partial wave component �we omit the indexes l ,m� of the
scattering wave function. This system can be resolved with
respect to the P component, yielding the Schrödinger equa-
tion

H̃�P�	�
�±�� = �P�	�

�±�� �6�

with the optical-potential Hamiltonian

H̃� = HPP + HPQ�� − HQQ�−1HQP. �7�

The resonant scattering T-matrix

Tres���,�� = 	bg���
�−��H − HPP�	�

�+�� �8�

can be written in terms of the background solutions �bg��
�±��

�energy normalized eigenfunctions of HPP� as

Tres���,�� = 	bg���
�−��HPQ�� − HQQ − HQP�� − HPP

+ i
�−1HPQ�−1HQP�bg��
�+�� . �9�

The poles of the T-matrix are then determined by the equa-
tion

det�zres − HQQ − HQP�zres − HPP + i
�−1HPQ� = 0. �10�

Equation �1� is the special case of this equation for isolated
resonance.

In the case of isolated resonance �Q= ��d�	�d�� the gener-
alized Breit-Wigner formula for the resonant part of the
T-matrix can be derived �13,14�. Let us define the discrete
state energy

�d = 	�d�H��d� �11�

and the complex level-shift function

F��� = 	�d�HQP�� − HPP + i
�−1HPQ��d� . �12�

Using the spectral representation of the Green’s function ��
−HPP+ i
�−1 the level shift can be expressed in terms of the
discrete state-continuum coupling matrix elements
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Vd� = 	�d�H�bg��
�+�� �13�

as

F��� = ���� −
i

2
���� , �14�

���� = 2��Vd��2, �15�

���� =
1

2�
P
 �����

� − ��
d��. �16�

The resonant part of the T-matrix is then given by

Tres��� =
1

2�

����
� − �d − ���� + i

2����
. �17�

B. R-matrix theory

The key idea of the R-matrix theory �12,34� is to divide
the whole space into two regions by a sphere � centered on
the target. The radius r� of the sphere is chosen so that
outside of the sphere �external region� the interaction can be
approximated by an effective single-particle potential �usu-
ally a multipole expansion�. In the particular case of spheri-
cally symmetric potential scattering r� is chosen so that the
interaction potential vanishes outside the sphere and the
wave function can be expressed by means of spherical Bessel
functions in the external region. The modified Hamiltonian

H��r� = H�r� + L�r� = H�r� +
1

2
��r − r��

d

dr
, �18�

symmetric in the space of functions defined in the internal
region 	0,r�� and satisfying the condition ��0�=0, is intro-
duced. It provides discretization of the scattering continuum
via solving the eigenvalue problem inside �,

H��r��k
��r� = Ek

��k
��r� , �19�

with �k
��r� normalized to unity within the interval 	0,r��.

The quantity

R��� =
1

2�
k

��k
��r���2

Ek
� − �

�20�

is the one-dimensional analog of the R-matrix and has the
simple meaning of the inverse logarithmic derivative of the
solution of the Schrödinger equation at r�. It therefore pro-
vides the boundary condition for the solution in the external
region,

	�
�±��r�� = R���� d

dr
	�

�±��r��
r=r�

. �21�

Within the internal region the solution can then be expanded
in terms of the R-matrix basis ��k

��r� as

	�
�±��r� =

1

2�
k

�k
��r�

�k
��r��

Ek
� − �

�� d

dr
	�

�±��r���
r=r�

. �22�

C. Feshbach-Fano R-matrix (FFR) method

In this section we show how the results of the R-matrix
theory can be used for definition of the discrete state ��d� and
related quantities �d, ���� and ����. The general multichan-
nel form of the FFR method was described elsewhere �20�,
so we give here only the simple formulas, suitable for one-
dimensional potential scattering.

Let the scattering phase shift show a resonance structure
in a certain energy region res, see Fig. 1. Assuming that the
radius r� of the sphere � is chosen to be sufficiently large,
the square integrable discrete state wave function �d�r� as-
sociated with the resonance can be considered to be com-
pletely contained inside the R-matrix region. Under this as-
sumption it can be expanded in terms of the R-matrix basis
�19� as

�d�r� = �
Ek

��res

ck
��k

��r� �23�

provided res is chosen such that it covers all the spectral
domain where the discrete state is expected to interact with
the background continuum. In order to ensure that �d�r� �Eq.
�23�� is integrable on 	0,�� it has to be set to constant zero
outside the R-matrix sphere. Only the condition

�d�r�� = 0 �24�

has to be satisfied. The second required condition of vanish-
ing first derivative of the wave function,

�d�d�r�
dr

�
r=r�

= 0, �25�

is met automatically because of the following reasons. It can
be shown that in case that complete basis is used for solving
the problem �19� then for all k the derivatives of �k

��r� van-
ish at r�. Because there is only a finite number of terms
included in the expansion �23� Eq. �25� follows immediately.

Let the energy interval res contain N levels Ek
�. Except

the case N=2 the condition �24� does not determine the dis-
crete state completely. Some criterion defining a resonance is
needed. It can be found by comparison with a similar system
possessing no resonance in the region res. We have to con-

FIG. 1. Comparison of the R-matrix spectra of resonant and
nonresonant systems.
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struct such a model Hamiltonian °H for which the phase shift
is close to what we expect to be the background phase shift
for the full problem H. The comparison is implemented
through the R-matrix spectrum obtained by solving the ei-
genvalue problem similar to Eq. �19�,

°H��r� ° �k
��r� = ° Ek

� ° �k
��r� . �26�

In the case of single isolated resonance it has been shown in
some examples �20� that it is possible to choose res such
that °N �number of eigenvalues °Ek

� lying in res� is equal to
N−1. In general, the FFR method defines the number of
resonances within res as the difference between the numbers
of levels Ek

� and °Ek
� contained in this energy region. Typical

comparison of the R-matrix spectra of resonant and similar
nonresonant systems is schematically plotted in Fig. 1.

The background scattering is characterized by the eigen-
states �bg� j

�� of the projected Hamiltonian bgH�= PH�P. The
basic assumption of the FFR method is the existence of a
unitary mapping,

bg� j
��r� = �

°Ek
��res

ajk ° �k
��r�, �

l

ail
*ajl = �ij , �27�

for bgEj from res. In other words, within res, the Hilbert
space corresponding to the model system is used as an ap-
proximation to the background Hilbert space of the original
one. Because we have assumed that the discrete state inter-
acts with the background continuum only within the res
domain it is justified to take bg���r�=���r� for levels lying
outside of this energy region—the resonance does not affect
the spectrum outside res at all. The projector onto the P
subspace, restricted within the R-matrix sphere, can then be
expressed as

P� = �
°Ek

��res

� ° �k
��	°�k

�� + �
Ek

��res

��k
��	�k

�� . �28�

In this representation the condition P�Q=0 yields a system
of linear equations for the expansion coefficients ck

�,

�
k=1

N

ck
�	°� j

���k
�� = 0, ° Ej

� � res. �29�

A slightly different discussion leading to this system can be
found in Ref. �30�.

Equations �24� and �29� form a homogeneous system of N
linear equations for N expansion coefficients ck

� �N is the
number of levels Ek

� within the res domain and we are con-
sidering the case of single isolated resonance�. For existence
of the solution it is necessary that the determinant of the
system satisfies

�
	°�1

���1
�� 	°�1

���2
�� ¯ 	°�1

���N
��

� �

	°�N−1
� ��1

�� 	°�N−1
� ��2

�� ¯ 	°�N−1
� ��N

��
�1

��r�� �2
��r�� ¯ �N

��r��
� = 0.

�30�

In general this is not true for any arbitrary model poten-
tial. The condition �30� can be rather understood as a con-

straint for the Hamiltonian °H. For realistic problems, how-
ever, it is not possible to find °H such that the condition �30�
is fulfilled. Therefore, because the condition �24� is essential
for ensuring the L2 integrability of �d, Eq. �29� can be satis-
fied only approximately. The most straightforward way is to
apply some minimization procedure. In actual calculations
�20,27–32�, a different approach has been chosen because the
overlap integrals 	°� j

���k
�� are quantities which are not easily

extracted from the existing implementation of the ab initio
R-matrix code.

Following Ref. �20�, we will show that it is possible to
find an approximation to the overlap integrals such that con-
dition �24� is satisfied when Eq. �29� is solved within this
approximation. Under assumption �27�, �k

��r� can be ex-
panded as �for Ek

��res�

�k
��r� = �

°El
��res

dkl ° �l
��r� + ck�d�r�

dkl = 	°�l
���k

�� . �31�

From the Schrödinger equation projected into the P space �6�
in the �-confined form with �=Ek

� we arrive at

�bgH� +
PH���d�	�d�H�P

Ek
� − �d

�P��k
�� = Ek

�P��k
�� . �32�

Introducing the residual potential

Vrsd=
bgH� − ° H� �33�

and, multiplying Eq. �32� by 	°� j
�� from the left, we obtain

	°� j
�� ° H��P�k

�� + 	°� j
��Vrsd�P�k

��

+
	°� j

��H���d�	�d�H��P�k
��

Ek
� − �d

= Ek
�	°� j

��P�k
�� .

�34�

Applying the representation �28� for the P projector yields

°Ej
�dkj + �

°El
��res

dkl�	°� j
��Vrsd� ° �l

��

+
	°� j

��H���d�	�d�H�� ° �l
��

Ek
� − �d

� = Ek
�dkj. �35�

With the notation

vkj = �
°El

��res

dkl	°� j
��Vrsd� ° �l

�� , �36�

Bk = �
°El

��res

dkl
	�d�H�� ° �l

��
Ek

� − �d

�37�

the resulting formula for the overlap boils down to an im-
plicit equation for dkj,

dkj = 	°� j
���k

�� =
vkj + 	°� j

��H���d�Bk

Ek
� − ° Ej

� . �38�
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The only approximation applied so far is the assumption
�27�. Under the additional presumption that the contributions
vkj of the residual potential are small in comparison with the
Bk, representing the interaction of ��d� with the background,
we get the proportionality

	°� j
���k

�� = Bk

	°� j
��H���d�

Ek
� − ° Ej

� �39�

with unknown coefficients Bk and 	°� j
��H���d�. The Bk co-

efficients are approximated in such a way that Eq. �29� gives
the discrete state wave function vanishing at r�. The latter
constraint is equivalent to the statement that the P projector
does not affect the amplitudes �k

��r��, more precisely
�P�k

���r��=�k
��r��. Within res, this can be rewritten using

Eq. �28� as

�
°Ej

��res

	°� j
���k

�� ° � j
��r�� = �k

��r�� . �40�

Applying the approximation �39� we arrive at

Bk = � �
°El

��res

	°�l
��H���d� ° �l

��r��
Ek

� − ° El
� �−1

�k
��r�� . �41�

The discrete state wave function can now be constructed
in a self-consistent iterative process. As a first approximation
of �d�r� we take the wave function �l

��r� with corresponding
energy El

� that is the closest to the expected discrete state
energy,

ck
�,�1� = �lk, �d

�1� = El
�. �42�

Then we have to construct the first approximation to the
coupling elements 	°�l

��H���d�. To do so we insert
	°�l

��H���d�=1 into �39� and �41� and obtain a zeroth ap-
proximation of the overlap integrals,

	°� j
���k

���0� = � �
°El

��res

°�l
��r��

Ek
� − ° El

��−1 �k
��r��

Ek
� − ° Ej

� .

�43�

First approximation of the coupling elements is then given
by

	°� j
��H���d��1� = �

Ek
��res

�lkEk
�	°� j

���k
���0�. �44�

The iterations proceed as follows. The couplings
	°� j

��H���d��i� are inserted into Eqs. �39� and �41� to obtain
improved approximation of the overlap integrals 	°� j

���k
���i�,

which are then used in Eq. �29� to determine the next ap-
proximation of the expansion coefficients �ck

�,�i+1�. Corre-
sponding approximation of the coupling integrals is obtained
from

	°� j
��H���d��i+1� = �

Ek
��res

ck
�,�i+1�Ek

�	°� j
���k

���i� �45�

and used again to improve the overlaps 	°� j
���k

�� and expan-
sion coefficients.

In the case of single resonance the iterations stop after the
first step, because �ck

�,�2� is already a self-consistent solu-
tion. In the case of overlapping resonances the set of discrete
states have to be orthonormalized in each step by diagonal-
izing the Hamiltonian in the obtained Q subspace �see the
end of this section and Eq. �51��, which breaks the consis-
tency of the solution. In all studied examples of multiple
resonances, however, the iterations always converged very
rapidly.

Having defined the discrete state, we can construct the
projector P�=1�−Q and the background spectrum

�bgH��r� − bgEl
��bg�l

��r� = 0. �46�

If the eigenfunctions are expanded into the ��k
��r� basis as

bg�k
��r� = �

l

bkl
��l

��r� , �47�

a simple formula for the coupling with the discrete state can
be found:

	�d�H�bg�k
�� = 	�d�H��bg�k

�� = �
El

��res

bkl
�El

�cl
�. �48�

The extension to the continuous energy is done when the
background scattering states bg��

�+��r� are expanded into
�bg�l

��r� using the formula �22�, arriving at

Vd� = 	�d�H�bg��
�+�� =

1

2�
kl

bkl
�El

�cl
�� bg�k

��r��
bgEk

� − �

�� d

dr
bg��

�+��r���
r=r�

. �49�

The energy-dependent width is obtained directly from Eq.
�15�. For the Hilbert transform in Eq. �16� we use a simple
trapezoidal-like integration rule based on the formula



x1

x2 ax + b

x0 − x
dx = a�x1 − x2� + �ax0 + b�ln� x1 − x0

x2 − x0
� . �50�

�more sophisticated methods for performing the numerical
Hilbert transform can be found in the Appendix of Ref. �16�
and in Ref. �35�, and references therein�.

The generalization of the FFR procedure to the case of
more than one resonance in the res domain is quite straight-
forward. For construction of the projector Q we need the
discrete states to be orthogonal to each other, namely



0

r�

�d,i
* �r��d,j�r�dr = 0, i � j . �51�

The orientation of the vectors is not uniquely determined;
one of the good possibilities is to diagonalize the operator
QHQ in the basis of the discrete states. Generally this choice
slightly simplifies calculations �cf. Eq. �9��. In the case of
several separated resonances the off-diagonal terms of the
operator �−HQQ−HQP��−HPP+ i
�−1HPQ can be neglected
and the resonant contribution to the phase shift is well ap-
proximated by the sum of Breit-Wigner terms. This shows
that each discrete state corresponds to one resonance. We can
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expect that such a definition leads to smoother discrete-state–
continuum couplings. Moreover, it preserves the validity of
the approximation �39�.

D. Extensions of the FFR method

In this section we propose several variants of the FFR
method, that are analyzed in Sec. III. The variants differ
mainly in the way they treat the overlaps 	°� j

���k
�� in Eq.

�29�. In the Nestmann approximation method �NA� �20� the
overlap integrals are evaluated using Eq. �39�, but the cou-
pling element 	°� j

��H���d� is assumed to be j-independent
and therefore can be omitted in Eqs. �39� and �41�. The co-
efficients Bk are then determined from Eq. �41� directly with-
out any initial guess of the discrete state wave function and
the iterative process �42�–�45� is avoided. The center of at-
tention will be on the improved Nestmann approximation
method �INA�. In INA, the system �29� is solved using ap-
proximate overlaps defined by Eqs. �39�–�45�.

A quite different approach is used in the additional level
method �AL�. In the AL method the system �29� is solved
exactly within the res domain �possibly different than in the
INA method� and the condition �24� is satisfied subsequently
by adding the first level above res into the discrete state
expansion with the proper coefficient. If the model system
and the res domain are chosen properly, this addition repre-
sents just a small correction and the FFR idea is not violated.
The major disadvantage of the AL method is that the overlap
integrals have to be evaluated explicitly.

In addition we will refer also to the orthogonalisation
method �OM�. In this method the discrete state is determined
simply by the solution of Eq. �29�. This method produces a
nonintegrable wave function ��d� which cannot be used rig-
orously in order to define the subspace Q. Within this ap-
proach the T-matrix is equal to Tbg+Tres approximatively
only. However, it provides a very illustrative comparison
with the other methods.

III. MODEL STUDIES

This section is devoted to the study of the performance of
the methods discussed in the previous section. We have ap-
plied the FFR method to several spherically symmetric po-
tential scattering problems and here we present some illus-
trative results, comparing different versions of FFR as listed
in Sec. II D. Particular attention is paid to the dependence of
zres, ����, and �bg on �unphysical� quantities like r�, res, and
°H for each method. Throughout the whole section we use
atomic units and reduced mass �=1.

A. Square well with centrifugal barrier (potential A)

The square well with centrifugal barrier is a typical po-
tential supporting resonances in atomic and molecular phys-
ics: a combination of an attractive short-range potential and
the repulsive centrifugal barrier for J�0. With parameters
set to a=3, B=2, and J=4 the potential

VA�r� = �
J�J + 1�

2r2 − B r � a

J�J + 1�
2r2 r � a� �52�

possesses an isolated resonance at the energy zres=0.488
−0.036i. As a model system we use the potential of the cor-
responding centrifugal barrier

°VA�r� =
J0�J0 + 1�

2r2 , J0 = J . �53�

The R-matrix spectra for the full and model potentials for
two values of the R-matrix radius r� are plotted in Fig. 2.
Background phase shifts �bg separated by different methods
are plotted in Fig. 3, the discrete state wave functions and
corresponding resonance width functions are shown in Figs.
4 and 5.

In the case r�=6, res= 	0.3,0.7� contains only two spec-
tral levels of the full problem �N=2, °N=1� and the discrete
state is completely determined by Eq. �24�. In such a case all

FIG. 2. Potential A: R-matrix spectra for two values of the
R-matrix radius. From left: model potential spectrum, original po-
tential spectrum, and the separated spectrum; solid lines: back-
ground spectrum; dashed line: discrete state position determined by
the INA method. Thick lines demarcate the res domain.
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versions �except OM� of the FFR methods are equivalent.
With increasing r� the R-matrix spectrum becomes more
dense, for r�=15, N=3, and °N=2. The smoothest back-
ground phase shift is produced with r�=6 but, also for r�

=15, the resonance is well separated out using both the INA
and AL methods. Nevertheless, there is a qualitative differ-
ence between the discrete state wave functions. For r�=6 the
wave function �d�r� shows no oscillations. It looks like a
typical bound-state wave function. With increasing r� �d�r�
oscillates for r�6. In the OM method the amplitude of the
oscillations is constant and the frequency does not corre-
spond to the energy of the discrete state �d

OM=0.5459 but
rather to an energy lying slightly above res. In both the INA
and AL methods the oscillations are damped and the wave
functions vanish at r�. The frequency of the oscillations is
lowered and corresponds approximately to the discrete state
energy �d. In the AL method the discrete state lies above the
resonance energy �res at �d

AL=0.5116, the wave function fol-
lows closely �d

OM�r� in the interaction region. In the INA

method the discrete state energy �d
INA=0.4898 is almost

equal to the resonance position �res and the oscillations are
very quickly damped.

In general, we observe that �d�r� does not oscillate if we
choose r� within the interval 	rint ,rint+��d

�, where rint is the
“interaction range” and ��d

the de Broglie wavelength asso-
ciated to �d. The interaction range rint is defined here as the
region where the amplitude of the scattering wave function at
the resonance energy is enhanced.

Although the background phase shifts are quite similar in
all cases �Fig. 3�, the resonance energy-dependent widths are
very different from each other, see Fig. 5. However, the local
�Siegert� resonance energy and widths �positions of the cor-
responding S-matrix poles in complex energy plane, zres
=�res− i�res /2� obtained from Eq. �1� are the same for all
three cases, zres=0.488−0.036i, differing only at the level of
the error of the rational interpolation used to extend F��� to
the complex energy plane. Therefore all the methods are
equivalent from this point of view. However, the suitability
of each method may differ depending on particular applica-
tion of the FFR method.

To investigate the sensitivity of the method to the model
potential we have performed the separation with different
values of J0 in Eq. �53�. Resulting background phase shifts
�bg are plotted in Fig. 6. We have used also the unphysical
noninteger values of J0 to obtain smoother dependence.
From Fig. 6 we observe that in the case of INA and AL
methods all values of J0 from 3 to 6 result in a weakly
energy-dependent background phase shift, i.e., in a satisfac-
tory resonance-background partitioning. On the other hand,
the OM method provides weakly energy-dependent �bg only
for J0=4 or J0=5. We can conclude that compared to the OM
both the INA and AL procedures reduce the influence of the
model potential V0. Proper choice of the model potential is,
however, very important. In general, the model potential
should repel the wave functions °� j

��r� out of the interaction
region so that the wave function �d�r�, which is orthogonal
to °� j

��r�, is localized in the interaction region.
Comparison of the discrete state wave functions deter-

mined by INA and AL methods for J0=4 and J0=5 is pre-

FIG. 3. Potential A: Full phase shift and background phase shifts
obtained with different versions of FFR and different dimensions of
the R-matrix sphere.

FIG. 4. Potential A: discrete state wave functions obtained with
different versions of FFR and different dimensions of the R-matrix
sphere.

FIG. 5. Potential A: energy dependent resonance width func-
tions corresponding to different discrete states, cf. Fig. 4. The black
square shows the local �Siegert� resonance position and width.
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sented in Fig. 7. It is interesting to note that the discrete state
wave function separated by INA with J0=4 is almost exactly
equal to �d

AL�r� determined with J0=5. Equivalence of the
INA and AL methods with different J0 shows that the appli-
cation of the Nestmann approximation is equivalent to a
slight modification of the model potential. In the case above
the Nestmann approximation yields values of overlap inte-
grals 	°� j

���k
�� for J0=4 that are closer to 	°� j

���k
�� for J0

=5 than to their exact values.

B. Short-range potential (potential B)

In this section we discuss a smooth potential without cen-
trifugal barrier, which serves as a standard test and which has
been studied by various methods in the past �36–39�.

The potential

VB�r� =
�

2
r2e−r �54�

can support resonances of a large range of widths, depending
on the value of the parameter �. The resonance poles are

determined in Ref. �8� for � from 3 to 26 using two different
methods of the shooting type based on the calculation of the
Siegert state. We have applied the NA, INA, and AL methods
to this potential in order to compute the resonance positions
and widths. As a model system we have used the potential

°VB�r� =
�0

4
e−�r−3�/2 �55�

with �0=�+1; see Fig. 8.
Results obtained by the INA method are compared with

accurate values from Ref. �8� in Table I. Trajectory of the
resonance pole for � from 3 to 26 is plotted in Fig. 9. For
��7 where the resonance becomes narrow with �res�0.20
our results correspond to Ref. �8� precisely. In order to obtain
the positions of the resonance poles in the lower complex
energy plane the level shift function F��� �Eq. �12�� is ana-
lytically continued to complex � via rational extrapolation.
The error bars in Fig. 9 are estimated from the dependence of
the calculated resonance position on the set of points �on the
real axis� used to construct the rational function. For more
details see the Bulirsch-Stoer algorithm �40�. In Table I we
list results of only one version of the FFR method, because
for ��5 all three studied variants yield results identical to at
least three digits, which is comparable with the accuracy of
the extrapolation. With increasing � the accuracy improves
as ���� becomes smoother for narrower resonances. For �
�5 the results of different versions of FFR vary �see Fig. 9�,
but we have not observed any systematic trend in the devia-
tions.

We observe that, although all three methods determine the
positions of the resonance poles comparably well, the sensi-
tivity of the methods to the size of the res domain is very
diverse. The results of the AL method are rather independent
on the definition of res. In the INA method the results are
quite stable in a narrow range around the optimal definition
of res �yielding the smoothest �bg and �����, i.e., if one or
two more R-matrix levels �k

��r� are added into the expansion
of �d�r�, see Eq. �23�. For the NA method there is usually
only one suitable choice of res, any other definition leads to

FIG. 6. Potential A: background phase shifts obtained by the
FFR method with different model potentials. Lowest curves were
obtained by OM, results of INA are shifted by 1.5, and results of AL
by 2.5.

FIG. 7. Potential A: Discrete state wave functions determined by
the INA and AL methods with two different model potentials.

FIG. 8. Potential VB�r� with model potential °VB�r�, �=10, �0

=11.
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a very strong dependence of �NA��� on the energy. Further-
more, for some values of � �denoted by stars in Table I� it
appears that the discrete state has to be represented by two
levels �k

��r� only to obtain smooth ����.
Figures 10–12 demonstrate the advantages of the INA

over the NA method on the example of the potential B with
�=10. We compare two definitions of the res domain: the
smaller one res= 	2.1,2.7� with N=2, °N=1, and the larger
one res= 	1.7,3.5� with N=4, °N=3. Discrete state wave
functions determined by the NA and INA methods are plot-
ted in Fig. 10. The wave functions obtained with the smaller
res �with N=2, both methods are reduced to Eq. �24� and
therefore equivalent� and by the NA method with the larger
res have nearly the same amplitude in the vicinity of r=0
and exhibit pronounced, slowly damped oscillations for
larger r. In case of the smaller res the enhanced peak close
to r=0 has a complicated structure as both levels �k

��r� are
included into the �d�r� expansion with comparable coeffi-
cients. �d�r� obtained by the INA method with the larger res
resembles more closely the bound-state wave function, oscil-
lations beyond r=4 have small amplitude and are very
quickly damped.

From Fig. 11 we observe that with N=2 the resonance is
separated from the full phase shift �i.e., �bg does not rapidly

increase at the position of the resonance�, but the background
phase shift is not completely flat. The energy-dependent
resonance width is bell shaped and attains its maximum to
the left of the resonance position. It exhibits small oscilla-
tions at lower and higher energies �Fig. 12�. Inclusion of the
two more R-matrix levels �larger res� into the discrete state
expansion results in a smoother energy dependence of �bg
and ���� if the INA method is used. The background phase
shift is flat and the energy-dependent resonance width is
smaller, its maximum is located close to the resonance en-
ergy. On the other hand, the NA method yields much worse
results. The energy-dependent resonance width has three
peaks in the energy range �1.5, 3.6� and the background
phase shift oscillates. The S-matrix pole, however, is deter-
mined correctly. These results show that in some cases the
Nestmann approximation is too crude. In particular, neglect-
ing the j-dependence of the couplings 	°� j

��H���d� in Eq.
�39�, which is related to the energy-independent discrete
state-continuum coupling hypothesis, is not justified. Never-
theless, it should be stressed that the NA method can be used

TABLE I. Potential B: resonance energies and local widths ob-
tained by the INA version of the FFR method and by the shooting
method �SM� �8�. Stars indicate where the discrete state is expanded
into only two levels in the NA method; see text. Numbers in square
brackets denote powers of 10.

� �res
INA �res

INA/2 �res
SM �res

SM/2

3* 1.0969 2.1180�−1� 9.7382�−1� 2.1541�−1�
4 1.2318 1.6496�−1� 1.2342 1.8723�−1�
5* 1.4797 1.5322�−1� 1.4779 1.5912�−1�
6* 1.7202 1.3730�−1� 1.7089 1.3279�−1�
7* 1.9232 1.0993�−1� 1.9294 1.0900�−1�
8 2.1407 8.9535�−2� 2.1409 8.8039�−2�
9* 2.3448 7.0063�−2� 2.3443 6.9980�−2�

10* 2.5411 5.4772�−2� 2.5405 5.4741�−2�
11 2.7302 4.2179�−2� 2.7298 4.2144�−2�
12 2.9121 3.1832�−2� 2.9127 3.1944�−2�
13 3.0900 2.3813�−2� 3.0895 2.3854�−2�
14 3.2612 1.7562�−2� 3.2607 1.7567�−2�
15* 3.4263 1.2762�−2� 3.4264 1.2774�−2�
16* 3.5866 9.2165�−3� 3.5870 9.1865�−3�
17 3.7425 6.5474�−3� 3.7429 6.5436�−3�
18 3.8946 4.6205�−3� 3.8944 4.6243�−3�
19 4.0418 3.2468�−3� 4.0418 3.2472�−3�
20 4.1856 2.2661�−3� 4.1853 2.2688�−3�
21* 4.3251 1.5790�−3� 4.3254 1.5794�−3�
22 4.4621 1.0977�−3� 4.4621 1.0965�−3�
23 4.5956 7.5891�−4� 4.5959 7.5988�−4�
24 4.7270 5.2596�−4� 4.7268 5.2606�−4�
25 4.8551 3.6409�−4� 4.8550 3.6402�−4�
26 4.9811 2.5167�−4� 4.9808 2.5191�−4�

FIG. 9. Potential B: resonance pole trajectory for � from 3 to 26.
The error bars of the results of FFR methods were estimated from
the stability of the rational interpolation of F��� in Eq. �1�.

FIG. 10. Potential B, �=10: discrete state wave functions de-
fined by the NA and INA methods with different res.
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in these cases provided the res domain, which contains only
two R-matrix levels, is broad enough to allow for the full
extraction of the resonance from the background scattering.

For narrower resonances �larger �� NA works generally
better, as shown Fig. 13, where the energy-dependent reso-
nance width determined by all three variants of the FFR
method is plotted. The same definition of res= 	2.7,3.6� �
N=3, °N=2� is used in Fig. 13. However, it is not only the
resonance width that determines the applicability of the
Nestmann approximation. The approximation fails also for
�=15, 16, and 21. This failure is not caused by a wrong
choice of the model potential; we found the NA results to be
quite stable for a wide range of �0 in the model potential
°VB�r�. The results can be, however, significantly improved
by a change �even very small� of r�. This underlines the
sensitivity of the NA method to the choice of r�.

IV. CONCLUSIONS

Though numerous methods are nowadays available for
computing resonances, the FF method remains very appeal-

ing in particular for the following reasons: �i� this method
focuses on physically relevant resonances only, and �ii� pro-
vides an interpretation of the resonances in terms of square
integrable functions �the discrete states �d�. Its major draw-
back is that it requires the a priori definition of the linear
functional space Q in which the discrete states are expanded.
This choice is usually evident in the case of Feshbach reso-
nances but can be difficult in the case of shape resonances.

Nestmann has proposed a systematic approach for deter-
mining Q �20�, the FFR method, which proved very power-
ful for computing cross sections of resonant electron-
molecule collisions, in the case of shape �20,27–30� as well
as Feshbach resonances �31,32�. The FFR method provides
the discrete state, its potential curve, and the associated cou-
pling terms to the background continuum. Within the FFR
approach, the R-matrix spectrum El

� of the resonant system
is compared within a given energy range res with the
R-matrix spectrum °El

� of a so-called model system similar
to the studied one but exhibiting no resonance in res. The
FFR method therefore requires a priori definition of both
res and the model system.

The main limitation of the FFR method is that it can only
be applied to systems which can be investigated via the
R-matrix method. In the context of electron-molecule scat-
tering, this constraint currently corresponds to low-energy
scattering ��10 eV� and to small molecular systems ��40
electrons� �see, e.g., Refs. �27,41��. Nevertheless, technical
improvements allowing consideration of a larger active space
for the expansion of the scattering wave function may allow
near future progress �42,43�. In the case of molecular colli-
sions, the R-matrix theory can be applied to low-energy scat-
tering involving not too heavy projectiles �see, e.g., Ref.
�44��.

In this paper we have tested the FFR method on two
qualitatively different spherically symmetric potential scat-
tering problems—the square well with long-range centrifugal
barrier and a smooth short-range potential. We compared
three variants of the FFR method, the Nestmann approxima-
tion, improved Nestmann approximation, and additional level

FIG. 11. Potential B, �=10: background phase shifts separated
by the NA and INA methods with different res.

FIG. 12. Potential B, �=10: resonance widths determined by the
NA and INA methods with different res. The black square shows
the local resonance position and width.

FIG. 13. Potential B, �=12: resonance widths determined by
different variants of the FFR method with the same res

= 	2.7,3.6� �N=3, °N=2�. The black square shows the local reso-
nance position and width.
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methods. In all cases the FFR procedure resulted in a correct
resonance-background partitioning, giving correct positions
of the resonance poles in the complex energy plane. We
found out that the influence of the model potential on the
results is rather small, which is very important for practical
applications where the possibilities of the choice of the
model system are strongly limited. The major advantage of
the NA and INA methods over the AL method is that once
the poles Ek

� and °Ej
� and the amplitudes �k

��r�� and
°� j

��r�� are known these algorithms are very easily pro-
grammed and not time consuming. The AL method, on the
other hand, requires explicit knowledge of the overlap inte-
grals 	°�l

���k
��, which are easily computed in case of one-

dimensional systems but may get more difficult to obtain in
realistic more-dimensional systems.

Our analysis also revealed some limitations of the
method. We have shown that the NA method is very sensitive
to the choice of the R-matrix radius r� and the res domain.
If r� is chosen close to the “interaction range” rint �the region
where the amplitude of the scattering wave function at the
resonance energy is enhanced� then the discrete state wave
function �d�r� looks like a typical bound-state wave function
and the background phase shift and the resonance width de-
pend weakly on energy. However, if r� is larger the discrete
state wave function oscillates for r�rint, which may cause
the resonance width to be strongly energy dependent. Both
INA and AL methods proved to be significant upgrades of
the NA method, giving better results �i.e., smoother energy-
dependent quantities like ��E� and �bg� less sensitive to the
�unphysical� parameters r� and res. The INA method is a
rather slight modification of the NA method, preserving the
advantage of numerically cheap indirect evaluation of the

overlap integrals 	°�l
���k

��, and can therefore be easily
implemented into existing R-matrix computer codes.

Though we have shown that all three methods provide
correct resonance positions, their respective usefulness in the
context of electron-molecule scattering must further be in-
vestigated. In order to obtain a correct diabatization of the
metastable anionic state, not only the weak energy depen-
dence of the discrete state background continuum coupling
terms but also their smooth dependence on the molecular
geometry is required. This feature, however, cannot be inves-
tigated in the context of spherically symmetric potential scat-
tering and is still an open question. In all applications of the
FFR procedure to electron-molecule scattering �20,27–32�,
the method yielded very good results. However, the de Bro-
glie wavelength corresponding to the discrete state energy
was in all studied systems comparable with the R-matrix
radius �r�=10 bohr�, used in the calculations. We have
shown that, in such a case, the results are quite independent
on the particular level of approximation used in order to
define ��d�. This is due to the fact that all methods lead to a
nonoscillating discrete state wave function and therefore to a
smoothly energy-dependent resonance width function.
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