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We present a method to construct entanglement measures for pure states of multipartite qubit systems. The
key element of our approach is an antilinear operator that we call “comb”. For qubits �or spin 1/2� the combs
are automatically invariant under SL�2,C�. This implies that the filters obtained from the combs are entangle-
ment monotones by construction. We give alternative formulas for the concurrence and the three-tangle as
expectation values of certain antilinear operators. As an application we discuss inequivalent types of genuine
four-qubit entanglement.
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Entanglement is one of the most striking features of quan-
tum mechanics, but it is also one of its most counterintuitive
consequences of which we still have rather incomplete
knowledge �1�. Although the concentrated effort during the
past decade has produced impressive progress, there is no
general qualitative and quantitative theory of entanglement.

A pure quantum-mechanical state of distinguishable
particles is called disentangled with respect to a given parti-
tion P of the system if and only if it can be written as a
tensor product of the parts of this partition. In the opposite
case, the state must contain some finite amount of entangle-
ment. The question then is to characterize and quantify this
entanglement.

As to measuring the amount of entanglement in a given
pure multipartite state, the first major step was made by Ben-
nett et al. �2� who discovered that the partial entropy of a
party in a bipartite quantum state is a measure of entangle-
ment. It coincides �asymptotically� with the entanglement of
formation �i.e., the number of Einstein-Podolsky-Rosen pairs
required to prepare a given state�. Subsequently, the en-
tanglement of formation of a two-qubit state was related to
the concurrence �3,4�. Interestingly, by exploiting the knowl-
edge of the mixed-state concurrence, a measure for three-
partite pure states could be derived, the so-called “three
tangle” �3 �5�. In terms of the coefficients of the wave func-
tion ��000,�001,… ,�111� in the standard basis it reads

�3 = �d1 − 2d2 + 4d3� ,

d1 = �000
2 �111

2 + �001
2 �110

2 + �010
2 �101

2 + �100
2 �011

2 ,

d2 = �000�111�011�100 + �000�111�101�010 + �000�111�110�001

+ �011�100�101�010 + �011�100�110�001

+ �101�010�110�001,

d3 = �000�110�101�011 + �111�001�010�100.

This was a remarkable step since, loosely speaking, it opened
the path to studying multipartite entanglement on solid
grounds. Further, it was noticed by Uhlmann that antilinear-

ity is an important property of operators that measure en-
tanglement �6�. A particularly interesting consequence of the
three-tangle formula was presented by Dür et al. who found
that there are two inequivalent classes of states with three-
party entanglement �7�.

Another important aspect of the research on entanglement
measures was the question regarding the requirements for a
function that represents an entanglement monotone �8�. It
turned out that the essential property to be satisfied is non-
increasing behavior on average under stochastic local opera-
tions and classical communication �SLOCC� �7,9�. Later,
Verstraete et al. demonstrated that, in general, an entangle-
ment monotone can be obtained from any homogeneous
positive function of pure-state density matrices that remain
invariant under determinant-one SLOCC operations �10�.

Despite the enormous effort, the only truly operational
entanglement measure for arbitrary mixed states at hand, up
to now, is the concurrence. For pure states we have a slightly
farther view up to systems of two qutrits �11,12�, and for
three qubits, due to the three-tangle. Various multipartite en-
tanglement measures for pure states have been proposed; but
most of these measures do not yield zero for all possible
product states �e.g., Refs. �13–16��.

This motivated the quest for an operational entanglement
measure based on the requirement that it be zero for product
states �not only for completely separable pure states�. In par-
ticular, the goal has been to explore the idea that entangle-
ment monotones are related to antilinear operators as pointed
out for the concurrence by Uhlmann �6�. Here we show that
it is possible to construct a filter, i.e., an operator that has
zero expectation value for all product states. It will turn out
that these filters are entanglement monotones by construc-
tion. Interestingly, the two-qubit concurrence and the three
tangle have various equivalent filter representations �see be-
low�. In order to illustrate the application of the method to a
nontrivial example, we will present filters for four-qubit
states that are able to distinguish inequivalent types of genu-
ine four-qubit entanglement. We use the term “genuine
N-qubit entanglement” in a more restricted sense than, e.g.,
in Ref. �7�: a state with only genuine N-partite entanglement
does not contain any genuine �N−k�-partite entanglement �or
“subtangle”� with 1�k�N−2. In this sense the only class of
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three-qubit states with genuine three-partite entanglement is
represented by the GHZ state.

Combs and filters. The basic concept is that of a comb.
The name is with reference to the hairy-ball theorem: if an
odd-dimensional sphere is covered with hair, there is no con-
tinuous way of combing the hair so that it lies flat at every
point. We define a comb of first order as an antilinear opera-
tor A with zero expectation value for all states of a certain
Hilbert space H. That is,

���A��	 = ���LC��	 = ���L��*	 
 0 �1�

for all ��	�H, where L is a linear operator and C is the
complex conjugation. Here A necessarily has to be antilinear
�a linear operator with this property is zero itself�. For sim-
plicity we abbreviate

���LC��	 ¬ �L	C. �2�

Note that the complex conjugation is included in the defini-
tion of the expectation value �¯	C in Eq. �2�.

We will use the comb operators1 in order to construct the
desired filters which are antilinear operators whose expecta-
tion values vanish for all product states. While a comb is a
local, i.e., a single-qubit operator, a filter is a nonlocal opera-
tor that acts on the whole multiqubit state. It is worth men-
tioning already at this point that such a filter is invariant
under P-local unitary transformations if the combs have this
property. Even more, it is invariant under the complex exten-
sion of the corresponding unitary group which is isomorphic
to the special linear group. Since the latter represents the
SLOCC operations for qubits �7,9�, the filters will be en-
tanglement monotones by construction.

In this work, we restrict our focus to multipartite systems
of qubits �i.e., spin 1/2�. The local Hilbert space is H j
=C2

¬h for all j. We need the Pauli matrices �0ª1, �1
ª�x, �2ª�y, and �3ª�z. It is straightforward to verify that
the only single-qubit comb of first order is the operator �y:

����yC��	 = ��y	C 
 0.

Notice that any tensor product f������ª��1
� ¯ � ��n

with
an odd number Ny of �y is a n-qubit comb. This can be seen
immediately from �f������	C
���f��������*	
= ���*�f����

* ����	�*= �−1�Ny���f������†��*	= �−1�Ny�f������	C.
Since its expectation value is a bi�antilinear� expression in
the coefficients of the state we denote it a comb of order 1. In
general we will call a comb to be of order n if its expectation
value is 2n linear in the coefficients of the state. There is one
independent single-qubit comb which is of second order. One
can verify that for an arbitrary single-qubit state

0 = ���	C���	C ª �
�,�=0

3

���	Cg�,����	C, �3�

with g�,�=diag�−1,1 ,0 ,1� being very similar to the
Minkowski metric.

It will prove useful to introduce the embedding

En:
H � Hn = H�n,

��	 → En��	 = ��	�n.
�4�

Further define the product • for operators O, P :H→H such
that

O•P:
H2 → H2,

O•PE2���	� = O��	 � P��	 .
�5�

Then we have the single-site �H=C2� comb �y for H1=H
and ��•�� for H2. We will discuss in more detail below how
one can see that both �y and ��•�� are invariant under
SLOCC.

With these two one-site combs we are now equipped to
construct filters for multipartite qubit systems. For n-qubit
filters we will use the symbol F�n�. For two qubits the filters
are

F1
�2� = �y � �y , �6�

F2
�2� =

1

3
��� � ���•���

� ��� . �7�

Both forms are explicitly permutation invariant, and they are
filters since, if the state were a product, the combs would
annihilate its expectation value. From the filters we obtain
the pure-state concurrence in two different equivalent forms

C = ���F1
�2�		C� ,

C2 = ���F2
�2�		C� 


1

3
���� � ��	C���

� ��	C� . �8�

While the first form in Eq. �8� has the well-known
convex-roof extension of the pure-state concurrence via the
matrix �3,4,6�

R = ���y � �y�
*�y � �y

�� �9�

it can be shown that the second form in Eq. �8� leads to

R2 = ���� � ���*�� � �	� ��
� ���*��

� �	�� .

(10)

Now let us consider the three-tangle �5�. For states of
three qubits we find, e.g.,

F1
�3� = ��� � �y � �y�•���

� �y � �y� , �11�

F2
�3� =

1

3
��� � �� � �	�•���

� ��
� �	� . �12�

Both F1
�3� and F2

�3� are filters and the latter is explicitly per-
mutation invariant. From these operators the pure-state three-
tangle is obtained in the following way:

�3 = ���F1
�3�		C� = ���F2

�3�		C� �13�

Interestingly, all three-qubit filters reproduce the three-tangle
as entanglement measure. We mention, however, that there is

1If the antilinear operator A=LC is a comb �with the complex
conjugation C�, for the sake of brevity we will also call the linear
operator L a comb.

ANDREAS OSTERLOH AND JENS SIEWERT PHYSICAL REVIEW A 72, 012337 �2005�

012337-2



no immediate extension to mixed states as in the case of the
“alternative” two-qubit concurrence, Eq. �10�.

Invariance of filters under SLOCC. Up to here we have
shown that the concepts of combs and filters reproduce the
well-known pure-state entanglement measures of concur-
rence and three-tangle. Now we will briefly explain that the
expectation values of N-qubit filter operators are invariant
under SLOCC operations.

It has been demonstrated in Refs. �7,9,10� that invariance
under SLOCC operations reduces to invariance with respect
to the group SL�2,C��N. As to the single-qubit combs, it is
easily verified that V�yV

T=�y for any local transformation
V�SL�2,C�. Further, there is an operator identity �V � V�

��� � ����VT � VT�=�� � �� which expresses directly the
SL�2,C� invariance of ��•��.

We can, therefore, conclude that tensor products of single-
site combs are invariant with respect to SL�2,C� operations
at each site. Hence, as long as a N-qubit filter operator is
built from tensor products of single-site combs it will be
invariant under SLOCC operations.

Note that the SLOCC invariance of a filter expectation
value with respect to some state �which vanishes if there is a
way of writing the state as a tensor product� means that this
expectation value represents an entanglement monotone
�8,9�. This imposes the question of what kind of entangle-
ment is being measured by these quantities. Recall the case
of three qubits �7� where there are two kinds of three-partite
entanglement: GHZ-type �or genuine� entanglement which is
detected by the three-tangle and W-type entanglement with
zero three-tangle. As to the N-qubit case, we do not have a
complete answer to the question above at this moment �al-
though it is straightforward to write down N-qubit filter op-
erators�. There are, however, indications that the filters mea-
sure the maximally entangled states discussed, e.g., in Refs.
�10,17�. In order to see this it is instructive to consider the
four-qubit case.

Filters for four-qubit states. Classifications of four-qubit
states with respect to their entanglement properties have
been studied, e.g., in Refs. �18–20�. Here we introduce sev-
eral four-qubit filter operators and study the classes of en-
tangled states they are measuring.

A four-qubit filter has the property that its expectation
value for a given state is zero if the state is separable, i.e., if
there is a one-qubit or a two-qubit part which can be factored
out �note that for a three-qubit filter it is enough to extract
one-qubit parts only�. An expression that obeys this require-
ment for any single qubit and any combination of qubit pairs
is given by

F1
�4� = ������y�y�•����y�	�y�•��y�

��	�y� . �14�

Recall that any combination of the type ���y ���2� repre-
sents a two-qubit comb. Note that the expectation value of an
nth-order four-qubit filter has to be taken with respect to the
corresponding Hn, see Eq. �4�. It is straightforward to check
that for a four-qubit GHZ state

��1	 =
1
�2

��0000	 + �1111	� �15�

we have ��1�F1
�4���1

*	=1. However, there is another state for
which �F1

�4�	C does not vanish. For

��2	 =
1
�6

��2�1111	 + �1000	 + �0100	 + �0010	 + �0001	�

�16�

we find ��2�F1
�4���2

*	=8/9.
In addition to the third-order filter F1

�4� there exist also
filters of fourth order and of sixth order. Examples are

F2
�4� = ������y�y�·����y�	�y�

·��y�
��y���·��y�y�

	��� ,

F3
�4� =

1

2
������y�y�·������y�y�·����y���y�

·����y�
��y�·��y�����y�·��y�

����y� . �17�

While F2
�4� measures only GHZ-type entanglement

���1�F2
�4���1

*	=1� the sixth-order filter F3
�4� has the nonzero

expectation values 1/2 for the GHZ state and 1 for yet an-
other state,

��3	 =
1

2
��1111	 + �1100	 + �0010	 + �0001	� . �18�

F1
�4� and F2

�4� have a zero expectation value for this state.
Finally, it is not difficult to convince oneself that all four-
qubit filters F j

�4� �j=1,2 ,3� have a zero expectation value for
the four-qubit W state 1 /2��0111	+ �1011	+ �1101	+ �1110	�.

By analyzing the states �� j	 we find that they are peculiar
in the sense that the local density operators for each qubit are
given by 1

21. As also all other reduced density operators do
not have any k tangle �k� �2,3�� we conclude that the �� j	
represent classes of genuine four-qubit entanglement. They
are maximally entangled in the sense of Refs. �10,17�. Note
that they cannot be transformed into one another by SLOCC
operations: A state with a finite expectation value for one
filter cannot be transformed by means of SLOCC operations
into a state with zero expectation value for the same filter.
For example, F2

�4� detects the GHZ state ��1	 but gives zero
for the other two states. Therefore, the four-qubit entangle-
ment in those states must be different from that of the GHZ
state.

Hence, there are at least three inequivalent types of genu-
ine entanglement for four qubits.2 We mention that the three
maximally entangled states �� j	 are not distinguished by the
classification for pure four-qubit states of Ref. �18�. This can
be seen by computing the expectation values of the four-
qubit filters and the reduced one-qubit density matrices for
each of the nine class representatives of Ref. �18�. Only the
classes 1-4 and 6 have non-vanishing “four tangle.” The cor-
responding local density matrices can be completely mixed
only for class 1. Therefore, all three states �� j	 must belong
to that class.

Conclusions. We have presented an efficient way of gen-
erating entanglement monotones. It is based on operators

2In fact, there are exactly three maximally entangled states for
four qubits. This will be discussed in a forthcoming publication.
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which we called “filters.” The expectation values of these
operators are zero for all possible product states, not only for
the completely factoring case. The building blocks of the
filters �denoted “combs”� guarantee invariance under
SL�2,C��N for qubits. As a consequence, all filters are auto-
matically entanglement monotones. They are measures of
genuine multipartite entanglement. This circumvents the dif-
ficult task to construct entanglement monotones from the es-
sentially known �linear� local unitary invariants.

Further advantages of our approach lie in the feasibility of
constructing specific monotones that vanish for certain sepa-
rable �pure� states and in the applicability of this concept to
partitions into subsystems other than qubits �i.e., qutrits, …�.
Although only filters for four qubits are given explicitly in
this work, it is possible to build filters for any N�4 from
the two presented single-qubit combs in a straightforward
manner.

As an immediate result of our method the concurrence for
pure two-qubit states is reproduced. Moreover, we have
found an alternative expression for the concurrence with the
corresponding convex roof extension. The application of the
method to pure three-qubit states yields several operator-
based expressions for the three tangle, including an explicitly
permutation-invariant form. Finally we have given explicit
expressions for four-qubit entanglement measures that detect
three different types of genuine four-qubit entanglement. As

we have found, these types of genuine four-qubit entangle-
ment are not distinguished by the classification of four-qubit
states in Ref. �18�.

As to N-qubit systems, there remain various interesting
questions. Clearly, it would be desirable to have a recipe how
to build invariant combs for more complicated systems �e.g.,
higher spin�. It would also be interesting to know what char-
acterizes a complete set of filters for a given N. While it is
not obvious how the convex roof construction for two qubits
can be generalized, we believe that the operator form of the
N tangles in terms of filters makes it easier to solve this
problem. The question is whether there is a systematic way
to obtain a convex-roof construction for a given filter with
general multilinearity. Returning to the case of two qubits,
one may conclude that the crucial quality of �y � �y �to-
gether with the complex conjugation� in Wootters’ concur-
rence formula is that it is a filter constructed with the comb
�yC, rather than the time-reversal property of this operator.
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