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Hypervirial theorems provide relationships exact electronic wave functions must satisfy, and the extent to
which this is the case is a measure �additional to the energy� of wave function quality. The hypervirial relation
known as the Vinti equation has been proposed for this purpose, but its application has been hampered by the
absence of analytical formulas for the singular integrals occurring therein. The authors’ methods for singular
integrals arising in atomic computations �J. Chem. Phys. 121, 6323 �2004�� resolve this bottleneck; quality
assessments based on the Vinti equation are provided here for a number of wave functions of varying com-
plexity describing the He isoelectronic series �from H− through Ne8+�.
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I. INTRODUCTION

Some of the relativistic and quantum electrodynamic
�QED� corrections to the energies of helium-like and other
three-body systems �1� involve matrix elements which, as
usually written, are linear combinations of individually sin-
gular integrals that combine to yield a finite result. Similar
behavior has been noted for the matrix elements of operators
describing various electronic properties of these systems
�see, for example, Thakkar and Smith �2��. Such convergent
combinations of individually divergent integrals are referred
to as Frullanian, commemorating a discussion by Frullani �3�
of integrals of the form

�
0

� f�at� − f�bt�
t

dt = �f��� − f�0��ln
a

b
. �1�

A variety of methods have been employed �4� for reducing
such combinations of integrals to their limiting values.

In a recent paper �5�, we presented formulas for a number
of “singular three-body integrals”—i.e. integrals of the ge-
neric form

I��� = �
�

�

dr1�
0

�

dr2�
�r1−r2�

r1+r2

f�r1,r2,r12�dr12, �2�

where r1 and r2 are the distances of particles 1 and 2 from a
third particle �in atomic systems, ordinarily the nucleus� and
r12 is the distance between particles 1 and 2. These integrals
are in fact regular for nonzero �, but become singular �here
meaning divergent� in the limit �=0. Since the I��� have now
been reduced to algebraic form, Frullanian combinations of
such integrals will lead to expressions in which the � depen-
dence vanishes in the limit �=0+.

Our primary interest is in the use of basis functions which
depend exponentially on all three interparticle distances r1,
r2, and r12 �which we refer to collectively as ri�, in part
because this symmetrical treatment of the three particles has
distinct advantages for “nonadiabatic” systems �those in
which all three particles are of comparable mass�. We note
that many of the observations made here have parallels in
investigations based on Hylleraas wave functions �those with
exponential dependence on r1 and r2, but with r12 occurring
only as powers�. An extensive discussion of singular Hyller-
aas integrals has been given by Yan and Drake �6�.

In the next section of this paper we define the exponential
basis and identify the integrals arising in matrix elements
based thereon. We then examine an application that naturally
leads to Frullanian integrals: namely, the use of hypervirial
theorems �7,8� in two-electron systems. Wave function qual-
ity can be assessed by comparing the expectation value of
�r1 ·r2� /r1

3 �normally written as a Frullanian sum of integrals�
with the value predicted for it by the hypervirial formula
known as the Vinti equation �9� �vide infra�. Previous work
along these lines has been hampered by the lack of an ana-
lytical expression for the Frullanian integrals, a lack which
we have now resolved. We illustrate our present approach
with a detailed investigation of the He isoelectronic series
from Z=1 to 10. We examine the extent to which a variety of
wave functions for these systems approach satisfaction of the
Vinti equation in addition to their approach to accurate elec-
tronic energies.

II. DEFINITIONS

This communication deals with integrals arising from the
use of basis functions of the form

�i = YLM,i�r1,r2��i�r1,r2,r12� , �3�

with
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�i�r1,r2,r12� = e−�ir1−�ir2−�ir12. �4�

In these equations, r1 and r2 are vectors describing the posi-
tions of particles 1 and 2 relative to particle 3 and Y is an
angular eigenfunction of quantum numbers L ,M �not neces-
sarily the same function for each i; for details see our earlier
work �10,11��. The � are “radial” functions, in the sense that
they depend only on the magnitudes of the interparticle
distances—i.e., on r1, r2, and r12. Of importance here is the
fact that Y contains powers of the interparticle distances of
the form r1

l1r2
l2, with the sum l1+ l2 equal either to L or L+1.

The work cited above shows that for general operators the
angular integrations can be carried out by standard methods,
reducing the matrix elements of such operators to linear
combinations of integrals in the interparticle coordinates.
Similar reductions for Hylleraas wave functions �assuming
that r12 is expanded in terms of r1 and r2 �12�� have been
presented by Drake �13�.

After the angular integrations have been performed, the
expectation value of an operator M will be of the general
form

�M� = 	
ij

Ci
*CjMij , �5�

Mij = ��i�M̄�� j� , �6�

where Ci and Cj are coefficients that include normalization

factors and M̄ is an operator which may involve the ri and

their derivatives. The application of M̄ to � j will leave its
exponential form unaltered, but will cause it to be multiplied

by a polynomial in the ri and for some M̄ also multiplied by
negative powers of one or more ri.

If Mij is expanded into monomial radial integrals, each
will be of the form

�lmn�a,b,c� = �
0

�

dr1�
0

�

dr2�
�r1−r2�

r1+r2

dr12r1
l r2

mr12
n e−ar1−br2−cr12.

�7�

For matrix elements involving �i and � j, a=�i+� j, b=�i
+� j, and c=�i+� j. The above formula is an optimum start-
ing point for further analysis, but physical insight may be
obtained by rewriting it as an integral over the space of the
two vector coordinates r1 and r2:

�lmn��,�,�� =
1

8	2 � dr1dr2r1
l−1r2

m−1�r1 − r2�n−1


e−�r1−�r2−��r1−r2�. �8�

Noting that the nonrelativistic Hamiltonian of a Coulombic
system contains no ri to any power smaller than −1, we see
from Eq. �8� that the matrix elements of the Hamiltonian will
involve only �lmn with l ,m ,n�0, all of which are nonsingu-
lar. However, operators containing �or generating� higher
negative powers of ri will involve �lmn with negative index
values and therefore may lead to Frullanian combinations of
the �lmn.

As illustrated by our previous work �5�, �−1,m,n and
�−1,−1,n are nonsingular for m ,n�0, but �lmn are singular if
any of the indices are −2 or smaller. The integral �−1,−1,−1 is
also singular.

III. APPLICATION: HYPERVIRIAL THEOREM

As a practical application involving a Frullanian integral,
we consider computations arising from the use of hypervirial
theorems �7,8�. These theorems arise out of the general rela-
tionship, valid for an eigenstate � of a Hamiltonian H and
for an arbitrary operator A,

���
dA

dt
��� = ����H,A���� = 0. �9�

By the use of various choices of A, one can obtain relation-
ships among expectation values �hypervirial theorems� that
will be satisfied only when the wave functions are exact
eigenstates of H. These hypervirial theorems can be used to
obtain expectation values that are difficult to calculate, ex-
pressing them in terms of others whose evaluation may be
simpler. Alternatively, the extent to which hypervirial theo-
rems are satisfied can be used as indicators of the quality of
approximate wavefunctions.

For a nonrelativistic helium-like system consisting of an
infinitely massive nucleus of charge Z and two electrons
�particles 1 and 2�, the choice A=r1 ·p2+r2 ·p1, with pi the
momentum operator for particle i, leads �using hartree
atomic units �=e=me=4	�0=1� to

�p1 · p2� = Z
 r1 · r2

r1
3 � +

1

2

 1

r12
� , �10�

a hypervirial theorem that was discussed by Vinti �9� and
later used by Fischer and Smentek-Mielczarek �14� and by
Kleinekathöfer, Patil, Tang, and Toennies �15� �KPTT�. Our
present interest is to study the rate at which Eq. �10� �which
we shall call the Vinti equation� converges to validity as the
wave functions of He-like ground states are improved. This
study will require the evaluation of not only �p1 ·p2� and
�r12

−1�, both of which are straightforward, but also that of
��r1 ·r2� /r1

3�, which by insertion of the formula

r1 · r2 =
1

2
�r1

2 + r2
2 − r12

2 � �11�

becomes


 r1 · r2

r1
3 � =

1

2
�
 1

r1
� + 
 r2

2

r1
3� − 
 r12

2

r1
3 � . �12�

The matrix elements Mij needed, in conjunction with Eq.
�5�, to evaluate the right-hand side of Eq. �12�, can, with
neglect of the prefactor 1 /8	2 of Eq. �8�, be written
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Mij = 
�i� r1 · r2

r1
3 �� j�

=
1

2
��0,1,1�a,b,c� + �−2,3,1�a,b,c� − �−2,1,3�a,b,c�� ,

�13�

with a=�i+� j, etc. The first of the three � is regular, being
in fact that needed for �r1

−1�, but the other two are singular.
Since Mij is finite, it can be concluded that the two singular
integrals constitute a Frullanian pair.

Using the formulas we recently published �5�, we find, as
discussed in more detail in the Appendix,

�−2,3,1�a,b,c� − �−2,1,3�a,b,c�

=
192bc

�b2 − c2�4�a ln�a + b

a + c
� − b + c

+
48bc

�b2 − c2�3� 1

a + b
+

1

a + c


−
4

�b2 − c2�2� b

�a + c�2 −
c

�a + b�2 . �14�

Equation �14� is regular, the singularities in the individual �
having canceled, and is both efficient and numerically stable
except when b−c approaches zero. In that regime, it is better
to use the alternate formula �also discussed in the Appendix�

�−2,3,1�a,b,c� − �−2,1,3�a,b,c�

=
12�G−2,1,0 − G−2,0,1�

�b + c�4 +
6�G−2,2,0 − G−2,0,2�

�b + c�3

+
3�G−2,2,1 − G−2,1,2� + G−2,3,0 − G−2,0,3

�b + c�2

+
G−2,3,1 − G−2,1,3

b + c
. �15�

Here all the G have arguments a ,b ,c and are given by the
general formula

G−p,m,n�a,b,c� =
2m!n!�m + n − p + 1�!

�m + n + 1�!�a + b�n+m−p+2


2F1�n + 1,m + n − p + 2;m + n + 2;� ,

�16�

with = �b−c� / �a+b� and 2F1 a hypergeometric function
�16�. For the small  for which Eq. �16� is to be used, the
hypergeometric function is best evaluated from its series ex-
pansion, which corresponds �for the cases needed here� to the
explicit formula

G−2,m,n�a,b,c� =
2m!

�a + b�m+n


	
�=0

�
�n + ��!�

�m + n + ���m + n + � + 1��!
.

�17�

IV. RESULTS AND DISCUSSION

Using Eqs. �14� and �15�, we made an extensive study of
the convergence of Eq. �10� toward validity for ground states
of the He-like systems with Z from 1 to 10 �i.e.,
H−,He, . . . ,Ne8+�. Our study involved variationally deter-
mined wave functions with numbers �N� of symmetry-
adapted configurations ranging from 1 to 800. For N�400,
the nonlinear parameters �i, �i, and �i were �except where
stated otherwise� carefully �but not quite exhaustively� opti-
mized; for larger values of N these parameters were chosen
by the pseudorandom sampling technique introduced by
Thakkar and Smith �2� and further developed by Frolov
�17,18�.

Data for He are presented in Table I. It is apparent that,
with the exception of the ten-configuration results, the ratio

TABLE I. Hypervirial computations on He. N is the number of symmetrized configurations in the wave function, E is the total energy
�hartrees�, and T and V are, respectively, the kinetic and potential energies. For ��r1 ·r2� /r1

3�, “Direct” is by Eq. �14� and �15�; “Vinti” is by
Eq. �10�.

N
E

�hartree� −�V� / �T�

��r1 ·r2� /r1
3�

�bohr−1�

Direct Vinti

1 −2.899 534 38 2.000 000 −0.201 091 −0.142 120

4 −2.903 688 26 2.000 000 −0.158 210 −0.157 023

10 −2.903 717 569 080 07 2.000 011 523 761 803 −0.157 022 614 765 −0.156 911 360 339

400 −2.903 724 377 034 05 2.000 000 000 000 125 −0.156 919 876 898 −0.156 919 874 660

500 −2.903 724 377 034 07 2.000 000 000 000 067 −0.156 919 873 963 −0.156 919 874 659

600 −2.903 724 377 034 09 2.000 000 000 000 207 −0.156 919 875 892 −0.156 919 874 658

700 −2.903 724 377 034 10 1.999 999 999 999 952 −0.156 919 874 730 −0.156 919 874 658

800 −2.903 724 377 034 11 2.000 000 000 000 042 −0.156 919 874 165 −0.156 919 874 658

�a −2.903 724 377 034 12

aReference �19�.
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��potential energy�/�kinetic energy� has essentially the exact
value �2� predicted by the �ordinary� virial theorem. This is
not a coincidence, because the uniform scaling of all the
parameters of any wavefunction built from the exponential
basis will produce an energy minimum at the scale which
also satisfies the virial theorem. This observation, in turn,
means that the degree of satisfaction of the virial theorem
provides no information as to the quality of our wave func-
tions other than their overall scale. All that can be said is that
if the virial theorem is not well satisfied �cf. our ten-
configuration result�, one can conclude that the wave func-
tion is not optimized within the scope of the chosen param-
eter space.

Since hypervirial theorems provide additional relation-
ships which are guaranteed to be satisfied only for exact
wave functions, they have the potential of yielding additional

insight as to wave function quality. Returning to Table I, look
now at the convergence of direct calculations of ��r1 ·r2� /r1

3�
toward values derived from the Vinti equation. Unlike the
virial ratio, the Vinti equation is far from satisfied for rela-
tively crude wave functions, and there is a strong correlation
between its satisfaction and convergence of the wave func-
tion toward exactness. However, it must be pointed out that
the convergence of the Vinti equation is a different measure
than convergence of the energy; this point is illustrated by
some data for Li+, which are presented in Table II, in which
the entries are arranged in order of accuracy in the energy,
but this ordering is not that of convergence to satisfaction of
the Vinti equation. Finally, note that the additional criterion
provided by the Vinti equation will have particular value in
circumstances where �unlike the present example� it is im-
practical to carry computations to extreme precision, and a
nearly exact wave function is not available.

A further examination of Table I indicates that, even for
relatively crude wave functions, the Vinti equation gives
more accurate results for ��r1 ·r2� /r1

3� than are achieved by
direct calculation of that quantity. In addition, both the table
entries and data for other nonoptimum wave functions �not
tabulated� indicate that the Vinti values are also more stable
�with respect to small changes in the wave function� than are
the direct values.

Table III provides information for additional members of
the He isoelectronic series: H−, Li+, N5+, and Ne8+. These
systems show behavior similar to that already noted.

An extensive discussion of the Vinti equation as an indi-
cator of wave function quality was provided by KPTT �15�,
who used it when studying the compact wave functions they

TABLE II. Comparative convergence of the energy and Vinti
equation �indicated by “Vinti-Direct”� encountered while optimiz-
ing four-configuration calculations of the Li+ ion. “Direct” is by Eq.
�14� and �15�; “Vinti” is by Eq. �10�.

Energy Direct
��r1 ·r2� /r1

3� , bohr−1

Vinti Vinti-Direct

−7.279 831 103 −0.166 005 −0.165 393 0.000 612

−7.279 834 641 −0.166 066 −0.165 320 0.000 746

−7.279 836 231 −0.165 856 −0.165 373 0.000 483

−7.279 913 413a 0.000 000

aExact energy �20�.

TABLE III. Hypervirial computations on ions isoelectronic with He. N is the number of symmetrized configurations in the wave function,
and E is the total energy. For ��r1 ·r2� /r1

3�, “Direct” is by Eq. �14� and �15�; “Vinti” is by Eq. �10�.

N
E

�hartree�

��r1 ·r2� /r1
3�

�bohr−1�

Direct Vinti

H− 1 −0.523 865 93 −0.196 415 −0.115 904

4 −0.527 713 12 −0.127 667 −0.122 587

400 −0.527 751 016 544 31 −0.122 630 969 740 −0.122 630 969 256

�a −0.527 751 016 544 38

Li+ 1 −7.275 710 28 −0.206 073 −0.148 339

4 −7.279 878 88 −0.165 748 −0.165 004

400 −7.279 913 412 668 70 −0.164 961 334 466 −0.164 961 331 067

�b −7.279 913 412 669 31

N5+ 1 −44.777 256 −0.211 664 −0.155 219

4 −44.781 412 −0.173 972 −0.173 330

400 −44.781 445 148 599 −0.173 362 096 282 −0.173 362 051 354

�b −44.781 445 148 773

Ne8+ 1 −93.902 624 −0.212 975 −0.156 687

4 −93.906 774 −0.175 774 −0.175 103

400 −93.906 806 510 680 −0.175 153 963 503 −0.175 153 944 054

�b −93.906 806 515 037

aReference �21�.
bReference �20�.
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introduced for He-like systems. The wave functions of the
present study that are most similar in complexity to those of
KPTT are those consisting of four optimized configurations,
and we therefore give, in Table IV, some data comparing the
two types of wave functions. Since KPTT used direct and
Vinti-derived values of 2�p1 ·p2� as an indicator �rather than
those of ��r1 ·r2� /r1

3�, used in our Tables I–III�, we have con-
verted our data to make the comparison more straightfor-
ward. We have also changed the “exact” values of this quan-
tity from those given by KPTT to more accurate values based
on our most extensive configuration-interaction wave fun-
tions.

While the KPTT data have the conceptual advantage of
having parameters determined from the short- and long-
range behavior of the wave functions, with the main arbi-
trariness residing in the choice of its detailed functional
form, we note that the compact four-configuration wave
functions of the present study provide a significantly higher
accuracy than the KPTT wave functions and with what ap-
pears to be a comparable, or perhaps smaller, degree of com-
putational effort. The high quality of these four-configuration
wave functions is attested not only by their energies but also
by their satisfaction of the Vinti theorem and by the conver-
gence of 2�p1 ·p2� to its known accurate value. The improve-
ment relative to KPTT in both these indicators approaches an
order of magnitude.

The formulas of Eqs. �14� and �15� can also be used to
check the data two of us �A.M.F. and V.H.S.� presented in a
recent paper reporting highly accurate computations on He-
like ions �20�. Values given as 14-figure estimates of
��r1 ·r2� /r1

3�, obtained using the Vinti equation, were listed in
the last column of Table 4 of that paper. Those table entries
do not agree with computations by the methods of the
present paper, and the source of the discrepancy has been
identified �22�. A recalculation of ��r1 ·r2� /r1

3�, using a cor-
rected version of Eq. �36� of Ref. �20�, is given here in Table
V. We are confident that these data are correct because they
are consistent with the convergence limits of the “Direct”
and “Vinti” data presented in Tables I and III.

V. CONCLUDING REMARKS

The quantity �p1 ·p2� appears in a variety of contexts. It
occurs in the description of isotopic mass shifts �14� �multi-
plied by the ratio of the electronic to the nuclear mass�; it has
also been used �divided by the expectation value of the ki-
netic energy� as an angular correlation coefficient of the par-
ticle momenta �23,24�. Krause, Morgan, and Berry �25� even
used the Vinti equation as an aid to estimating the sign of
�p1 ·p2� in low-lying states of two-electron atoms; they were,
however, hampered by the unavailability of an explicit for-
mula �such as has been presented here� for the integral
��r1 ·r2� /r1

3�.
The use of the Vinti equation to assess wave function

quality will be of particular value in circumstances where
highly accurate wave functions are needed. A case in point is
the isotopic mass shift, where great sensitivity to the wave
function has been observed �14,26�. The importance of this
issue is illustrated by a current paper in which a combination
of the mass shift with relevant relativistic and quantum elec-
trodynamic corrections has been used in conjunction with

TABLE IV. Comparison of the compact wave functions of this research �of four symmetrized configura-
tions� with those of KPTT �15�. The “Vinti” values of 2�p1 ·p2� are calculated by evaluating the right-hand
side of Eq. �10�.

E−Eexact

��hartree�

2�p1 ·p2�, hartree

Direct Vinti Exacta

H− KPTTb 2100 0.0628 0.0408

This work 38 0.0659 0.0558 0.0658

He KPTT 3720 0.309 0.284

This work 36 0.318 0.313 0.318

Li+ KPTT 5000 0.555 0.537

This work 35 0.578 0.572 0.578

Be2+ KPTT 5700 0.852 0.813

This work 34 0.841 0.835 0.841

aFrom our work �more accurate than the data given by KPTT�.
bWith a sign change �private communication from KPTT to V.H.S.�.

TABLE V. Values of ��r1 ·r2� /r1
3� for He-like systems with

nuclear charges Z from 1 to 10. These data are corrections of the
entries in the last column of Table 4 of Ref. �20�.

Z ��r1 ·r2� /r1
3�, bohr−1

1 −0.122 630 969 255

2 −0.156 919 874 657

3 −0.164 961 331 058

4 −0.168 728 770 878

5 −0.170 919 078 378

6 −0.172 351 754 727

7 −0.173 362 048 943

8 −0.174 112 782 451

9 −0.174 692 605 007

10 −0.175 153 918 842
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laser spectroscopic data to provide a model-independent ex-
perimental determination of nuclear radii �27�.
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APPENDIX: EVALUATION OF �−2,3,1−�−2,1,3

The most straightforward way to proceed is to start from
Eq. �22� of Ref. �5�, which gives an explicit formula for
�−2,1,1:

�−2,1,1�a,b,c� = − 4
ln � + �E

�b + c�3 +
4

�b2 − c2�3 ��4abc + 3b2c + c3�


ln�a + b� − �4abc + 3bc2 + b3�ln�a + c��

−
16bc

�b + c�3�b − c�2 . �A1�

Here �E is Euler’s constant, 0.57721…. Note that �−2,1,1 is
singular, as evidenced by its logarithmic dependence upon �.
It is apparent from Eq. �7� that the indices in �lmn can be
incremented by differentiation with respect to the parameters
a, b, and c and that, specifically,

�−2,3,1�a,b,c� − �−2,1,3�a,b,c� = � �2

�b2 −
�2

�c2��−2,1,1�a,b,c� .

�A2�

Carrying out the process indicated in Eq. �A2�, the singular
terms, as expected, cancel, and we are left with the expres-
sion shown in Eq. �14� of the main text.

When b−c is small, it is better to use the recursive pro-
cess described by Eq. �24� of Ref. �5�; its key element is the
formula of Sack, Roothaan, and Kolos �28�:

�l,m,n�a,b,c� = � 1

b + c
��m�l,m−1,n�a,b,c� + n�l,m,n−1�a,b,c�

+ Gl,m,n�a,b,c�� , �A3�

in which G �for the parameter values of relevance here� has
the explicit form given in the main text, in Eqs. �16� and
�17�.

Equation �A3� is used iteratively, starting from index val-
ues l=m=n=0. It is self-starting �in the sense that no initial
�lmn values from other sources are needed to initiate the pro-
cess�, because the term m�l,m−1,n is to be omitted when m
=0, as is n�l,m,n−1 when n=0.

For the index values needed here, one may therefore start
from

�−2,0,0 =
G−2,0,0

b + c
, �A4�

with � and G having arguments a, b, and c. We make there-
from

�−2,1,0 = � 1

b + c
���−2,0,0 + G−2,−1,0� =

G−2,0,0

�b + c�2 +
G−2,1,0

b + c

�A5�

and continue in a similar fashion until �−2,3,1 and �−2,1,3 are
reached.

We now form the difference �−2,3,1−�−2,1,3, causing
G−2,0,0 �which is singular� to cancel, leaving only the regular
terms comprising Eq. �15� of the main text.
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