
Atomic Compton profile of neon calculated from an accurate Kohn-Sham potential

A. I. Al-Sharif*
Department of Physics, Faculty of Science, Yarmouk University, Irbid, Jordan

�Received 26 October 2004; revised manuscript received 22 February 2005; published 1 July 2005�

The Compton profile of the neon atom is calculated from an accurate Kohn-Sham potential derived from
accurate quantum Monte Carlo wave functions. Compared to the experiment, the results are better than the
Hartree-Fock ones in the low-wave-vector region. This suggests that the systematic error in the Kohn-Sham
formulation in momentum space is relatively small. The first-order Lam-Plazman correction is also calculated.
This correction is less than 1% on the average.
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I. INTRODUCTION

Wave functions, as established by quantum theory, repre-
sent the maximum knowledge we can acquire about a given
system. In terms of wave functions all observables, which
constitute the link with experiment, can be calculated in prin-
ciple. Since only a few systems have their exact wave func-
tions known, testing the quality of approximate wave func-
tions is an important field of study. Energy spectrum and
position space observables are very common tests. The varia-
tional nature of energy computation makes it insensitive to
small variations in wave functions and so it cannot be used
as a precise measure of the quality of the tested wave func-
tions. In order to overcome this problem, one needs to com-
pute observables that do not share the same eigenfunctions
with the Hamiltonian �i.e., do not commute with the Hamil-
tonian�, such as momentum-space observables. Nowadays,
experimental work has given direct access to one-electron
momentum densities ��p��. Hence momentum-space observ-
ables can be used to further test approximate wave functions.
Among the momentum-space observables, the Compton pro-
file J�q�� has been given much theoretical and experimental
attention �1�. Atomic Compton profiles can be obtained �2�
by means of photon-photon or photon-electron coincidence
measurements, high-resolution Compton scattering, angular
correlation of positron annihilation radiation, �e ,2e� coinci-
dence spectroscopy, and magnetic Compton scattering ex-
periments. The aim of the present work is to investigate the
neon Compton profile calculated within the framework of the
Kohn-Sham �KS� formulation of density functional theory
�DFT�.

DFT as formulated in the two well-known papers by Ho-
henberg and Kohn �3� and Kohn and Sham �4� is a funda-
mental quantum theory of matter. It describes successfully
the ground state of an interacting electron gas in an external
static potential. In the KS formulation of DFT, the problem
of N interacting electrons is being transformed to a set of N
noninteracting electrons moving in a one-body effective po-
tential called the KS potential Vks. A very important ingredi-
ent of the KS potential is the so-called exchange-correlation
�XC� potential Vxc which is an ad hoc medicine invented for

the relief of all the headache caused by the many-body ef-
fects. The KS formulation is exact in the position space.
Therefore it should give correct results for any observable
that depends only on the position coordinates. In momentum
space, however, only correct projections on the position
space are guaranteed. The KS momentum distribution of the
homogeneous electron gas is a clear example. The homoge-
neous electron gas is simply a system comprising a large
number N→� of electrons moving in a large volume V
→� such as to keep the density finite n=N /V. Throughout
this volume there should be a uniformly spread out positive
charge sufficient to make the whole system neutral. The KS
equations under these conditions are satisfied by a single
determinant of plane waves. This results in a momentum
density which is nothing but a theta function ��p�=2��pF

− p�, pF being the Fermi momentum. This means that all the
states with momentum less than, or equal to, the Fermi mo-
mentum are occupied and the rest of the momentum states
are empty. In the real interacting uniform electron gas, how-
ever, electron motion is correlated. Remaining within the
single-particle orbitals scheme we can, in principle, describe
the ground state of this system by an infinite number of spin
orbitals. In contrast to the KS N spin orbitals the occupation
number Ni in this case is less than 1 for states under the
Fermi momentum and greater than 0 for states above the
Fermi momentum. As a perturbationally justified rule of
thumb, the respective deviations from 1 and 0 �the KS
choice� are larger the closer we are to the Fermi momentum.
Now, to what extent can we depend on the KS approach in
calculating observables that involve momentum coordinates?
Nobody can give a definite answer, since all the known
implementations of the KS method are approximate. They
involve approximate XC potentials Vxc, among which the
local density approximation �LDA� is the most common. Re-
cently, access to excellent-quality KS potentials has been
achieved �5–8�. They are calculated starting with accurate
charge densities derived from quantum Monte Carlo �QMC�
many-body wave functions. The algorithm used to generate
these potentials starts by expanding Vxc in a complete set of
basis functions. The expansion coefficients are then varied,
solving the KS equations and generating a new charge den-
sity each time. This cycle stops when the obtained charge
density matches the accurate QMC density. Having these ac-
curate KS potentials in our hands would help us separate the*Electronic address: alsharif@yu.edu.jo
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error coming from the approximation for Vxc and hence to
estimate the momentum distribution error retained to the KS
method itself. This would answer the fundamental question
of reliability of the KS approach in calculating observables
involving momentum coordinates.

The rest of this paper is organized as follows: In Sec. II,
theoretical and computational details are presented. In Sec.
III, the obtained results are listed and discussed. Finally, the
conclusions from this work are drawn in Sec. IV.

II. THEORY AND COMPUTATIONAL DETAILS

At the one-electron level, four observables are the key
quantities: the position density ��r�� �often unsystematically
called the “charge density”�, the form factor F�k��=F��� � with
�� =�k� of diffraction work, the momentum density ��p��, and
the reciprocal form factor B�s�. In the case of spherical sym-
metry �atoms, liquids, glasses, powders� and within the im-
pulse approximation, there are particularly simple relation-
ships between the spherically averaged momentum density
��p�, the Compton profile J�q� and the reciprocal form fac-
tor B�s� �9�:

J�q� =
1

2
�

�q�

�

p��p�dp =
1

�
�

−�

�

B�s�cos�qs�ds , �1�

where ��p� is the spherically averaged momentum density
and atomic units are assumed throughout. Equation �1� re-
veals two methods for the calculation of the Compton pro-
file. Starting from the single-particle eigenfunctions �	�r���,
which are a natural output of any atomic program, one can
calculate the reciprocal form factor B�s�,

B�s� =� ��r�,r� + s��dr� = 	
i=1

N � 	i�r��	i�r� + s��dr� , �2�

where N is the number of occupied orbitals, then perform the
Fourier transform in order to obtain J�q�. This involves two-
center overlap integrals which are usually hard to evaluate.
The other method which is rather simpler is to Fourier trans-
form the eigenfunctions first, then calculate the radial mo-
mentum density ��p�, and finally obtain the Compton profile
via

J�q� =
1

2
�

�q�

�

p��p�dp . �3�

To evaluate the integrals involved in the methods described
above, it is common practice to expand the eigenfunctions in
a finite basis set.

In the present calculations I started from Umrigar’s Vks for
neon. This potential enjoys excellent quality as evident from
our previous work �10�. The KS eigenfunctions were then
calculated directly in terms of Slater-type orbitals �STO’s�:


�r,�,�;aj,nj,l,m� =
�2aj�nj+1/2


�2nj�!
rnj−1e−ajrYlm��,�� , �4�

where Ylm�� ,�� are the spherical harmonics and aj and nj

are optimization parameters. The exponents aj of these
STO’s were optimized to get a faithful representation of the
KS orbitals 	�r ,� ,� ;n , l ,m� using a relatively small number
of basis functions 
�r ,� ,� ;aj ,nj , l ,m�—namely, ten orbit-
als:

	�r,�,�;n,l,m� = 	
j=1

10

cj
�r,�,�;aj,nj,l,m� . �5�

The optimization algorithm is described elsewhere �11�, and
the resultant optimized expansions of the occupied orbitals
of neon are shown in Table I. Note that the matrix elements
of our KS Hamiltonian are m independent. Therefore the
listed expansion coefficients cj�nl� are the same for all m
values belonging to a given choice of n and l.

Using Table I, the Compton profile is calculated following
both methods described above. As a theoretical benchmark, I
also calculated the valence Compton profile using the
Roothaan Hartree-Fock �HF� atomic wave functions ob-
tained from the recent tables of Bunge et al. �12�.

The final step in the present calculations was to compute
the first-order correction to the Compton profile suggested by
Lam and Plazman �13� and Bauer �14�. First the correction to
the momentum density is found using

TABLE I. Occupied orbitals of the neon atom expressed in STO’s as in Eq. �5�.

j cj�1s� cj�2s� aj nj cj�2p� aj nj

1 0.630574 0.038640 10.8072 1 −0.182296 3.7957 2

2 0.387660 0.282352 7.47780 1 0.212390 1.2874 2

3 0.007726 −0.736646 2.59110 2 −0.296368 0.1010 2

4 −0.017984 −0.362927 4.31870 2 1.838318 2.9203 2

5 −0.003771 −0.034733 0.20340 2 −0.830907 3.8012 3

6 0.005506 0.049519 0.11190 2 0.076012 0.2490 3

7 −0.002356 −0.038195 1.33390 3 0.125731 0.1474 3

8 0.001885 0.019742 0.72900 3 0.004876 0.0700 3

9 −0.019841 −0.179849 0.15710 3 0.080557 0.1445 4

10 0.017109 0.155732 0.16860 3 0.038088 0.1163 4
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��p� = �
0

�

�N„p;��r�… − Nks„p;��r�…���r�dr , �6�

where N(p ;��r�) is the momentum density of the nonpolar-
ized homogeneous interacting electron gas and Nks(p ;��r�) is
the momentum density of the noninteracting electron gas
�the Fermi distribution function�. The subscript ks indicates
the fact that this is the momentum distribution obtained from
KS calculations for the interacting case. N(p ;��r�) is ob-
tained from Monte Carlo simulations by Senatore et al. �15�.
The result of Eq. �6� is then inserted into Eq. �3� to get the
Lam-Plazman �LP� correction to the Compton profile.

III. RESULTS AND DISCUSSION

An experimental Compton profile of atomic neon is re-
ported in the work by Eisenberger �16�, where an accurate
experimental procedure was followed incorporating correc-
tions to the impulse approximation. Two radiation sources—
namely, Ag and Mo—have been used and the resultant
Compton profiles were compared with theoretical calcula-
tions referenced as “personal communication.” Another in-
vestigation of the neon Compton profile with a comparison
between theory and experiment has also been performed
�17,18� where, in the latter, the calculations were performed

within the KS framework using the LDA and self-interaction
corrected �SIC� LDA.

The results of the present calculations are summarized in
Table II. In this table, the contribution from the 1s orbital
was ignored. This has to do with problems related to the
impulse approximation since the 1s orbital lies in the core
region where the electrons are tightly bound to the nucleus.
The first and last columns represent the present calculations
using the HF and KS wave functions respectively. The
middle ones represent the experimental results obtained us-

FIG. 1. The KS and experimental valence Compton profiles
relative to the HF one plotted from Table II. The experimental pro-
file is obtained using the Ag radiation source.

TABLE II. Valence Compton profile of the neon atom �the 1s orbital contribution is not counted�. The first
and last columns represent the present calculations using HF and KS wave functions, respectively. The
middle ones represent the experimental results from Ag and Mo radiation and the average of them,
respectively.

q HF Expt. Ag Expt. Mo Expt. Av KS-UMR

0.0 2.548 2.565 2.598 2.582 2.567

0.1 2.540 2.556 2.592 2.574 2.559

0.2 2.515 2.536 2.577 2.558 2.535

0.3 2.475 2.505 2.533 2.519 2.492

0.4 2.418 2.438 2.465 2.451 2.431

0.5 2.335 2.350 2.369 2.359 2.349

0.6 2.236 2.243 2.255 2.249 2.245

0.7 2.120 2.122 2.126 2.124 2.123

0.8 1.990 1.988 1.984 1.986 1.990

0.9 1.855 1.842 1.836 1.839 1.849

1.0 1.715 1.690 1.679 1.685 1.706

1.2 1.435 1.398 1.390 1.394 1.426

1.4 1.171 1.134 1.145 1.140 1.171

1.6 0.953 0.912 0.930 0.921 0.948

1.8 0.766 0.744 0.754 0.749 0.762

2.0 0.619 0.611 0.605 0.608 0.609

2.5 0.355 0.366 0.347 0.355 0.351

3.0 0.212 0.228 0.222 0.225 0.209

3.5 0.132 0.154 0.158 0.156 0.131

4.0 0.085 0.094 0.111 0.102 0.086

5.0 0.040 0.047 0.036 0.041 0.041
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ing the Ag source, the Mo source, and the average of these
two results, respectively. We can see clearly in Table II that
the KS results are better than the HF results in the small-q
range.

One thing that merits mention is the fact that the Mo
experiment suffers greatly from the impulse approximation
�16�. If we consider only the Ag experiment as already done
by some authors �17�, then we see an excellent agreement
with the experiment. In order to have a more clear vision of
this agreement, I plotted in Fig. 1 the experimental Compton
profile obtained using the Ag source and the KS profile, both
relative to the HF one �the HF Compton profile is sub-
tracted�. The noted inability of the HF profile �represented by
a straight line in the figure� to follow the experimental one,
especially in the low-q region, is understood on the basis of
the lack of many-body correlations in the HF wave func-
tions. In the same figure, the LP-corrected version of the KS
Compton profile is also shown. The LP correction due to Eq.
�6� is of the order of 0.005 on the average which is less than
1%. The correction dies away quickly along the q axis. In
fact, the LP correction to the momentum density is only sig-
nificant in the vicinity of q=0.

To compare with the KS Compton profiles reported by
Sawant and Kanhere �18�, I repeated the calculations includ-
ing the 1s orbital contribution. Again, in the small q values,
the results obtained from the Umrigar-KS potential are close
to the experiment as expected. The results are summarized in
Table III and plotted in Fig. 2. In this figure, the Compton
profiles for only small q values were plotted since this is the
only part where the differences between them is noticeable.
As seen in this figure, the experimental profile lies between
the LDA and Umrigar’s profiles. It is surprising to see that
the LDA profile is closer to the experimental profile than the
SIC one although it is known that the SIC KS potential is
better than the LDA one. In fact, the SIC potential enjoys the
1/r asymptote while the LDA one does not. The authors
attributed this discrepancy to numerical inaccuracies in cal-
culating the Fourier transform of the wave functions having a
long tail.

IV. CONCLUSION

In this work, the Compton profile of atomic Ne is calcu-
lated starting with a very accurate KS potential. The resultant
profile agrees very well with the experimental one especially
in the low-q region. In order to assess what such an agree-
ment really means, the HF Compton profile is computed. The
HF profile is actually the best exchange-only profile that can
be ever obtained. Nevertheless, the role of the many-body
correlations, which is completely missing in the HF scheme,
is found to be significant to the limit of pushing the HF
profile relatively away from the experimental one. The LP
correction to the Compton profile is also computed. This
correction dies away quickly along the q axis. In fact, the LP
correction is very small and noticeable only in the vicinity of
q=0. Those results show that, despite the known systematic
error in the KS formulation of the DFT in momentum space,
it is still reliable to calculate observables involving the mo-
mentum coordinates. Corrections do not represent a compu-
tational difficulty and can be easily performed. In any case,
corrections have a relatively small contribution.

TABLE III. Compton profile of the neon atom. The first column
represents the Compton profile generated from Umrigar’s potential.
The middle ones are theoretical calculations from Ref. �18�. The
last column contains experimental results reported by the same
reference.

q KS-UMR KS-LDA KS-SIC Expt.

0.0 2.741 2.806 2.702 2.762

0.1 2.733 2.797 2.695 2.754

0.2 2.708 2.770 2.670 2.738

0.3 2.665 2.723 2.627 2.698

0.4 2.604 2.653 2.567 2.630

0.5 2.521 2.559 2.486 2.537

0.6 2.416 2.444 2.386 2.427

0.7 2.294 2.312 2.272 2.301

0.8 2.159 2.167 2.145 2.162

0.9 2.018 2.016 2.009 2.014

1.0 1.874 1.863 1.869 1.859

1.2 1.591 1.569 1.593 1.565

1.4 1.332 1.306 1.338 1.308

1.6 1.106 1.083 1.115 1.086

1.8 0.916 0.899 0.929 0.910

2.0 0.760 0.749 0.776 0.765

2.5 0.490 0.493 0.511 0.501

3.0 0.337 0.344 0.355 0.359

3.5 0.246 0.254 0.261 0.277

4.0 0.188 0.195 0.200 0.210

5.0 0.119 0.125 0.127 0.126

6.0 0.079 0.085 0.087 -

7.0 0.053 0.059 0.061 -

8.0 0.036 0.042 0.043 -

9.0 0.026 0.030 0.031 -

10.0 0.015 0.022 0.022 -

FIG. 2. The KS and experimental Compton profiles of the Ne
atom plotted from Table III. Different KS implementations are
shown. The Compton profile generated from Umrigar’s potential is
represented by a solid line.
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