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The impulse approximation is used to calculate cross sections for fragmentation of Ps�1s� in collision with
He, Ne, Ar, Kr, and Xe. Triple, double, single, and total cross sections are evaluated. Reasonably good
agreement is found with the measurements of Armitage et al. �Phys. Rev. Lett. 89, 173402 �2002�� on
Ps�1s�+He�11S� scattering. These absolute measurements comprise the total Ps ionization cross section and the
cross section differential with respect to the longitudinal energy of the ejected positron. Characteristics of free
electron and free positron scattering are explored in the double and triple differential cross sections for
Ps�1s�+Xe scattering.
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I. INTRODUCTION

In a paper published in 2001 Ludlow and Walters �1� put
forward some ideas on coincidence studies of positronium
�Ps� fragmentation. In its most rigorous form the kinematics
of such a study would be fully determined, i.e., one would
measure the momentum of the incoming Ps, the momenta of
the outgoing electron and positron, and one would have in-
formation on the initial and final states of the atomic target.
The result of such an experiment would be a triple differen-
tial cross section �TDCS�. In analogy with �e ,2e�, Ludlow
and Walters termed this a �Ps, e+e−� measurement. Their in-
terest focused upon the idea that Ps, being a composite of a
positron and an electron, might exhibit in its scattering some
coherent combination of free electron and free positron scat-
tering. In particular, if these two scatterings were sufficiently
different in behavior, it might be possible, depending on the
collision geometry, to see their “foot prints” in the Ps scat-
tering. For example, we show in Fig. 1 differential cross
sections for elastic e±−Xe scattering in the static and static-
exchange approximations. Whereas the positron cross sec-
tions are monotonically smooth, the electron cross sections,
in the energy range shown, are highly structured. Such radi-
cal differences depend upon Xe being a many-electron atom
with a well-developed shell structure, it would not be so for
a light atom like He. Consequently, Ludlow and Walters rec-
ommended experiments on heavy targets such as Xe rather
than light targets such as He.

The ideas of Ludlow and Walters are nicely encapsulated
within the context of the impulse approximation �IA� �2,3�
which treats the scattering of a composite, such as Ps, as a
coherent sum of the individual scatterings of its constituents.
The IA used here derives from that of Hartley and Walters
�4–6� but with an interesting difference. Hartley and Walters
studied collisions in which the projectile was a one-electron
atom or ion. In their model the scattering of the projectile
nucleus by the target was neglected, only the projectile elec-
tron scattered. The only function of the projectile nucleus
was to interact with its electron giving it a distribution of
momenta relative to the nucleus. By contrast, in the case of
Ps as a projectile we must take account of the scattering of

both particles, the electron and the positron, and combine
these scatterings coherently. Ps scattering therfore provides
an interesting window on this coherence property of the IA,
a view not given by atom or ion projectiles.

Despite enormous advances in the experimental study of
Ps-atom collisions �7–12�, it will be some time before it is
possible to measure a TDCS. However, the first measurement

FIG. 1. Elastic differential cross sections for electron and posi-
tron scattering by Xe in the static-exchange and static approxima-
tions, respectively. The impact energy is indicated on each curve
and the curves have been staggered by a factor of 102 on increasing
the energy from 50 eV.
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of a single differential cross section �SDCS� has recently
been made �11,12�, in this case the cross section differential
with respect to the longitudinal energy of the ejected posi-
tron. Presently, therefore, there is a need to also look at less
differential cross sections. Of course with each loss of differ-
entiability we loose insight into the ionization mechanism
and the coherent interplay between the electron and positron
scatterings. The existing measurements �11,12� have been
made on a He target and at relatively low impact energies
��33 eV�. At impact energies below 27 eV excitation or
ionization of the He is not possible and between 27 and 33
eV it should be unimportant �13,14�, consequently we need
only concentrate upon collisions in which the atom remains
unexcited �15�. Although these energies are rather low for the
IA, we believe that there is merit in applying it to the experi-
mental data. The only other theoretical calculation of which
we are aware is the classical trajectory Monte Carlo �CTMC�
approximation of Sarkadi �16�. This compares well with the
general pattern of the experimental data but gives cross sec-
tions of somewhat larger magnitude, furthermore, the exact
details of the pattern are dependent upon the assumed range
of the e±−He interactions. A comparison with a different
calculation, and in particular a quantal calculation, such as
the IA, would therefore be appropriate. However, we do not
restrict ourselves to He, nor to the energy range �33 eV. We
look also, as recomended by Ludlow and Walters, towards
the other end of the atomic scale, i.e., Xe, and at higher
impact energies, up to 500 eV, where the validity of the IA
improves. At high impact energies excitation of the target
cannot be ignored �13�. Nevertheless, we shall restrict our-
selves to target elastic collisions with the purpose of consoli-
dating this part of the overall picture. The treatment of target
inelastic collisions will require sums over final states, both
bound and continuum, and a generally different approach
�4–6,13,17�, we leave this to a future publication.

The plan of the paper is as follows. In Sec. II we define
and discuss the cross sections of interest: triple �TDCS�;
double �DDCS�; single �SDCS�; single differential with re-
spect to the longitudinal energy of the ejected positron or
electron �SDCSLP or SDCSLE�; total �ionization�. In Sec. III
we discuss the first Born approximation �FBA� and, from it,
develop the IA. In Sec. IV we give some calculational details
and in Sec. V we present the results for target elastic colli-
sions. Here we work “backwards,” starting with the total
ionization cross section and comparing the IA with experi-
mential data on He �11,12� and with low energy ��40 eV�
coupled pseudostate calculations on He, Ne, and Ar �14,18�,
this should give us some feeling for the overall validity of
the approximation at those energies, although low, at which
comparison is possible. For future reference, we also give the
total ionization cross sections for Kr and Xe. Next we look at
the longitudinal cross sections SDCSLP and SDCSLE, mak-
ing comparison with the experimental results on He �11,12�
and presenting predictions for Xe at the other end of the
mass scale. Now confining ourselves to the two extremes, He
and Xe, we work backwards through DDCSs and TDCSs, for
which presently there are no experimental data, highlighting
points of interest and general trends rather than giving ex-
haustive detail. In Sec. VI we record our conclusions. Unless
otherwise stated we use atomic units �a.u.� in which �
=me=e=1.

II. CROSS SECTIONS

Consider Ps in the state �a incident with velocity v0 upon
an atomic target in the state �b. If the Ps is ionized and the
atom is left in the state �b� we can define the triple differen-
tial cross section �TDCS� d3�bb� /dEd�e�p. This is the cross
section for the positron �electron� appearing in a solid angle
d�p�d�e� about some specified direction while the energy of
the positron or electron is in some specified range E to
E+dE. From the TDCS we can generate by integration over
d�e ,d�p, or dE the double differential cross sections
�DDCS�:

d2�bb�

dEd�p
; �1a�

d2�bb�

dEd�e
; �1b�

d2�bb�

d�ed�p
. �1c�

Further integration leads to the single differential cross sec-
tions �SDCS�:

d�bb�

dE
; �2a�

d�bb�

d�p
; �2b�

d�bb�

d�e
; �2c�

and one more integration of Eqs. �2a�–�2c� gives the total Ps
ionization cross section for a collision in which the atom
goes from �b to �b�:

�bb�
ion =� d3�bb�

dEd�ed�p
dE�ed�p. �3�

In Refs. �11,12� it is the single differential cross section
with respect to the longitudinal energy of the ejected positron
that is measured. If the ejected positron has a velocity vp
making an angle �p with respect to the incident direction,
then its longitudinal energy is

Epl =
1

2
vp

2 cos2 �p = Ep cos2 �p, �4�

where Ep= 1
2vp

2 is its total energy. If the positron emerges in
the forward cone, then

d�bb�
F

dEpl
= 2��

�Epl/Em

1 d2�bb�

dEd�p
�Ep =

Epl

cos2 �p
,cos �p�d�cos �p�

cos2 �p

�5a�
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=
�

�Epl
�

Epl

Em d2�bb�

dEd�p
�Ep,cos �p =�Epl

Ep
� dEp

�Ep

. �5b�

If it emerges in the backward cone we get

d�bb�
B

dEpl
= 2��

−1

−�Epl/Em d2�bb�

dEd�p
�Ep =

Epl

cos2 �p
,cos �p�d�cos �p�

cos2 �p

�6a�

=
�

�Epl
�

Epl

Em d2�bb�

dEd�p
�Ep,cos �p = −�Epl

Ep
� dEp

�Ep

. �6b�

In Eqs. �5a�, �5b�, �6a�, and �6b� we have assumed that the
initial state of the Ps and the initial and final states of the
atom are spherically symmetric so that d2�bb� /dEd�p is in-
dependant of the azimuthal angle �p of the ejected positron
about the incident direction. We also indicate by
d2�bb��Ep , cos �p� /dEd�p the functional dependence of the
DDCS on Ep and �p. The quantity Em is the maximum pos-
sible energy of the emitted positron:

Em = v0
2 + 	b − 	b� − Ia

Ps, �7�

where 	b is the energy of the atomic state �b and Ia
Ps is the

ionization potential of the Ps in the state �a.
In the experiment of �11,12� backward moving positrons

are reflected forwards by a repulsive grid so that both back-
ward and forward positrons are collected �19�. The appropri-
ate cross section is then the sum of Eqs. 5 and 6, i.e.,

d�bb�

dEpl
=

d�bb�
F

dEpl
+

d�bb�
B

dEpl
. �8�

It is this that we shall refer to as the single differential cross
section with respect to the longitudinal energy of the ejected
positron �SDCSLP�.

From Eqs. �5b� and �6b� we see that the longitudinal cross
section becomes infinite as 1 /�Epl as Epl tends to zero. In
this limit

d�bb�

dEpl
= 2

d�bb�
F

dEpl
= 2

d�bb�
B

dEpl
=

Cbb�
p

�Epl

, �9�

where the constant Cbb�
p is given by

Cbb�
p = 2��

0

Em d2�bb�

dEd�p
�Ep,cos �p = 0�

dEp

�Ep

. �10�

Analogously we can write down a cross section differen-
tial with respect to the longitudinal energy Eel=

1
2ve

2 cos2 �e of
the ejected electron. Here we start from the DDCS
d2�bb� /dEd�e. The advantage of detecting the positron
rather than the electron is that the source of the positron is
unambigious, it must come from the Ps. The electron analog
of Eq. �8� we label as SDCSLE.

Finally, we note that the ionization cross section �bb�
ion de-

creases as 1/E0 as E0→
, where E0=v0
2 is the impact energy

of the Ps, see Appendix B.

III. THEORY

We consider the scattering of Ps by an N-electron neutral
atom. We denote by ri�i=1,2 ,… ,N� the position vector of
the ith target electron and by re and rp the position vectors of
the electron and positron forming the Ps. All position vectors
are referred to the atomic nucleus as origin. The center of
mass of the positronium is then given by R	�rp+re� /2 and
its internal coordinate by t	rp−re. We take the Ps to be
initially in the state �a�t� �energy Ea� and incident with ve-
locity v0 upon the atom in a state �b�X� �energy 	b�. In the
atom wave function X stands for the aggregate of the space
and spin coordinates xi	�ri ,si� of the atomic electrons i.e.,
X	�x1 ,x2 ,… ,xN�. We begin in Sec. III A by looking at the
first Born approximation for the collision. By interpreting the
first Born approximation we then give an intuitive develop-
ment of the impulse approximation in Sec. III B.

A. The first Born approximation (FBA)

If the collision of the Ps with the atom results in a change
of state of the Ps from �a to �a�, while the atom changes
state from �b to �b�, then the FBA amplitude for this process
is given by

f B1�Ps:a → a�;atom:b → b�� = −
1

�

eipf·R�a��t��b��X�

��V�eip0·R�a�t��b�X�� , �11�

where p0=2v0 �p f =2v f� is the initial �final� momentum of
the Ps relative to the atom and V is the interaction between
the Ps and the atom,

V = �
i=1

N
1

�re − ri�
−

Z

re
� − �

i=1

N
1

�rp − ri�
−

Z

rp
� . �12�

In Eq. �12� Z�=N� is the nuclear charge. Using Bethe’s inte-
gral Eq. �11� may be written

f B1�Ps:a → a�;atom:b → b�� = 2
�a��t��e
−iq·t/2��a�t��fbb�

B1+�q�

+ 2
�a��t��e
iq·t/2��a�t��f bb�

B1−�q� , �13�

where

fbb�
B1±�q� = ±

2

q2 
�b��X���− Z + 
i=1

N

eiq·ri���b�X�� �14�

and q=p0−p f is the momentum transfer in the collision.
Formula �13� has an interesting structure. The quantities

fbb�
B1±�q�, as our notation implies, are identical to the FBA

amplitudes for free positron �+� and free electron �−� scatter-
ing by the atom where q is the momentum transfer in the
collision. Formula �13� may then be interpreted as a coherent
combination of independent free scatterings of the electron
and positron in the Ps, these scatterings being modified by a
form factor, 
�a��t��e

±iq·t/2��a�t��, which describes how the
initial Ps state �a is transformed into the final Ps state ��a. It
is this idea which motivates the impulse approximation of
Sec. III B.
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With the normalization �11� the differential cross section
for the scattering is given by

d�B1

d�Ps
=

v f

v0
�fB1�2, �15�

where d�Ps is the solid angle into which the center of mass
of the Ps is scattered �the direction of p f� and where we have
assumed that �a� and �b� are bound states. However, here we
are interested in the case where the Ps is ionized although the
atom remains bound. In this case �a� needs to be a con-
tinuum state of Ps with ingoing scattered wave boundary
conditions, ��

−�t� say, where � is the momentum of the pos-
itron relative to the electron, i.e.,

� =
1

2
�vp − ve� , �16�

vp and ve being the velocities of the ejected positron and
electron and 1/2 being the reduced mass of the Ps system.
We therefore take �a� in Eq. �13� to be the Coulomb function

��
−�t� =

1

�2��3/2exp�1

2
����1 + i��ei�·t

� 1F1„− i�,1,− i��t + � · t�… �17�

� =
1

2�
. �18�

Generalizing Eq. �15� we can write

d3�bb�
B1

d�Psd�
=

v f

v0
�fB1�Ps:a → �;atom:b → b���2, �19�

where

fB1�Ps:a → �;atom:b → b�� = 2
��
−�t��e−iq·t/2��a�t��fbb�

B1+�q�

+ 2
��
−�t��eiq·t/2��a�t��fbb�

B1−�q� �20�

and

v f =
1

2
�vp + ve� . �21�

What we need here, however, is the TDCS
d3�bb� /dEd�ed�p. In Appendix A we show that this TDCS
is correspondingly

d3�bb�
B1

dEd�ed�p
=

vpve

4v0
�fB1�Ps:a → �;atom:b → b���2. �22�

From Eqs. �17� and �20� we see that a factor

exp������1 + i���2 �23�

must appear in the TDCS �22�. In the limit �→0��→
� this
factor diverges as 1/� �23�. Thus the TDCS becomes infinite
as 1 / �vp−ve� as vp→ve. This is the well-known electron loss
to the continuum �ELC� cusp �24� which can be observed in
electron loss from neutral atoms and positive ions. The ELC
cusp is a feature of the TDCS in its own right, see formula
�A7�, it is not an artifact of the FBA.

The FBA is symmetrical between the electron and the
positron, i.e., the electron and positron spectra are identical.
This is easily seen from Eq. �20�. If the velocities of the
outgoing electron and positron are interchanged then
�→−�, see Eq. �16�, while q=2v0−vp−ve remains un-
changed. It is an easy matter to show that


�−�
− �t��e±iq·t/2��a�t�� = Pa
��

−�t��e�iq·t/2��a�t�� , �24�

where Pa is the parity of the Ps state �a�t�. Then, using the
trivial fact that fbb�

B1±�q�=−fbb�
B1��q�, see Eq. �14�, we see that

the effect of the interchange is to convert fB1 into −PafB1

which has no effect on the TDCS �22�. In an obvious nota-
tion it follows that

d3�bb�
B1

dEd�ed�p
�vp = v,ve = v�� =

d3�bb�
B1

dEd�ed�p
�vp = v�,ve = v� ,

�25a�

d2�bb�
B1

dEd�p
�vp = v� =

d2�bb�
B1

dEd�e
�ve = v� , �25b�

d2�bb�
B1

d�ed�p
�v̂p = v̂,v̂e = v̂�� =

d2�bb�
B1

d�ed�p
�v̂p = v̂�,v̂e = v̂� ,

�25c�

d�bb�
B1

d�p
�v̂p = v̂� =

d�bb�
B1

d�e
�v̂e = v̂� , �25d�

d�bb�
B1

dE
�vp = v,ve = v�� =

d�bb�
B1

dE
�vp = v�,ve = v� , �25e�

d�bb�
B1

dEpl
�Epl = El� =

d�bb�
B1

dEpl
�Eel = El� , �25f�

where a caret denotes a unit vector. The condition �25e�
means that d�bb�

B1 /dE is symmetric in the ejected energy E

about E= 1
2Em where Em is the maximum ejected energy de-

fined in Eq. �7�.
The FBA is appropriate when the interaction between the

Ps and the atom is weak or when the impact energy is suffi-
ciently high. Experience with electron, atom, and Ps colli-
sions �4,6,13,25,26� with “heavy” atoms such as, e.g., Ar, Kr,
and Xe, indicates that the FBA does not become viable until
quite high impact energies for collisions in which the atom
remains in its initial state �a “target elastic” process�. The
problem lies with the increasing static potential presented to
the projectile by the atom as the atom grows in size. Here,
we wish to be able to study collisions of Ps not only with He
but with any atom. We seek therefore an approximation
which will not be so susceptible to the growth in the static
potential of the atom and will therefore be viable at much
lower impact energies. The impulse approximation is such an
approximation.
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B. The impulse approximation (IA)

We begin with an interpretation of the FBA �13�. We first
introduce the relative momentum distribution function g��Q�
for an arbitrary Ps state ���t�:

g��Q� =
1

�2��3/2 � e−iQ·t���t�dt . �26�

Then Eq. �13� may be written

fB1�Ps:a → a�;atom:b → b��

= 2�� ga�
* �Q����Q� − Q� −

q

2
�

�ga�Q��fbb�
B1+�q�dQ�dQ�

+� ga�
* �Q����Q� − Q� +

q

2
�

�ga�Q��fbb�
B1−�q�dQ�dQ�� . �27�

We think of the electron and the positron in the state �a�t� as
having a distribution of velocities v�p and v�e where

Q� =
1

2
�v�p − v�e� . �28�

If these velocities are measured relative to the target then,
since the Ps center of mass is incident with velocity v0, we
must also have

v0 =
1

2
�v�p + v�e� . �29�

Analogously, the final state �a� will have a distribution of
velocities v�p and v�e with

Q� =
1

2
�v�p − v�e� , �30�

v f =
1

2
�v�p + v�e� . �31�

Consider the first term in Eq. �27�. The delta function condi-
tion gives

Q� = Q� +
q

2

⇒v�p − v�e = v�p − v�e + q . �32�

In this term only the positron scatters off the atom so we
should have v�e=v�e and so Eq. �32� reduces to

v�p − v�p = q . �33�

This is consistent with the argument of fbb�
B1+�q�, i.e., the

whole momentum transfer q of the Ps is borne by the posi-
tron in its collision with the target. An analogous interpreta-
tion applies to the second term in Eq. �27� but now it is the
electron that carries the whole burden of the scattering. The

overall scattering �27� is the coherent sum of these two in-
dependent collision routes.

The weakness of the FBA is its perturbative treatment of
the e±-target interactions, represented in Eq. �27� by the first
order amplitudes fbb�

B1±�q�. If these could be replaced by more
realistic nonperturbative estimates then the approximation
might be much more viable. Unlike the first Born amplitudes
fbb�

B1±�q� more realistic treatments of free electron/positron
scattering by the target would not depend only upon the mo-
mentum transfer q, they would, in general, depend upon the
initial and final velocities of the scattering electron/positron,
i.e., upon v�e and v�e, v�p and v�p. Making such a replace-
ment we therefore write Eq. �27� as

f IA�Ps:a → a�;atom:b → b��

= 2�� ga�
* �Q����Q� − Q� −

q

2
�

�ga�Q��fbb�
+ �v�p,v�p�dQ�dQ�

+� ga�
* �Q����Q� − Q� +

q

2
�

�ga�Q��fbb�
− �v�e,v�e�dQ�dQ�� , �34�

where the velocities v�p ,v�p ,v�e, and v�e are defined as
functions of Q� and Q� by �see Eqs. �28�–�31��

v�p = v0 + Q�, �35a�

v�e = v0 − Q�, �35b�

v�p = v f + Q� = v0 + Q� −
q

2
, �35c�

v�e = v f − Q� = v0 − Q� −
q

2
. �35d�

Formula �34� defines the impulse approximation.
Although the IA relaxes the assumption that the interac-

tion between the projectile and target is weak, it is still in
essence a “high energy” approximation. The approximation
implies that the constituents of the projectile scatter indpen-
dently, this requires that the impact energy be not too low.
Roughly speaking, the impact energy should be “large” com-
pared with the binding energy of the projectile. We note that
the binding energy of Ps�1s� is 6.8 eV.

There is a problem with Eq. �34�, the amplitudes
fbb�

± �v� ,v�� are not fully defined. The difficulty is that, in
general, the velocities will be off-energy-shell �see Eqs.
�35a�–�35d��, i.e.,

v�
2

2
+ 	b �

v�2

2
+ 	b�. �36�

Ignoring any exchange effects we can write �27�
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fbb�
± �v�,v�� = −

1

2�

eiv�·r�b��X��

�V + V�E + i� − H�−1V��eiv�·r�b�X�� . �37�

Here V is the e±-target interaction, H is the full Hamiltonian
for the e± colliding with the target, and �→0+. For real
physical scattering

E =
v�2

2
+ 	b =

v�2

2
+ 	�b. �38�

While v� and v� are given in Eqs. �35a�–�35d�, E is not
defined because of the inequality �36�. What then should E
be? There is no definite answer to this question. The ambi-
guity in what to take for E reflects the basic inconsistency of
the IA, namely, that bound particles are treated as if they
were free. Following Hartley and Walters �5� we therefore
opt for a reasonable and convenient prescription that seems
to have worked well for atom and ion projectiles �5,6�.

In the situation of interest here b�=b so that we are con-
cerned with the elastic scattering off the target, let us write
fbb

± = fel
± . The suggestion of Hartley and Walters is to take fel

±

to be the physical on-energy-shell scattering amplitude.
Since our chosen targets are all spherically symmetric fel

± will
be a function only of the impact speed, v̄ say, and the mag-
nitude of the momentum transfer q. Hartley and Walters give
the prescription

fbb
± �v�,v�� → fel

± �v̄,q� , �39a�

q = v� − v�, �39b�

v̄ = Max�v�,v�� , �39c�

where Max�v� ,v�� means the greater of v� and v�. The
choice �39c� guarantees that 0�q�2v̄, a necessary condi-
tion for physical on-energy-shell elastic scattering. Using the
prescription �39a�–�39c� in Eq. �34� we get as our IA for
target elastic collisions

f IA�Ps:a → a�;atom:b → b�

= 2�� ga�
* �Q����Q� − Q� −

q

2
�

�ga�Q��fel
+ �v̄ +,q�dQ�dQ�

+� ga�
* �Q����Q� − Q� +

q

2
�

�ga�Q��fel
− �v̄ −,q�dQ�dQ�� �40a�

v̄ ± = Max��v0 ± Q��,�v0 ± Q� −
q

2
�� . �40b�

The approximation �40a� and �40b� requires a nontrivial
three-dimensional integration over Q� or Q�. Again follow-
ing Hartley and Walters �5� we simplify matters by invoking
a peaking approximation which is a further assumption over
and above the impulse approximation. If we assume that

ga��Q�� is peaked at Q�=c, say, and that the scattering am-
plitudes are slowly varying in the vicinity of this point, then
it should be a resonable approximation to evaluate the fel

± at
Q�=c and remove them to outside the integrals. The remain-
ing integrals are then recognized as originating from the
form factors in Eq. �13�. With this peaking assumption the IA
�40a� and �40b� reduces to

f IA,Peak�Ps:a → a�;atom:b → b�

= 2
�a��t��e
−iq·t/2��a�t��fel

+ �v̄ +,q�

+ 2
�a��t��e
iq·t/2��a�t��f el

− �v̄ −,q� ,

�41a�

v̄ ± = Max��v0 ± c +
q

2
�,�v0 ± c −

q

2
�� . �41b�

In Eq. �41a� we have returned to the FBA formula �13� but
with the first Born e±-target amplitudes now replaced by the
more realistic estimates fel

± .
The peaking approximation is particularly appropriate to

the present context where �a� is the continuum state ��
−. For

such a state ga��Q�� should have a peak, in fact a delta func-
tion like behavior �28�, at Q�=�. The approximation �41a�
and �41b� for target elastic collisions then becomes

f IA,Peak�Ps:a → �;atom:b → b�

= 2
��
−�t��e−iq·t/2��a�t��fel

+ �v̄ +,q�

+ 2
��
−�t��eiq·t/2��a�t��fel

− �v̄ −,q� , �42a�

where, from Eqs. �16� and �21� and q=2�v0−v f�,

� =
1

2
�vp − ve� , �42b�

q = 2v0 − vp − ve, �42c�

and using Eq. �41b� with c=�

v̄ + = Max��2v0 − ve�,vp� , �42d�

v̄ − = Max��2v0 − vp�,ve� . �42e�

Formulas �42a�–�42e� define the impulse approximation �IA�
used in this paper. The TDCS is calculated from Eq. �22� by
replacing fB1 by f IA,Peak of Eq. �42a�. Finally, we note that the
peaking approximation described above has been used suc-
cessfully in atom/ion collisions �5,6�.

IV. CALCULATIONAL DETAILS

We consider fragmentation of Ps�1s� in collision with
ground state He, Ne, Ar, Kr, and Xe. We have calculated fel

+

and fel
− in the static and static exchange approximations in

which the atom is frozen in its ground state. The atomic
wave functions have been taken from Clementi and Roetti
�29�. The static-exchange approximation for electon scatter-
ing allows for electron exchange between the Ps and the
atom. In physical content, therefore, our calculations are the
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same as the frozen target coupled pseudostate approxima-
tions used by Blackwood et al. �14,18�. The form factors
appearing in Eq. �42a� are easily evaluated analytically using
results given in Appendix 2 of Ref. �3� which have been
derived using the Nordsieck integration technique �30�. The
lower order cross sections �DDCS, SDCS, etc.� have been
evaluated from the TDCS by numerical integration. Here
care must be taken in going from the TDCS to the DDCS on
account of the infinite ELC cusp when vp→ve. Thus, for
example, in calculating d2�bb� /dEd�e one has to integrate
the TDCS over

d�p = sin �pd�pd�p. �43�

If the z axis is oriented along the direction of ve then the 1/�
ELC singularity becomes, see Eq. �16�,

2

�vp
2 + ve

2 − 2vpve cos �p

, �44�

which is manifestly integrable as vp→ve.

V. RESULTS

A. Total ionization cross section

Figure 2 compares calculated target elastic total ionization
cross sections for Ps�1s� -He�1S� scattering �31� with the ex-
perimental data from Refs. �11,12�. We note that only target
elastic ionization of the Ps is possible up to E0=27 eV. The
contribution of target inelastic ionization of Ps to the experi-
mental data at E0=33 eV is thought to be neglegible �14�.
The calculated cross sections shown are the present IA and
FBA results and the coupled pseudostates numbers of Black-
wood et al. �14,32�, the pseudostate numbers should be the
most reliable. All the calculations are consistent with experi-
ment and the FBA is suprisingly good at such low energies.
This contrasts with the CTMC results of Sarkadi �16� which
overestimate the experimental data by a factor of up to 2.5.
The IA shows good convergence to the FBA results at ener-
gies beyond those shown in Fig. 2, the two are in agreement
within 5% �1%� beyond about 175 eV �300 eV�.

Figure 3 shows the target elastic total ionization cross
sections for Ne, Ar, Kr, and Xe. For Ne and Ar we have the
coupled pseudostate results of Blackwood et al. �18,32� for

comparison. Unlike Fig. 2, Figs. 3�a� and 3�b� show that the
IA overestimates the pseudostate numbers in their given en-
ergy range of 0 to 40 eV. We would hope to see convergence
of the two approximations at higher energies. The pseu-
dostate numbers are to be regarded as the more reliable and
on this basis Figs. 3�a� and 3�b� give us some feeling for the
accuracy of the IA in the low energy region for the heavier
targets. The IA result for Xe, Fig. 3�d� is interesting in that it
shows a double maximum structure, a pronounced maximum
at 41 eV, and a very broad maximum centered near 300 eV.

FIG. 2. Total cross sections for ionization of Ps in Ps�1s�
-He�11S� collisions. Theoretical curves correspond to target elastic
ionization. Experimental data are from Refs. �11,12�.

FIG. 3. Target elastic total ionization cross sections of Ps�1s� in
collision with �a� Ne, �b� Ar, �c� Kr, and �d� Xe. Solid curve, IA and
dashed curve, coupled pseudostate results of Blackwood et al. �18�.
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B. Cross section differential in the longitudinal energy of the
ejected positron or electron (SDCSLP and SDCSLE)

Figure 4 compares our target elastic IA results for SDC-
SLP with the experimental data for He �11,12�. The experi-
mental points have been measured in 1 eV bins �11,19� and
represent averages over the intervals 0 to 1 eV, 1 to 2 eV, etc.
In Fig. 4 the experimental points have been placed at the
centers of the bins, i.e., at 0.5 eV, 1.5 eV, etc. There is quite

good agreement between the IA and experiment on both
shape and normalization. The CTMC calculation of Sarkadi
�16� perhaps agrees marginally better with experiment on
shape but fails totally on normalization. As shown in Sec. II,
SDCSLP must diverge as 1/�Epl as Epl→0. The experimen-
tal points at 0.5 eV represent the average of this divergent
cross section over the bin 0 to 1 eV. We have calculated this
average and compare it with the experiment in Fig. 4. Except
at E0=25 eV, the agreement for this first bin is not so good.

Also shown in Fig. 4 are the target elastic IA results for
the corresponding electron cross section, SDCSLE. Like
Sarkadi �16� we find that SDCSLE is much slower than
SDCSLP to develop a maximum with increasing impact en-
ergy, see Figs. 4 and 5, and that SDCSLE is larger than
SDCSLP at small values of the longitudinal energy but be-
comes smaller with increasing longitudinal energy. Also
shown in Figs. 4 and 5 is the target elastic FBA cross section
which is the same for both positrons and electrons �Sec.
III A�. As one might guess, the FBA tends to be somewhere
between the IA results for SDCSLP and SDCSLE.

Figure 5 shows the longitudinal cross sections at the much
higher impact energies of 100 and 500 eV. At 100 eV there is
still a substantial difference between the IA cross sections
SDCSLP and SDCSLE with the electron cross section only
just beginning to show a maximum. At 500 eV we see the
two IA cross sections converging towards each other and
sandwiching the FBA between them, now there is a very
clear maximum in all three cross sections.

Figure 6 shows the target elastic IA results for SDCSLP
and SDCSLE for Ps�1s�+Xe collisions. With some interest-
ing exceptions, that we now describe, the pattern is similar to
that for He shown in Figs. 4 and 5 except that the scale of the
cross sections is larger, by a factor of 5 at E0=33, 50, and
100 eV, rising to a factor of 20 at E0=500 eV. A noticeable
difference from He is that SDCSLE acquires a maximum

FIG. 4. Cross sections differential in longitudinal energy for
Ps�1s�+He�11S� collisions. Solid curve, IA SDCSLP; dashed curve,
IA SDCSLE; and dotted curve, FBA. Experimental measurements
of SDCSLP are from �11,12�. The cross gives the average value of
the IA SDCSLP over the first bin from 0 to 1 eV.

FIG. 5. Same as for Fig. 4.
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with increasing impact energy much more quickly, such a
maximum already appears at E0=33 eV while for He it does
not appear until almost E0=100 eV. The other interesting
difference is a switch in the behaviors of SDCSLP and
SDCSLE in the vicinity of E0=100 eV, Fig. 6�c�. At the
other impact energies shown in Fig. 6, and as for He in Figs.
4 and 5, SDCSLE always lies above SDCSLP at low longi-
tudinal energies and below SDCSLP where the latter dis-
plays its maximum, the reverse is true in Fig. 6�c�; the nor-
mal pattern is restored by E0=500 eV, Fig. 6�d�. This switch
in behaviors appears to be correlated with the dip near

E0=100 eV in the total ionization cross section for Xe shown
in Fig. 3�d�.

C. Double differential cross sections

In Fig. 7 we show the target elastic IA cross sections
d2� /dEd�p and d2� /dEd�e �33� for He at an impact energy
of 18 eV. These should be compared with the CTMC results
of Sarkadi �16� at the same impact energy. From Fig. 7 we
see that d2� /dEd�e is biggest for forward electron ejection.
This is opposite to Sarkadi’s prediction that backward elec-
tron ejection dominates, substantially. By contrast, the IA
results for d2� /dEd�p are more comparable in shape to
Sarkadi’s cross section. Figure 7 shows that, at the peak,
d2� /dEd�p is a factor of six larger than d2� /dEd�e. It is
also seen that d2� /dEd�e declines more slowly with in-
creasing ejection angle than d2� /dEd�p �34� and even
shows a rise towards 180°, i.e., there is a backward peak, but
not the dominant backward peak seen by Sarkadi.

Sarkadi �16� has put forward a possible explanation for
the large backward peak in his calculation of d2� /dEd�e.
The argument goes as follows. At low energies, e.g., 18 eV,
the collision is adiabatic. The Ps then becomes polarized, the
electron being attracted by the static field of the He atom, the
positron being repelled. As a consequence, the electron is, on
average, closer to the target nucleus than the positron. The
probability that the electron undergoes a hard collision with
the atom is then increased, resulting in a large angle deflec-
tion of the electron. This hypothesis remains to be verified.

FIG. 6. Target elastic cross sections differential in the longitu-
dinal energy for Ps�1s�+Xe collisions, notation as in Fig. 4.

FIG. 7. Target elastic IA DDCSs for Ps�1s� scattering by
He�11S� at E0=18 eV: �a� d2� /dEd�e and �b� d2� /dEd�p.
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Certainly, such a polarization mechanism is absent from our
IA. Thus the IA �42a� may be interpreted as involving the
collision of the positron or electron with the atom, repre-
sented by the scattering amplitude fel

± , while the remaining
electron or positron is shaken off, represented by the form
factor term. Clearly, there is no role for polarization of the Ps
in this interpretation. If the hypothesis of Sarkadi is correct,
then it could explain the absence of the large backward scat-
tering in our d2� /dEd�e. By contrast, the Sarkadi hypoth-
esis implies a soft collision of the positron with the atom
resulting in a forwardly peaked d2� /dEd�p, consistent both
with his result and ours. Another possibility is that the inclu-
sion of electron exchange in our IA model has changed the
picture, recall that Sarkadi �16� ignores exchange effects. We
have recalculated d2� /dEd�e switching off electron ex-
change between the Ps and the He atom, i.e., using only the
static approximation to calculate fel

− . The picture remains
very similar to Fig. 7, i.e., exchange is not the cause of the
difference between Sarkadi and us.

Figure 8 shows d2� /dEd�p for He at an impact energy of
500 eV. The result for d2� /dEd�e is similar but a factor of 2
smaller at the peak. Figure 8 displays a sharply peaked cross
section centered near 246.6 eV and �p=0°, indicating that
the electron and positron tend to be ejected in the forward
direction with nearly equal energies. This statement is also
consistent with Fig. 7 and all the cases we have looked at
from E0=13 eV upwards.

With two qualifications the IA DDCS results for Xe are
similar to He but larger in scale. The first qualification con-
cerns the relative peak heights of d2� /dEd�e and
d2� /dEd�p. These are in agreement with the pattern for He,
i.e., d2� /dEd�e gives a noticeably smaller peak, except in a
transitional region around 100 eV. Here we find that
d2� /dEd�e can have the larger peak. This transitional region
was also observed in Fig. 6 for the longitudinal cross sec-
tions where a switch in the patterns of positron and electron
ejection was seen at E0=100 eV, Fig. 6�c�. Like Fig. 6, the
normal pattern of behavior resumes on going to still higher
impact energies.

The second qualification concerns the large angle behav-
ior of d2� /dEd�e. This is illustrated in Fig. 9�a� for an

impact energy of 500 eV. Here we observe a pronounced
dip-bump structure for an electron ejection energy, Ee, of 250
eV. This structure fades as Ee moves away from equal energy
sharing between the electron and the positron. Referring to
Fig. 1, we note the striking resemblance of the Ee=250 eV
curve to the differential cross section for free electron scat-
tering at 250 eV. Also shown in Fig. 9�a� is d2� /dEd�e

calculated by setting fel
+ to zero in Eq. �42a�, i.e., only elec-

tron scattering contributes. This cross section comes into
good agreement with the full calculation as the ejection angle
increases, the agreement being particularly good at Ee
=250 eV. This decisively confirms the identification of the
dip-bump structure with that seen in the free electron scat-
tering of Fig. 1 and is consistent with the physical picture
that larger deflections of the electron require a collision be-
tween the electron and the atom rather than a shake-off after
the positron has collided, as represented by the first term in
Eq. �42a�. The situation for d2� /dEd�p is analogous, as
shown in Fig. 9�b�. Here we see a smooth cross section for
Ee=250 eV, like in the free positron scattering of Fig. 1, but
now with structure creeping in as Ee moves away from equal

FIG. 8. Target elastic IA DDCS d2� /dEd�p for Ps�1s� scatter-
ing by He�11S� at E0=500 eV.

FIG. 9. Target elastic IA DDCSs for Ps�1s� scattering by ground
state Xe at E0=500 eV: �a� d2� /dEd�e and �b� d2� /dEd�p. The
energy of the ejected electron, Ee, is indicated on each curve; the
corresponding energy of the ejected positron is Ep= �E0−6.8
−Ee�eV. Solid curve: full calculation using Eqs. �42a�–�42e�.
Dashed curve: in �a� calculated with fel

+ set to zero in Eq. �42a�, and
in �b� calculated with fel

− set to zero in Eq. �42a�.
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energy sharing. By setting fel
− equal to zero in Eq. �42a� we

see that the large angle cross section in Fig. 9�b� comes
essentially from the positron scattering term. Figure 9 dem-
onstrates that, where free positron and free electron scatter-
ing by an atom are sufficiently different in form, it should be
possible to observe the difference in the DDCSs.

D. Triple differential cross sections

In Figs. 10 and 11 we show examples of the TDCS for He
and Xe at impact energies of 33 and 100 eV, respectively. In
both cases the geometry is coplanar, i.e., the vectors v0 ,vp,
and ve all lie in the same plane. The cross sections are given
as a function of �e for fixed �p, or vice versa, where �e��p� is
the angle which the ejected electron �positron� makes with
the incident direction. Note that our convention is 0°
��p ,�e�360°. The cases shown correspond to almost equal
energy sharing between the ejected particles, consequently,
in all curves we observe an ELC cusp �Sec. III A� whenever
�e=�p. Interestingly, however, we see that in some cases the
cusps have structure. This structure derives from a subtle
interplay between the two terms in Eq. �42a� and depends
upon both the behavior of the form factors and the free scat-
tering amplitudes fel

± . These structures are not present in all
cusps nor at all impact energies.

The smoothness of the �p=0° TDCS for He as a function
of the electron angle �e, Fig. 10�a�, contrasts with the pro-
nounced structure in the corresponding cross section for Xe,

Fig. 11�a�. This reflects the contrast between the smooth dif-
ferential cross sections for free electron scattering by He �not
shown here� and the structured cross sections for Xe illus-
trated in Fig. 1. As in Fig. 9, this is demonstrated by the
dashed cross section in Fig. 11�a� which is the result obtained
by setting fel

+ to zero in Eq. �42a�. Here we observe that at
�p=0° and 30° there is very good agreement with the full IA
calculation when the electron is ejected at large angles rela-
tive to the forward direction �35�, i.e., once more �see Sec.
V C� we see that large angle ejection of the electron requires
the electron to be scattered by the target �the second term in
Eq. �42a�� and not just shaken off �the first term in Eq.
�42a��. The situation for positron ejection is analogus, Fig.
11�b�. We also note from Fig. 11 that, unlike the solid curves,
the cusps in the dashed curves have no structures, this illus-
trates that the structures in the cusps come from the interplay
between the two terms in Eq. �42a�.

VI. CONCLUSIONS

Our results confirm the general predictions of the CTMC
calculations of Sarkadi �16� for the Ps�1s�+He�11S� system
but differ on detail. Thus we support the predicted relative
behavior of the longitudinal cross sections for positron and
electron ejection �SDCSLP and SDCSLE� but we get much
better agreement with experiment on the absolute size of the
longitudinal positron cross section �SDCSLP� and of the to-
tal Ps ionization cross section.

FIG. 10. TDCS in coplanar geometry for Ps�1s� incident upon
He�11S�� at 33 eV; the ejected positron and electron have energies
of 13 and 13.2 eV, respectively. �a� Shows the TDCS as a function
of the electron angle �e for fixed positron angles �p; in �b� �e is
fixed and �p is varied. The fixed angle is indicated on each curve.
The curves have been staggered by a factor of 102 on decreasing the
fixed angle from 180°.

FIG. 11. As in Fig. 10 but for Ps�1s� incident upon ground state
Xe at 100 eV. The ejected positron and electron have energies of 46
and 47.2 eV, respectively. Solid curve, full calculation using Eqs.
�42a�–�42e�. Dashed curve �shown only for 0°, 30°, and 180°�: in
�a� calculated with fel

+ set to zero in Eq. �42a�, and in �b� calculated
with fel

− set to zero in Eq. �42a�.
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Unlike CTMC, our calculations are fully quantal and al-
low for electron exchange between the Ps and the atom. Like
CTMC, we do not take account of the possibility of excita-
tion or ionization of the atom. For comparison with existing
experimental data on He that is adequate, since the impact
energies are relatively low ��33 eV�, but with rising impact
energy excitation or ionization of the target becomes increas-
ingly important and usually dominant �13�. We shall treat
this somewhat different situation in another publication.

We have gone beyond the study of Sarkadi �16�, looking
at higher impact energies and much heavier targets such as
Xe, and examining the most fundamental cross section of all,
the triple differential cross section �TDCS�. The heavier tar-
gets are interesting because of the structures they inherit,
primarily from the interaction of the Ps electron with the
target. We have seen that, where the patterns of free electron
and free positron scattering by the target are sufficiently dif-
ferent, it is possible to distinguish these differences not only
in the TDCS but also in the double differential cross sections.
Of course, the difference in patterns is possibly not as clear
as our static and static-exchange approximations of Fig. 1
would have us believe, but, where there is sufficient differ-
ence, it should be observable in Ps scattering at the double
and triple differential levels. Experiments on the heavier tar-
gets are to be encouraged.

Some comments on our approximation are in order. We
have used the impulse approximation �IA� but a form modi-
fied by a peaking approximation. For ionization this peaking
assumption is probably quite good, certainly calculations us-
ing this version of the IA have worked reasonably well for
ionization of heavy particles �4,5�. The IA is in essence a
“high energy” approximation. Roughly speaking, the greater
the ratio of the impact energy to the binding energy of the
projectile the better the approximation should be. Thus the
approximation would be expected to work better for Ps�2s�
than Ps�1s�. The approximation requires free electron-target
and free positron-target scattering amplitudes as input. These
are needed over a range of energies and scattering angles. We
have used the static-exchange and static approximations, re-
spectively, for this purpose. In particular, the static-exchange
approximation allows for electron exchange between the Ps
and the atom. While it would be nice to see how better ap-
proximations perform, we believe that the static-exchange
and static approximations are adequate for present purposes.
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APPENDIX A: FORMULA FOR TDCS

In this appendix we derive the basic formula used in Eq.
�22� for the TDCS in terms of the scattering amplitude. With-

out approximation the scattering amplitude for Ps ionization
may be written

f free = −
1

�2��5/2 � e−ivp·rpe−ive·re�b�
* �X�

� �V + VPs��+drpdredX , �A1�

where �+ is the exact wave function for the system,

�+ →
R→


eip0·R�a�t��b�X� + outgoing scattered waves.

�A2�

V, defined in Eq. �12�, is the interaction of the atom with the
Ps electron and positron,

VPs = −
1

�rp − re�
�A3�

is the interaction between the Ps electron and positron, and
the asterisk denotes complex conjugation. In Eq. �A1� we
think of the Coulomb potential as a finite range potential of
arbitrarily long range, this is possible to all practical intents
and purposes. Outside the range of the Coulomb interaction
the ejected positron and electron move freely and can be
represented by the plane waves eivp·rp and eive·re. With the
normalization �A1� the TDCS is then given by �20,21�

d3�bb�

dEd�ed�p
=

vpve

v0
�f free�2. �A4�

Following Curran �20� and Whelan et al. �21� we can use
the two-potential formula �22� to absorb the interaction �A3�
into the final state of the electron and positron which now
becomes a continuum state ��

− of Ps �as defined in Eq. �17��
whose center of mass moves with velocity v f =

1
2 �vp+ve�,

i.e.,

1

�2��3/2eivp·rpeive·re → ��
−�t�eipf·R, �A5�

where p f =2v f =vp+ve. Changing the variables of integration
in Eq. �A1� according to

drpdredX = dRdtdX �A6�

the amplitude �A1� becomes

f free =
1

2
�−

1

�
� e−ipf·R��

−*�t��b�
* V�+dRdtdX� . �A7�

The term is brackets is the amplitude, fPs say, that we would
naturally write down if we thought of the final state of the
electron and positron as being a state of Ps, as we do in Eq.
�11�. In terms of fPs the TDCS is then

d3�

dEd�ed�p
=

vpve

4v0
�fPs�2 �A8�

which explains formula �22�.
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APPENDIX B: ASYMPTOTIC IMPACT ENERGY
DEPENDENCE OF THE TOTAL IONIZATION

CROSS SECTION

At asymptotic energies the FBA applies and from Eq. �3�

�bb�
ion =� d3�bb�

B1

dEd�ed�p
dEd�ed�p. �B1�

However, for present purposes, formula �19� gives a better
starting point,

�bb�
ion =� d3�bb�

B1

d�Psd�
d�Ps�

2d�d��, �B2�

since the first Born amplitude �20� is explicitly a function of
� and q �in fact a function of � ,q and � ·q if the states
�a ,�b, and �b� are spherically symmetric�. From q=p0−p f
we can write

d�Ps =
qdq

p0pf
d�q �B3�

where �q is the azimuthal angle of q about p0 as z direction.
In the limit E0→
 the leading behavior of Eq. �B2� is there-
fore given by

�bb�
ion =

1

4E0
�

0




qdq�
0

2�

d�q�
0




�2d�

� �
−1

1

d�cos ����
0

2�

d��

� �fB1�Ps:a → �;atom:b → b���2. �B4�

We note that as q→0 the amplitudes fbb�
B1±�q� in Eq. �20�

behave at worst as 1 /q �see Eq. �14��, while the form factors

��

−�t��e±iq·t/2��a�t�� tend to zero at least as fast as q, thus fB1

is finite in this limit. As �→0 the 1/� singularity in �fB1�2,
see Eq. �23�, is killed by the �2 in Eq. �B4�. There are no
other singularities in �fB1�2. As q and � tend to 
, �fB1�2 dies
off sufficiently rapidly for the integrals in Eq. �B4� to be
convergent. Consequently, in the limit E0→
 the leading
behavior of �bb�

ion is 1 /E0, i.e., there is no ln E0 /E0 term as
one gets for ionization by charged particles.
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