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The radiative electron capture into high-Z, few-electron ions is studies in the framework of the density
matrix, based on Dirac’s equation. In this formalism, all the properties of the photons and the �remaining� ions
can be described, independent from their initial shell structure or polarization. Detailed computations have first
been carried out for the total and angle-differential cross sections, following the capture of an electron into
hydrogen-U91+ and lithiumlike U89+ ions. From these calculations, which were performed in two different
approximations, it is shown that many-electron interactions affect the angular distribution at low projectile
energies by about 5%. Apart from describing the �angular-dependent� capture cross sections, our formalism is
also appropriate to explore the subsequent K� ,� photon emission, if the electron is captured into an excited
state of the ion, the polarization of the photons and ions as well as the interplay of the radiative with other,
nonradiative capture processes in the future.
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I. INTRODUCTION

At storage rings, the radiative capture of electrons by fast
high-Z projectiles is one of the dominant interaction process
which cause a loss of ions from the beam. In this recombi-
nation process, a �quasi� free electron from either the �elec-
tron� cooler or some rest gas is captured into a bound state of
the ion under the simultaneous emission of a photon. In fact,
the radiative recombination �RR� of ions, known also as the
radiative electron capture �REC� of loosely bound electrons,
is the time-reversed photoionization and a process, which
frequently occurs in �almost� all types of plasmas.

Because of their practical importance, detailed REC stud-
ies have been carried out in the past for many elements and
for a wide range of projectiles energies �up to several hun-
dred MeV/u�. In the high-Z domain, however, the main at-
tention was paid so far to the capture into bare ions �1–4�,
leading to hydrogenlike ions after the recombination has
taken place. Apart from the total and angle-differential cross
sections, these investigations provided valuable information
about the electron-photon interaction in the presence of
strong fields. In the theoretical description of this process,
the use of the density matrix in particular helped to reveal
many details about the capture process, including the angular
distribution and polarization of the subsequent Lyman-�1,2
decay �5–7�, if the electron was captured into an excited state
of the ion, as well as the polarization of the emitted REC
photons �8,9�, in excellent agreement with experiment. Re-
cently, moreover, the application of the density matrix for-
malism allowed us to analyze the REC photon emission in
dependence of the polarization of the incident particles

�10,11� which, in the future, might become a tool for deter-
mining the polarization of ion beams at storage rings. Apart
from the REC into bare ions, however, less emphasis was
placed on the capture into high-Z few-electron ions, partially
also because no �many-electron� computations are available
for heavy open-shell ions. In two earlier experiments �12,13�,
for example, only the total K- and L-shell cross sections for
the capture into H-, He-, and Li-like uranium were measured
and compared with scaled one-electron calculations. For the
capture into He-like �i.e., closed-shell� ions with kinetic en-
ergy 10 MeV/u�Tp�700 MeV/u, in addition, the electron-
electron correlation was explored also in the framework of
quantum electrodynamics �14� but was found of minor im-
portance ��2% � for the total REC cross sections.

In this contribution, we extend the density matrix formal-
ism to deal with the capture into high-Z few-electron ions,
independent of the shell structure of the ions in their initial
and final states. Although this formalism will first be applied
�below� only to the total and the angle-differential REC cross
sections, the theory is appropriate for instance �and has been
derived here up to statistical tensors of the remaining ion� for
studying the subsequent decay of the ions, if possible, or the
effects of either the ion or electron polarization onto the re-
combination of the ions. In Sec. II, we present the density
matrix formalism for the capture into many-electron ions and
show how the computation of �most� REC properties can be
traced back to the definition of a reduced matrix element
�transition amplitude� which couples the bound-state density
of the remaining ion to the one-electron continuum. In Sec.
III, these matrix elements are then calculated in the frame-
work of the multiconfiguration Dirac-Fock �MCDF� method.
In particular, detailed computation have been carried out for
the capture into hydrogen- and lithium-like uranium ions.
The total and angle-differential cross sections obtained are
discussed in Sec. IV as function of the projectile energy and
are compared to results from an independent particle model,
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based on hydrogenic functions. These computations demon-
strate that many-electron effects become important not only
for the capture into the L and M shells, but also at low
energies of the projectiles. Even larger effects are expected if
such a many-electron theory is applied for studying the po-
larization of the emitted x-ray photons as the spin state of the
photons is known to be sensitive to electron-electron corre-
lations. Finally, a brief summary and outlook is given in
Sec. V.

II. THEORY

A. Radiative electron capture

In �fast� electron-ion collisions, the angular distribution
and polarization properties of the particles involved are best
described within the framework of the density matrix theory
�15,16�. In the past few years, for instance, this theory helped
to analyze a number of measurements where electrons were
captured by bare high-Z ions �10�. Here, we now extend the
theory to the capture of electrons by few-electron ions, for
which the use of the density matrix is expected to be even
more useful since it enables one to take into account also the
internal structure of the ions. In fact, there are several fea-
tures of the density matrix theory which we shall consider in
going from bare ions to �the electron capture into� few- and
many-electron systems. In addition to the need of a proper
notation for the density matrix �elements� of the overall col-
lision system, we wish to prepare the formalism general
enough in order to allow for a nonzero nuclear spin as re-
quired, for example, for describing the effects of the ion
polarization on the capture of electrons. Such a generaliza-
tion of the theory is necessary, moreover, if the electrons are
captured into an excited state and if one wishes to understand
the subsequent photon emission.

Therefore, in order to derive the theory in sufficient gen-
eral form, let us start from the notation of the initial and final
states of the overall system. For the capture of a single elec-
tron, the initial state is given by the ion “plus” the free elec-
tron. For most experiments, here we may consider �in very
good approximation� an electron with well-defined
asymptotic momentum p and spin projection ms. This ap-
proximation is appropriate even for the capture of a quasi-
free-electron as it occurs in the collision of heavy ions with
light target atoms �1�; in fact, the use of the momentum p
and the spin projection ms is the most general form in order
to describe the dynamical and polarization properties of the
electron. The ion, in contrast, is initially supposed in a state
��iJiMJ,i� with well-defined total angular momentum Ji, MJ,i
�of the electrons�, and where �i is used to denote all addi-
tional quantum numbers as required for a unique specifica-
tion of the states.

The notation above for the initial state of the ion is appro-
priate, of course, only for a zero nuclear spin I=0. For a
nonzero spin I�0, instead, the ion will be found in a hyper-
fine state ��I ,�iJi�FiMF,i� �or some mixture of such states�,
where F=I+J is the total angular momentum and MF,i the
corresponding spin projection. In this section, we shall in-
clude the nuclear spin in our notation from the very begin-
ning in order to “prepare” a �forthcoming� analysis of the

photon emission in dependence of the nuclear spin as well as
the hyperfine structure and the polarization of the ions in
their initial state. For calculating the total and angle-
differential REC cross sections, in contrast, it will be suffi-
cient later to set I=0 in all formulas, at least as long as the
hyperfine interaction �between the magnetic moments of the
electrons and nuclei� is omitted from the computations.

Following the capture of an electron, the final-state of the
overall system is given by the recombined ion in some �final�
state ��I ,� fJf�FfMF,f� and the recombination photon with
wave vector k and polarization vector u. The vector u, of
course, can be written always in terms of any two �linear-
independent� basis vectors which are perpendicular to k,
such as u+1 and u−1 for right- and left-polarized photons
�16�, respectively. Still, the notation of the collision system is
not yet complete as the choice of the coordinates and, hence,
the projection of the quantum states also depend on the ge-
ometry in which an experiment is carried out. To describe the
radiative capture of electrons both, the direction of the in-
coming electron and that of the emitted photons can be cho-
sen for quantization �see Fig. 1� and have been discussed
recently �8�. While the photon direction is �usually� conve-
nient for analyzing the total and angle-differential REC cross
sections �at least from a computational viewpoint�, the direc-
tion of the electron momentum is more general, in particular,
if the polarization of either the ions of photons are to be
considered. At storage rings, moreover, the electron momen-
tum also coincides with the direction of the ion beam in the
experiment.

B. Density matrix formalism

In the �time-independent� density matrix theory, the state
of a physical system is characterized by means of statistical
operators which describe a single or an ensemble of equally
prepared collision systems in either a pure quantum state or
in a mixture of different states with any degree of coherence
�15,16�. The great benefit of the density matrix theory is that
it virtually allows to “accompany” such an ensemble through
the collision process without that the quantum-mechanical
information is getting lost. Starting from a well-defined ini-
tial state of the collision system, in fact, one may follow up
the system through one or several regions of interaction until
the final state of the collision and/or the decay process is
attained. A physical characterization of the process is then
achieved by making use of a proper set of detector operators

FIG. 1. �Color online� The unit vector u��� of the linear polar-
ization is defined in the plane, which perpendicular to the photon
momentum k, and is characterized by an angle � with respect to the
reaction plane.
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which “measure” �some or all of� the particles as involved in
the collision.

With the notation above for the capture of an electron into
a bound state of the ion, the initial state density matrix of the
combined system “ion+electron” is given by

	̂i = 	̂i
ion

� 	̂e, �1�

i.e., the tensor product of the density matrices of the two
subsystems. If neither the electrons nor the ions are polarized
initially, the tensor product can be written as

	̂i =
1

2�2Fi + 1� �
msMF,i

��I,�iJi�FiMF,i��pms��pms�


��I,�iJi�FiMF,i� �2�

including the coupling of the nuclear spin I. From this initial-
state matrix, the final-state density matrix 	̂ f is obtained from
the standard relation

	̂ f = R̂†	̂iR̂ , �3�

where R̂ is called the transition operator and describes the
interaction of the electrons with the radiation field. For a
more detailed representation of this operator, of course, we
first need to consider the coupling of the free electron to the
bound-state electron density in the initial state of the system
as well as the decomposition of the photon field within the
relativistic theory. Moreover, since we wish to consider the
electron capture by high-Z ions, any thorough description of
the electron-photon interaction should be based on Dirac’s
equation and the minimal coupling of the radiation field.
Note that a relation analog to Eq. �3� can be used in order to
refer to any subsequent excitation or decay of the ion follow-
ing the REC process. For the present study of the total and
angle-differential cross sections, however, it is sufficient to
restrict the approach to just a single interaction.

Equation �3� describe the final-state density operator and,
thus, contains all the information about the system following
the capture of an electron and the �simultaneous� emission of
the photon with wave vector k= �k ,� ,��. Instead of using the
final-state density operator 	̂ f, however, it is often more con-
venient to work with a matrix representation of the operator,
briefly referred to as the final-state density matrix. In a basis
with well-defined �angular� momenta, the final-state density
matrix is given by

��I,� fJf�FfMF,f,k�	̂ f��I,� fJf�FfMF,f� ,k��

=
1

2�2Fi + 1� �
MF,ims

��I,� fJf�FfMF,f,k�R̂†��I,�iJi�


FiMF,i,pms���I,�iJi�FiMF,i,pms�R̂��I,� fJf�


FfMF,f� ,k�� , �4�

if we assume that both the incident electrons and ions are
initially unpolarized �see Eq. �2��. Obviously, the information
about the radiative capture is now contained in the transition

matrix ��I ,�iJi�FiMF,i ,pms�R̂��I ,� fJf�FfMF,f ,k� which we
shall evaluate further in Sec. II E below. To extract the ob-

servable properties from the density matrix �4�, however, we
need to specify also the “detector operator” due to the actual
setup of the detectors in the given experiment. Broadly
speaking, the detector operator projects out all those quan-
tum states which lead to a “click” at the detector. In the

density matrix theory, the detector operator P̂ determines the
probability for an “event” at the detectors simply by taking

the trace of its product with the density matrix W=Tr�P̂	̂ f�.
To measure, for instance, the angular distribution of the re-
combination photons in the direction n̂= �� ,�� with a detec-
tor, which is sensitive to the energies but not to the polariza-
tion of the photons, the detector operator is

P̂k = �
MF,f

�k���I,� fJf�FfMF,f���I,� fJf�FfMF,f��k� . �5�

Taking the trace over the product of this operator with the

density matrix �4�, Tr�P̂k	̂ f�, we immediatly obtain the
angle-differential cross section

d��F�
REC

d�
��,�� = �

MF,f

��I,� fJf�FfMF,f,k�	̂ f��I,� fJf�FfMF,f,k�

�6�

which, for unpolarized electrons and ions, can be cast into
the �familiar� form

d��F�
REC

d�
��,�� =

1

2�2Fi + 1� �
,MF,f,ms,MF,i

���I,�iJi�

FiMF,i,pms�R̂��I,� fJf�FfMF,f,k��2, �7�

including a summation over all magnetic quantum numbers
, MF,f, ms, MF,i of the initial and final subsystems of the
REC process. Below, we will further simplify formula �7� for
the angle-differential cross sections by applying a spherical-
tensor representation of the electron-photon interaction and
the techniques from Racah’s algebra. From the differential
cross sections, the total cross sections are obtained as

��F�
REC =	 d�

d��F�
REC

d�
��,��

= �
MF,f

	 d���I,� fJf�FfMF,f,k�	̂ f��I,� fJf�FfMF,f,k� ,

�8�

i.e., by the integration over all 4� solid angles.
Apart from studying the angular distribution of the recom-

bination photons, the final-state density matrix �4� can be
used also to separate the density matrices of the individual
subsystems and to obtain the �reduced� matrices for the re-
combination photons and the residual ions. Although no de-
tailed computations have yet been carried out on the reduced
density matrices �or those observables which are associated
with such a reduction�, a few remarks are in place here in
order to present the theoretial background for a forthcoming
investigation concerning the alignment of the ion in the final
state of the REC and its subsequent decay �if possible�. Sup-
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pose, the emitted REC photons remain unobserved in an ex-
periment, the density matrix of the residual ion

��I,� fJf�FfMF,f�	̂ f
ion��I,� fJf�FfMF,f� �

= Tr��	̂ f�

= �

	 d���I,� fJf�FfMF,f,k�	̂ f��I,� fJf�FfMF,f,k�

�9�

is obtained by taking the trace over the �direction and the
polarization states of the� photons. From Eq. �8�, moreover,
we see that the density matrix �9� of the residual ion is nor-
malized in a way that its trace is equal to the total REC cross
section

�
MF,f

��I,� fJf�FfMF,f�	̂ f
ion��I,� fJf�FfMF,f� = ��F�

REC, �10�

for the capture of an electron into a given �hyperfine� level as
appropriate for studying the alignment of the ions. In addi-
tion to the reduced density matrix �9�, it is sometimes more
convenient to represent the final state of the ions in terms of
their statistical tensors �5,15�

	kq„�I,� fJf�Ff… = �
MF,fMF,f�

�− 1�Ff−MF,f� �FMF,fF − MF,f� �kq�


 ��I,� fJf�FfMF,f�	̂ f
ion��I,� fJf�FfMF,f� �

�11�

which are constructed to transform similar to the spherical
harmonics of rank k under a rotation of the coordinates. Al-
though both, the reduced density matrix �9� and the statistical
tensors �11� are mathematically equivalent, the latter form
enables one to exploit the rotational symmetry of free atoms
and ions. In our forthcoming work, therefore, we shall apply
these �spherical� statistical tensors in order to analyze the
alignment and decay of the residual ions, if the electrons
were captured into an excited state.

C. Many-electron bound and scattering states

To evaluate the angular distribution �7� or the statistical
tensors �11�, we first need to simplify the transition matrix

��I,�iJi�FiMF,i,pms�R̂��I,� fJf�FfMF,f,k�

= ��I,�iJi�FiMF,i,pms�R̂�k���I,� fJf�FfMF,f� �12�

and to bring it into a form which is computationally feasible
even within the framework of Dirac’s theory. As seen from
Eq. �12�, there occurs two types of many-electron states on
the left-hand side �LHS� and right-hand side �RHS� of the
matrix elements which we shall discuss separately below.
While, initially, we have a scattering state with one electron
in the continuum �LHS�, the final state of the ion is given by
an ordinary bound state �RHS� �17�.

Let us begin with the wave functions for the bound states
of the ions for which a large number of methods are known
from the theory of atomic structure in order to generate ap-

proximate solutions. Since the nucleus is taken to be inde-
pendent of the electron density, we may use the standard
Clebsch-Gordan expansion for the coupling of two angular
momenta to decouple the nuclear spin

��I,�J�FMF� = �
MIMJ

�IMIJMJ�FMF��IMI���JMJ� �13�

from the bound-state electrons and to consider just the
�many-� electron states ��JMJ�
��JPMJ� with well-defined
total angular momentum J, MJ, and parity P. Together with
an analog expansion on the LHS of the matrix elements in
Eq. �12�, the summation over the �four� magnetic quantum
numbers leads to a Wigner 6-j symbol, in line with the re-
coupling of the three angular momenta of the nucleus as well
as the electrons in the �total� initial and final states of the
process. Apart from the �N-electron� final state of the ion, of
course, the notation ��JMJ� can be used also to refer to the
�N−1� bound electrons in the initial state; it implies more-
over an antisymmetrization of the wave functions with re-
spect to all �bound-electron� coordinates. In Sec. III, we shall
briefly explain the construction of the bound states within the
framework of the MCDF method as used below for calculat-
ing the total and angle-differential cross sections.

Often, the �stable� bound states of an ion are associated
with a well-defined shell structure, i.e., a particular occupa-
tion and coupling of the one-electron orbitals, and can thus
be approximated rather easily within the atomic shell model.
Greater care, in contrast, is required if we wish to construct
realistic scattering states with one electron in the continuum
as they appear on the LHS of Eq. �12�. These scattering
states �have to� represent the initial ion with well-defined
angular momentum Ji, MJ;i as well as a free electron with
momentum p and spin projection ms, which moves in the
field of the ion. For the further evaluation of the matrix ele-
ments �12�, therefore, it is covenient to start with the decom-
position of the free-electron wave into partial waves �1�

�pms� = �
�

ilei���4��l�1/2�l01/2ms�jms����jms� , �14�

in order to construct those �many-electron� components of
the scattering states ��iJi ,pms�, which have a well-defined
total angular momentum J, M and parity P. In the expansion
�14� of the free-electron wave, the summation runs over
Dirac’s angular momentum quantum number

� 
 ��j,l� = ± �j + 1/2� for l = j ± 1/2,

where j is the total �one-electron� angular momentum, −1l

the parity of the partial waves ���jms�, and �l�
�2l+1�. Fur-
thermore, the phase shift �� arises due to the �non-
Coulombic� field of the nucleus and the remaining electrons,
and where the � sign indicates the boundary condition for
the capture of an electron, i.e., the superposition of a plane
wave and an outgoing spherical wave. Each partial wave in
Eq. �14� separate, as usual, into a radial and angular part
�1,18�
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�r���jms� =
1

r
� P���r���

ms

iQ���r��−�
ms
 , �15�

in which ��
ms denotes a standard Dirac spin-angular function,

and where the two �radial� functions PE��r� and QE��r� are
often called the large and small components, respectively. In
the evaluation of the transition matrix �12�, of course, the
radial-angular representation �15� of the partial waves help
carry out the integration over the angle and spin variables
analytically.

To obtain the partial-wave expansion of the many-electron
scattering states, we now combine Eqs. �14� and �15� to-
gether with the stardard procedure for the coupling of two
angular momenta

��iJiMJ,i,pms� = A�
�

ilei���4��l�1/2�l01/2ms�jms����jms�


��JiMJ,i�

= A �
�,J,Mi

ilei���4��l�1/2�l01/2ms�jms�


�JiMJ,i jms�JMi� 
 ���iJi,�lj�JMi� , �16�

and where the operator A is used to ensure the proper anti-
symmetrization of the outgoing electron �coordinate� with
respect to all the bound-state orbitals. Combining the three
expansions �13�, �15�, and �16�, we therefore see that the
transition amplitude �12� can be written as

��I,�iJi�FiMF,i,pms�R̂�k���I,� fJf�FfMF,f�

= �
MI,MJ,i,MJ,f

�
�,J,Mi

i−le−i���4��l�1/2�IMIJiMJ,i�FiMF,i�


�IMIJfMJ,f�FfMF,f��l01/2ms�jms��JiMJ,i jms�JMi�


���iJi,�lj�JMi�R̂�k��� fJfMJ,f� �17�

and that, for our further discussion of the transition matrix, it
is sufficient to consider the matrix element

���iJi ,�lj�JMi�R̂�k��� fJfMJ,f� of the electron-photon inter-
action, taken between the two N-electron states with well-
defined total angular momentum and parity.

Equation �17� represents the most general form of the
transition matrix for the capture or emission of an electron
by ions with a non-zero nuclear spin; at least, al long the

operator R̂�k� does not depend on I, and if we neglect the
�configuration� interaction between different scattering states
in the continuum. We shall return to this form of the transi-
tion matrix in some forthcoming contribution where we will
study the effects of the ion and/or electron polarization on
the photon emission. For the total and angle-differential
cross sections, in contrast, we may suppose below—without

any further restriction—a zero nuclear spin I=0 for which
the transition amplitude �17� simplifies to

��iJiMJ,i,pms�R̂�k��� fJfMJ,f�

= �
�,J,Mi

i−le−i���4��l�1/2�l01/2ms�jms� 
 �JiMJ,i jms�JMi�


���iJi,�lj�JMi�R̂�k��� fJfMJ,f� . �18�

D. Electron-photon interaction

Having used the symmetry properties of the many-
electron states in the density matrix �17�, we only need to
discuss the electron-photon interaction in order to obtain an
expression, which can finally be calculated. Of course, the
interaction of the electrons with the radiation field has been
frequently described in the literature as it similarly occurs in
atomic photoionization and in the computation of transition
probabilities; its operator

R̂�k� = �
p

�p · A,p�k� = �
p

�p · u,peik·rp �19�

can be written as a sum of one-particle operators, where �p
= ��p,x ,�p,y ,�p,z� denotes the vector of the Dirac matrices for
the pth particle and A,p�k� the vector potential of the radia-
tion field. To further simplify the transition matrix �17�, of

course, the operator R̂�k� must be represented in terms of
spherical tensors, i.e., in terms of its electric and magnetic
multipole fields. In the helicity representation of the photon
�ez �k�, the vector potential is given by �19�

A�ez�k� = �2��
L

iL�L�1/2�AL
�m� + iAL

�e��

= �2��
L

�
�=0,1

iL�L�1/2�i��AL
� , �20�

where, in the second line, �=0 refers to the magnetic and
�=1 to the electric multipoles. Since, as mentioned before, it
is often more convenient to choose the electron momentum
as quantization axis, we need further to rotate the vector
potential �20� in space so that its z axis coincides with the
electron momentum

A�k� = �2��
L,M

�
�=0,1

iL�L�1/2�i��AL
� DM

L �k → ez� .

�21�

Here, DM
L �k→ez� is the Wigner rotation matrix of rank L,

which has to be applied independently to each irreducible
tensor component of the field. The decomposition �20� of the
photon field in terms of its irreducible components with well-
defined transformation properties enables us to carry out the
spin-angular integration analytically by using the techniques
from Racah’s algebra �20�.
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Making use of Eqs. �19�–�21� in the transition matrix �18�
and by changing the sequence of summation �LM�↔p�, we
obtain

��iJiMJ,i,pms�R̂�k��� fJfMJ,f�

= ��iJiMJ,i,pms��
p

�p · A,p�k��� fJfMJ,f�
= �2� �

L,M,�
iL�L�1/2�i��DM

L �k → ez�


 ��iJiMJ,i,pms��
p

�p · ALM,p
� �k��� fJfMJ,f�

= 2��2 �
L,M,�,kJMi

iL�i�� �L,l�1/2

�J�1/2 �l01/2ms�jms�


�JiMJ,i jms�JMi��JfMJ,fLM�JMi�


���iJi,�lj�J�H���L��� fJf�DM
L �k → ez� , �22�

where, in the last line, we made use of the Wigner-Eckart
theorem �15,20� and the notation

���iJi,�lj�J�H���L��� fJf�

= i−le−i�����iJi,�lj�J��
p

�p · AL,p
� �k��� fJf� �23�

to denote the reduced matrix elements of the multipole fields
together with the proper phase for the captured electron. In
fact, the reduced matrix elements �23� are the building
blocks in order to represent and to discuss a large number of
REC properties. An efficient evaluation of these matrix ele-
ments is crucial for studying the radiative capture by few—

and many—electron ions. Note that by using the reduced
form of the transition matrix, the building blocks �23� are
independent of the particular choice of the quantization axis.

Equation �22� displays the �REC� transition matrix for the
capture or emission of a single electron by a many-electron
ion. For the capture into bare ions, we have Ji=MJ,i=0 and
�� fJfMJ,f�= �nbjbmb� in order to designate the bound state of
the hydrogenlike ion, and hence the transition matrix �22�
simplifies to

�pms�R̂�k��nbjb�b�

= 2��2 �
�,L,M,�

i−l+Le−i���i�� �L,l�1/2

�j�1/2 �l01/2ms�jms�


�jb�bLM�jms���lj��AL
��nbjb�DM

L �k → ez� , �24�

in agreement with the reduced �one-electron� matrix ele-
ments as displayed in our previous work �5�, Appendix A.

E. Final-state density matrix

The density matrix �4� contains all information about the
REC photon and the residual ion after one electron has been
captured. Therefore, this representation can be utilized as
starting point for describing a large number of processes fol-
lowing the radiative capture of electrons. In this contribution,
we make use of Eq. �6� in order to calculate the total cross
sections and angular distributions for the capture of electrons
by few-electron ions. For the final representation of this ma-
trix, of course, we shall use the multipole expansion of the
electron and photon field from Secs. II C and II D. Substitut-
ing the transition matrix �22� into Eq. �4�, the final-state den-
sity matrix is given by

�� fJfMJ,f,k�	̂ f�� fJfMJ,f� ,k�� =
1

2�2Ji + 1� �
MJ,i,ms

�� fJfMJ,f�R̂
†�k���iJiMJ,i,pms���iJiMJ,i,pms�R̂��k��� fJfMJ,f� �

=
8�2

2�2Ji + 1� �
�,L,��,L�,J,J�

�
�,��

�
�,�1,�2,s,s�

D�2�1

� �k → ez�iL�−L�i�����− i��


 �− 1�1/2+Ji+J�+L+s+s�−MJ,f� �l,l�,L,L�, j, j�,J,J�,s�1/2 
 �s��� j� 1/2 l�

l s j
�� j� Ji J�

J s j
�


�J L Jf

� s� L�
�� J J� s

Jf s� L�
��l�0l0�s0��JfMJ,fs� − MJ,f� ���1��s0s�MJ,f� �JfMJ,f� �


�L��L − ���2����iJi,�lj�J�H���L��� fJf�*���iJi,�l�j��J��H����L���� fJf� , �25�

if a nuclear spin I=0 is supposed, and by using Racah’s
algebra to eliminate the summation over all the intermediate
magnetic quantum numbers. Indeed, this formula is the main
result of this work and will be utilized later for studying a
number of properties of the emitted photons and residual
ions, other than the total or angle-differential cross sections.

For instance, it will be applied also in our forthcoming work
for stydying the REC emission in dependence on the polar-
ization of the incoming electrons and/or ions, respectively.

The density matrix �25� describes the overall system
“ion+photon” following the capture of an electron. If the
capture leads to an excited state of the ion and if the REC
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photon is not recorded by the experiment, the final-state den-
sity matrix of the ion is obtained by carrying out the sum-
mation over the photon quantum numbers �see. Eq. �9��

�� fJfMJ,f�	̂ f
ion�� fJfMJ,f� �

= �

	 d��� fJfMJ,f,k�	̂ f�� fJfMJ,f� ,k� , �26�

while the statistical tensors of the residual ions �11� are given
by

	k0�� fJf� =
32�3

2Ji + 1�
L�

�
JJ����

�l,l�, j, j�,J,J��1/2


�− 1�Ji+L−Jf+J−J�−1/2�l0l�0�k0�� j j� k

l� l 1/2
�


� j j� k

J� J Ji
�� J J� k

Jf Jf L
�


 ���iJi,�lj�J�H���L��� fJf�


���iJi,�l�j��J��H���L��� fJf�*. �27�

As seen from this formula, a considerable simplification
arises �now� for the statistical tensors owing to their defini-
tion as spherical tensors �20�. The rank-zero tensor 	00
�	00�� ,�� has a particular meaning

	00 �
1

�2Jf + 1
�tot

REC �28�

as it represents �up to the factor 1 /�2Jf +1� the total cross
section for the capture of an electron into the level �� fJf� of
the ion and if the density matrix is normalized due to the
relation �10�. The statistical tensors of higher rank 	k0�� ,��
with k�0, in contrast, are known to refer to the population
of the various substates relative to each other and, hence, to
represent the orientation and alignment of the ions �15,16�.

F. Total cross sections

Using Eq. �27�, we obtain the rank-zero statistical tensor

	00�� fJf� =
32�3

�2Ji + 1��2Jf + 1
�

L�J�

����iJi,�lj�J�H���L��� fJf��2

�29�

as the sum over all the �allowed combinations of the� multi-
poles and capture channels in the one-electron continuum of
the ions, and as known from the literature �5,15�. With this
scalar, the total cross sections �see Eq. �8�� becomes

��Jf�
REC = 8�3�3 �

�2Ji + 1�
1

�2�2


� �
L�J�

����iJi,�lj�J�H���L��� fJf��2� �30�

if the density of states and the principle of detailed balance
between the capture and the ionization of an electron is taken
into account �1�. In Eq. �30�, moreover, � denotes the fine-

structure constant, while �=v /c and �=�1−�2 arise from
the Lorentz transformation in going from the projectile into
the laboratory frame. For the capture by bare �or closed-
shell� ions, again, we have Ji=0 and Jf = jb, i.e., the angular
momentum of the �bound� single valence electron, from
which we obtain the total cross section

� jb
REC = 8�3�3 �

�2�2��
L��

���lj�H���L��nbjb��2� , �31�

as shown and calculated before at various places in the lit-
erature �1,8,21�.

G. Angular distribution of the recombination photons

As discussed in Sec. II B, the angular distribution of the
emitted REC photons is obtained from the final-state density

matrix by taking Tr�P̂k	̂ f�, i.e., the trace over the product of
the projection operator �5� and the density matrix �25�,

W��� =
��Jf�

REC

4� �1 + �
�=1

P��cos ����
REC��iJi,� fJf� , �32�

and where the anisotropy coefficients are given by

��
REC = −

1

2 �
JJ����

�
L�L���

iL+�−L�−���− 1�Ji−1/2−Jf


�L,L�,l,l�, j, j�,J,J��1/2�l0l�0��0��L1L� − 1��0�


�1 + �− 1�L+�+L�+��−��� J J� �

L� L Jf
�


� J J� �

j� j Ji
�� j j� �

l� l 1/2
�


 ��iJi,�lj:J�H���L��� fJf�


��iJi,�l�j�:J��H����L���� fJf�*


 � �
L�J�

���iJi,�lj:J�H���L��� fJf��2�−1
. �33�

As seen from this and formula �30�, the reduced matrix ele-
ments �23� are again the central entities in calculating the
total cross sections and angular distributions; for the capture
into bare ions, it simplifies to

��
REC,bare = −

1

2�
���

�
L�L���

iL+�−L�−���− 1� j+j�−1/2−jb+�


�L,L�,l,l�, j, j��1/2 
 �l0l�0��0��L1L� − 1��0��1

+ �− 1�L+�+L�+��−��� j j� �

L� L jb
�� j j� �

l� l 1/2
�


��lj�H���L��nbjb���l�j��H����L���nbjb�*


��
L��

���lj�H���L��nbjb��2�−1
. �34�

Equations �30� and �32� represent the most general form of
the total REC cross sections and the angular distribution of
the emitted photons, as long as the hyperfine interaction be-
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tween the magnetic moments of the electrons and ions is
neglected. They can be used for any shell structure of the
atoms and ions �although, of course, difficulties might arise
in generating the corresponding wave functions�. Since the
hyperfine interaction is suppressed by about 5–6 orders of
magnitude, when compared to the interaction of the electrons
with the radiation field, this approximation is well justified
for all practical purposes. Below, we make use of these equa-
tions to explore the REC into hydrogenlike U91+ ions, lead-
ing to a heliumlike 1s2 1S0 ground state, as well as the cap-
ture into the 1s2 2lj �excited� states of the lithiumlike U89+

ions.

III. COMPUTATIONS

As seen from the formalism above, the computation of
�most� REC properties can be traced back to the reduced
matrix element �23�, which describes the interaction of an
ionic bound state with the one-electron continuum due to the
presence of the radiation field. Apart from the boundary con-
ditions, which are specific to the radiative recombination, not
much needs to be said here about the further evaluation of
these reduced matrix elements as they frequently occur in the
computation of atomic properties, such as transition prob-
abilities and photoionization cross sections, and have thus
been implemented in quite a number of approximations. In
our computations below, the multiconfiguration Dirac-Fock
�MCDF� method is used to generate the ionic bound-state
wave functions and to evaluate all the required matrix ele-
ments.

In the past years, the MCDF method was found useful for
studying multiple and highly charged ions, especially if in-
nershell electrons or several open shells are involved in the
computations �22,23�. In this method, an atomic state is ap-
proximated by a linear combination of �so-called� configura-
tion state functions �CSFs� of the same symmetry

���PJM� = �
r=1

nc

cr�����rPJM� , �35�

where nc is the number of CSF and �cr���� denotes the rep-
resentation of the atomic state in this basis. In most standard
computations, the CSF are constructed as antisymmetrized
products of a common set of orthonormal orbitals and are
optimized on the basis of the Dirac-Coulomb Hamiltonian.
Further relativistic contributions to the representation �cr����
of the atomic states are then added, owing to the given re-
quirements, by diagonalizing the Dirac-Coulomb-Breit
Hamiltonian matrix in first-order perturbation theory. For
multiple and highly charged ions, moreover, an estimate of
the dominant QED contributions �i.e., the self-energy and
vacuum polarization of the electronic cloud� can be taken
into account also by using data from the hydrogenlike ions
and a proper scaling of the charge distribution near and
around the nucleus. In order to support a reliable estimate of
the REC amplitudes, a new component �REC� has been de-
veloped recently within the framework of the RATIP package
�24�, which now facilitates the computation of the cross sec-
tions and angular distrubutions within a distorted-wave ap-
proximation.

Despite the similarities in the setup of the REC program
with a corresponding component for atomic photoionization
�24�, there are a number of differences in studying the REC
by highly charged ions, which should be taken into account.
Since we consider here the capture by fast high-Z ions, a
sufficiently large number of partial waves has to be incorpo-
rated into the expansion of the electron and photon fields,
quite in difference to atomic photoionization where one
rarely goes beyond the electric-dipole approximation. For
the REC into high-Z ions, in contrast, several ten or even
hundred capture channels need to be included due to the
allowed combinations of the partial electron waves � and the
multipoles ��L� of the radiation field. For the capture into
the 1s2 1S0 ground state of 120 MeV/u uranium, i.e., initially
hydrogenlike U91+ ions for example, we had to include all
partial waves with ����15 in order to obtain a smoothly
converged distribution for all angles 0����.

IV. RESULTS AND DISCUSSIONS

The capture into high-Z few-electron ions offers a unique
possibility for studying the interplay between the electron-
photon and electron-electron interaction in the presence of
strong fields. It also enables one to explore the coupling of
deeply bound electrons to the continuum. For the REC into
few-electron ions, therefore, the major interest perhaps con-
cerns the capture into hydrogenlike and lithiumlike ions �as
the simplest many-electron systems�, where the fine structure
of the ions in their final state may influence the cross sections
and angular distribution of the emitted photons. Below we
consider especially the capture into U91+ and U89+ uranium
ions as function of the projectile energy, and discuss the
corresponding angular distributions.

A. Capture into hydrogenlike ions

If an electron is captured by hydrogenlike projectiles, we
find the ions either in the 1s2 1S0 ground state or in one of the
1s nlj 1,3LJ excited states of the heliumlike system. These
states differ from the capture into bare ions, in particular, by
the coupling of the �electron� angular momenta, while only a
rather small effect is expected from the screening of the
nuclear charge owing to the additional K-shell electron. For
high-Z ions, such as hydrogenlike U91+, we therefore expect
a minor influence on the total and angle-differential cross
sections if the capture into the 1s2 1S0 ground configuration
is considered �apart from the factor 1 /2 which arises from
the �pre� occupation of the K shell�. In Table I, we display
the total K-shell cross sections for three different projectile
energies and compare the results from the MCDF computa-
tions with those as obtained for bare ions, using an �effec-
tive� charge Zeff=92. In the MCDF approximation, more-
over, all the cross sections have been calculated witin two
different gauges for the coupling of the radiation field,
namely the Babushkin and Coulomb gauge, which—in the
nonrelativistic limit—correspond to the length and velocity
gauge, respectively. Although an agreement of the various
gauges does not prove the correctness of any result, the dif-
ferences between the length and velocity gauge are often
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taken as an indication for the accuracy of many-electron
computations.

As seen from Table I, the total K-shell cross sections dif-
fer by less or approximately 2%, if calculated within the
�many-electron� MCDF method or simply by using an effec-
tive one-particle model, and by taking the initial occupation
of the K shell into account. For the capture into the 1s2 1S0
ground state, these small differences appear �almost� inde-
pendent from the projectile energy down to Tp
=2.18 MeV/u. No many-electron effects are seen also in the
angular distribution of the K-REC photons, independent of
the projectile energy, as shown in Fig. 2 for the three ener-
gies Tp=2.18, 21.8, and 218 MeV/u, respectively. While
projectile energies Tp�100 MeV/u are presently already
available for high-Z ions, for instance, at the GSI in Darms-
tadt, the further decelleration of the ion beams is one of the
prospects of the new GSI facility, which is planned to be
extended during the next decade. Slow ion beams with less
than a few MeV/u are of interest, in particular, for studying
electron-electron interaction effects in strong fields as the
correlation energy has to be compared to the kinetic energy
of the �projectile� electrons in the beam.

For the capture into the K shell, the agreement between
the MCDF computation and the effective one-particle ap-
proximation above can be understood easily by comparing
the kinetic and the binding energies of the electrons in the

REC process. Although, for a beam energy of 2.18 MeV/u,
the �quasi� free electrons in either the target atoms or the
electron cooler have a kinetic energy of only Te �keV�=1.2
�Tp �MeV/u� /1.8, the large 1s binding energy of about
130 keV for hydrogenlike U91+ ions ensures, that the K-shell
capture is well described within a one-particle model, in
good agreement with earlier observations �13�. A slightly
larger effect could be expected for the capture into the L
shell, i.e., the 1s2lj 1,3S and 1,3P states of �finally� heliumlike
uranium, even though this would require then the resolution
of the various fine-structure levels in the REC spectra �which
has not been achieved so far�. Electron-electron interaction
effects have become visible also if the subsequent K� char-
acteristic photon emission is observed �25�. A more detailed
analysis of this subsequent decay from the 1s2lj 1,3LL levels,
following the L-shell REC into hydrogenlike uranium re-
quires, however, to describe the alignment of the excited and
will be the subject of our forthcoming work.

B. Capture into lithiumlike ions

For lithiumlike ions initially, the capture into the L shell
leads to the 1s2 2s 2lj 1,3LJ levels including the 1s2 2s2 1S0
ground state of the berylliumlike ions. For the L shell, or
course, the binding energy of the captured electron is about
four times smaller than for the K shell, so that many-electron
effects on the total and angle-differential cross sections of the
emitted L-REC photons may be hereby observed easier. For
the total cross sections, in fact, a proper screening of the
nuclear charge due to the three electrons in the 1s2 2s 2S1/2
lithiumlike ground state must be taken into account.

Figure 3 displays the angle-differential cross sections for
the L-shell capture into the 1s2 2s2 state of �initially� lithium-
like U89+ ions, and calculated for the same projectile energies
of 2.18, 21.8, and 218 MeV/u as applied above for the cap-
ture into the K shell. Results from the MCDF calculation in
Coulomb and Babushkin gauge are compared to the data
from an independent-particle approximation �using Slater de-
terminants with hydrogenlike, one-electron orbitals� with an
effective charge Zeff=91. This charge was chosen in a way in
order to ensure agreement with the MCDF calculations for
high projectile energies. A similar scaling of one-electron

TABLE I. Total cross sections �in b� for the radiative electron
capture into the 1s2 1S0 ground state of �initially� hydrogenlike ura-
nium ions U91+ in dependence of the projectile energy Tp. The cross
sections have been calculated within an effective one-particle model
with charge Zeff=92 as well as within the MCDF approximation by
applying two different gauges for the coupling of the radiation field.
See text for further details.

Tp �MeV/u�

2.18 21.8 218

Bare ion �Zeff=92� 7.258
103 6.898
102 4.617
101

MCDF �Coulomb gauge� 7.058
103 6.824
102 4.569
101

MCDF �Babushkin gauge� 7.175
103 6.714
102 4.538
101

FIG. 2. �Color online� Angle-differential cross sections for the
radiative electron capture into the 1s2 1S0 ground state of �initially�
hydrogenlike uranium ions U91+ with projectile energies Tp=2.18,
21.8, and 218 MeV/u. Results are presented for an effective one-
particle model with Zeff=92 �– – –� and for the MCDF method �—�
using Babushkin gauge.

FIG. 3. �Color online� Angle-differential cross sections for the
radiative electron capture into the 1s2 2s2 state of �initially� lithium-
like uranium ions U89+ with projectile energies of 2.18, 21.8, and
218 MeV/u. Results from an independent particle model with an
effective charge Zeff=91. �– – –� are compared with those from
MCDF calculations in Coulomb �—� and Babushkin gauge �– –�.
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results was applied before by Bednarz et al. �13� for com-
parison with an experimentally observed angular distribution
of the L-shell REC photons for lithiumlike uranium, how-
ever, without information about the effective charge which
was taken at that time. In Fig. 3, note the excellent agree-
ment of the two gauge forms within about the thickness of
the curves. For medium and large projectile energies of, say,
Tp�100 MeV/u or Te�50 keV electron energy, respec-
tively, there are virtually no differences between the many-
electron treatment and the use of the independent-particle
model. A small deviation between these two theories only
arise at small projectile energies of 2.18 MeV/u, for which
the decrease �and shift� in the angular distribution near �
�60° indicate electron-electron correlation effects upon the
radiative electron capture. Even larger effects are to be ex-
pected if the projectiles are further decelerated towards a
zero kinetic energy as it might be realized at electron-beam
ion traps �EBIT� or the future GSI facility �26�.

The capture into the 1s2 2s2 ground configuration of the
beryllium sequence leads to a closed-shell 1S0 state which
can well be approximated by a single Slater determinant. For
the capture of the electron into the 2p1/2 and 2p3/2 subshells,
in contrast, at least the coupling of the �one-electron� angular
momenta has to be taken into account in addition to the
antisymmetrization of the wave functions due to Pauli’s prin-
ciple. In Fig. 4, we display the angular distributions for the
capture into the �upper� 1s2 2s 2p3/2 J=1,2 levels which are
associated with the �subsequent� K�1 decay. Apart from the
total cross sections, which fulfill the statistical ratio 3:5, the
angular distributions are rather similar for the J=1 and J
=2 levels, showing a clear enhancement of the angle-
differential cross sections in forward direction ��=0° � as the
projectile energy is increased. For the capture into these ex-
cited states, there occurs also a small deviation between the
two gauges which indicate the wave functions for these
states to be slightly less accurate than for the representation
of the ground states. However, this deviation of �1% is well
below of the accuracy which has been achieved so far by any
experiment. The gauge dependence of the cross sections is

enhanced further for the capture into the M1 subshell �Fig. 5�
where the two 1s2 2s 3s 1,3S fine-structure levels cannot de-
cay �by dipole-allowed transitions� directly to the ground
state. In the experiments, the capture into the 2s 2p3/2 J
=1,2 and 2s 3s J=0,1 levels is hardly resolved and, there-
fore, has often to be treated together.

V. SUMMARY

The density matrix formalism has been applied to de-
scribe the radiative electron capture into high-Z, few-electron
ions. Based on Dirac’s equation, we here developed the
theory and notation in order to analyze both, the properties of
the photons such as their angular distribution and polariza-
tion as well as the level population and decay of the remain-
ing ions. In addition to the present focus on the total and
angle-differential REC cross sections, therefore, the formal-
ism is appropriate also for studying the subsequent decay of
the ions or the photon-photon angular correlations �whenever
possible�.

Detailed cross section calculations have been carried out
for the capture into hydrogenlike and lithiumlike uranium.
These computations confirm �first of all� that an effective
one-particle approximation is often sufficient in order to de-
scribe the capture by fast projectiles, at least if the detectors
are not sensitive to the polarization of the REC radiation.
However, many-electron effects arise for low projectile en-
ergies of Tp�10 MeV/u, though they are presently not
available for high-Z ions. From the study of the angular dis-
tribution alone, therefore, not much will be learned at
present-day storage rings about the effects of the electron-
electron interaction on the REC process; a conclusion, how-
ever, which changes radically if the subsequent K� decay or
the polarization of the emitted REC photons is considered.
While the total cross sections into the ground states can usu-
ally be well described within an effective one-particle ap-
proximation, moreover, care has to be taken for the capture
into the excited states.

FIG. 4. �Color online� Angle-differential cross sections for the
radiative electron capture into the 1s2 2s 2p3/2 states of �initially�
lithiumlike uranium ions U89+ with projectile energies of 2.18, 21.8,
and 218 MeV/u. Results from MCDF calculations are shown in
Coulomb �—� and Babushkin gauge �– –�.

FIG. 5. �Color online� Angle-differential cross sections for the
radiative electron capture into the 1s2 2s 3s states of �initially� lithi-
umlike uranium ions U89+ with projectile energies of 2.18, 21.8, and
218 MeV/u. Results from MCDF calculations are shown in Cou-
lomb �—� and Babushkin gauge �– –�.
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In Sec. II, the theoretical treatment of the REC process is
independent from the particular shell structure of the ions in
their initial and final state. Using the concept of the density
matrix, our formalism allows to combine the �long standing�
experience in the description of ionic bound states, i.e., the
atomic structure part, with those for the electron-photon in-
teraction and for the coupling of bound states to the con-
tinuum. It also helps combine the various computer codes
which have been developed earlier. Various measurements
have been carried out recently, which can be analyzed by
means of this formalism, including the angular distribution
of the subsequent K� radiation. Other topics of interests con-
cern, for examples, studies on the polarization of the emitted

x-ray photons as well as on the polarization effects of either
the ion-beam or target atoms. In a forthcoming contribution,
we plan to use the formalism above to the capture into the
1s 2p1/2 and 1s 2p3/2

1,3PJ levels of �initially� hydrogenlike
ions and their subsequent K�1 and K�2 decay, which has
been observed recently at GSI in Darmstadt and which was
found quite in contrast to expectations from a one-particle
model.
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