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The entanglement of general asymmetric pure Gaussian two-mode states is examined in terms of the
coefficients of the quadrature components of the wave function. The entanglement criterion and the entangle-
ment of formation are directly evaluated as a function of these coefficients, without the need for local unitary
transformations. These reproduce results for the special case of symmetric pure states which employ a relation
between squeezed states and Einstein-Podolsky-Rosen correlations. The modification of the quadrature coef-
ficients and the corresponding entanglement due to application of various optical elements is also derived.
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I. INTRODUCTION

Continuous quantum variables have emerged as an alter-
native to discrete-level systems for performing quantum in-
formation processing tasks. Gaussian states play a central
role because they can be readily produced from reliable
sources �1� and controlled experimentally using accessible
sets of operations such as beam splitters, phase shifters and
squeezers �2�, and efficient detection systems. They can be
formed in a variety of physical systems including light field
modes �3�, cold atoms �4�, and excitons in photonic cavities
�5�. Entanglement between two Gaussian modes is now rou-
tinely generated in the laboratory, e.g., two output beams of a
parametric down converter are sent through optical fibers �1�
or in atomic ensembles interacting with light �6�. Such con-
tinuous variable entanglement can be efficiently produced
using squeezed light and linear optics �3�. Two-mode en-
tangled states can enhance the capability of two parties to
communicate as well as other applications. Gaussian states
have already been utilized in realizations of quantum key
distributions �7�, teleportation �8�, and electromagnetically
induced transparency �9�.

Progress has also been made theoretically in the under-
standing of quantum entanglement in continuous spaces be-
tween two or more modes. Separability criteria have been
established for general two-mode continuous variable states
�10,11�. For the special case of two-mode Gaussians, this
becomes a necessary and sufficient criterion for entangle-
ment �10,11� and this result has been extended to arbitrary
bipartite Gaussian states �12�. To go beyond entanglement
criteria and quantify the amount of entanglement in the state
requires an entanglement measure. For general bipartite pure
states �continuous or discrete�, the von Neumann entropy
of either of the reduced states is, under reasonable assump-
tions, a unique entanglement measure �13�: EvN���
=S�tri���������. This may be understood by using the Araki-
Lieb inequality �14� for the von Neumann entropy S�A ,B�
=−Tr �̂�A ,B�ln �̂�A ,B�, where �̂�A ,B� is the density matrix
of a general bipartite system, A, B, which states that
�S�A�−S�B���S�A ,B��S�A�+S�B�. Here S�A� and S�B� are
the von Neumann entropies of the marginal density matrices
of the composite density matrix, �̂�A�=TrB �̂�A ,B� and
�̂�B�=TrA �̂�A ,B�. If �̂�A ,B�= ������ is a pure state density

matrix, then S�A ,B�=0, and so the inequality implies
then the S�A�=S�B�=EvN���. Physically, this corresponds to
the fraction of maximally entangled states that can be
obtained by local operations and classical communication
�LOCC� when applied to an ensemble of such states. For
a general two-mode squeezed state �15�, with two-mode
squeezing and phase parameters, r and �, we have
��Sq�=sech r�n=0

� �−ei� tanh r�n�n�A�n�B, and the reduced den-
sity matrices are �̂A= �̂B=sech2 r�n=0

� �tanh2 r�n�n��n�, from
which we can calculate the von Neumann entropy. This is
well-known �16� and has been used in a variety of
applications:

Evn��Sq� = cosh2 r ln�cosh2 r� − sinh2 r ln�sinh2 r� . �1�

Note that this is not dependent on the squeezing phase.
Both the squeezed states and the Einstein-Podolsky-Rosen

�EPR� variables have played key roles in obtaining both en-
tanglement criteria and entanglement measures for more gen-
eral states. The EPR correlations are expressed by taking the
average of the squares of the relative positions and total mo-
menta of the two particles, F=Tr �̂	�q̂1− q̂2�2+ �p̂1+ p̂2�2
.
This, expressed in terms of the two-mode squeezed state, is
found to be FSq=2	cosh 2r+cos � sinh 2r
, which depends
on both the two-mode squeezing and phase parameters.
Separability criteria have been established in terms of in-
equalities of the EPR variables �10,11� and these have been
used to experimentally demonstrate continuous variable en-
tanglement �3,4�. It has been found �17–19� that any pure
bipartite Gaussian can be locally transformed into products
of two-mode squeezed states so that its entanglement can be
evaluated via Eq. �1�. Entanglement measures for mixed
states are more complicated and involve carrying out a non-
trivial optimization over all possible decompositions of the
density matrix into pure states. Although there are several
proposed entanglement measures for mixed states �20�, a
physically appealing generalization of the von Neumann en-
tropy is the entanglement of formation �21�:
EF��̂�=inf	�kpkEvN��k�
, for all �possibly continuous� de-
compositions �̂=�kpk��k���k�. This reduces to EvN for the
case of pure states but is in general difficult to calculate
because of the optimization involved in finding the infimum.
For continuous variable mixed states, EF has been derived
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only for two-mode Gaussians which are symmetric in the
interchange of the two modes �22,23�. In this case the opti-
mization was made possible by locally transforming the co-
variance matrix to standard form �10,11� and using a special
property of the two-mode squeezed states, namely that they
have the smallest entanglement of all symmetric states with a
given value of the EPR correlation. As with the case of bi-
partite pure Gaussians, entanglement of symmetric mixed
two-mode Gaussians is obtained via Eq. �1� after performing
specific local transformations. This property of the squeezed
states and EPR correlations has also been used to find lower
bounds on EF for more general Gaussians �24�. Some results
have also been obtained for another entanglement measure of
two mode Gaussians, the logarithmic negativity �25,26�.

In this work, we examine the entanglement properties of
general pure two-mode Gaussians directly in terms of the
coefficients of the quadrature modes. For the important case
of pure two-mode Gaussians, our results recover the known
answer without the need for local unitary transformations
required in the method of �17–19� for bipartite pure Gauss-
ians or, in the case of two-mode symmetric Gaussians, the
method of �22,23�. Section II characterizes the general two-
mode Gaussian in terms of the quadrature coefficients and
presents various expectation values required for the entangle-
ment criterion and the reduced density matrices necessary for
calculating the von Neumann entropy. Section III analyzes
the entanglement criteria in terms of these coefficients. Sec-
tion IV derives the entanglement of formation in terms of the
quadrature components by finding the eigenvalues of an ef-
fective Hamiltonian associated with the two-mode Gauss-
ians. For the special case of symmetric states, these results
are related to the mixed-state expression for the entangle-
ment of formation and that of the associated squeezed states.
Section V discusses how the two-mode Gaussian coefficients
are modified by Gaussian operations and the subsequent
changes in entanglement. Section VI presents concluding
remarks.

II. CHARACTERIZATION OF PURE TWO-MODE
GAUSSIANS

Two spatially separated quantum modes i=1,2 can be
fully described by means of field quadratures �15�, the am-

plitude quadrature, X̂i= �âi
†+ âi� /�2, and the phase quadra-

ture, Ŷi= i�âi
†− âi� /�2, in analogy to the position q̂i and mo-

mentum p̂i of the original EPR variables. Here âi, âi
† are the

destruction and creation operators of mode i, obeying the
usual commutation rules �we use units with �=1�. The am-
plitude and phase quadratures, which determine the proper-
ties of the optical beams both as to entanglement and polar-
ization correlations, are routinely measured �3,4�. In order to
study pure two-mode entanglement in terms of the coeffi-
cients of the wave function, we examine the general normal-
ized two-mode Gaussian wave function in the representation
of the amplitude quadrature or, equivalently, the position
variables:

��q1,q2� = N exp�− ��q1
2 + 	q2

2 + 2
q1q2�/2� , �2�

where �=�1+ i�2, 	=	1+ i	2, 
=
1+ i
2, N2=� /�, and
�2=�1	1−
1

20. Terms linear in qi were not included in

Eq. �2� because these correspond to displacements which do
not affect the entanglement.

Just as the one-mode system is characterized by the
Heisenberg uncertainty relation expressed in terms of the
2�2 covariance matrix of the position and its conjugate mo-
mentum, the two-mode case has a corresponding 4�4 cova-
riance matrix containing all the information concerning the
entanglement properties of the system. As in the one-mode
case, the two-mode Gaussian states and density matrices cor-
respond to an important class. The bipartite Gaussian states
and density matrices correspond to a special class in that the
covariance matrix determines them completely. They are
characterized by the first and second moments of the canoni-
cal operators, despite the underlying infinite dimensional
Hilbert space. For two modes, the 4�4 covariance matrix
contains all the necessary information to determine its en-
tanglement properties for both entanglement criteria and en-
tanglement measures. The 4�4 covariance V matrix �10–12�
is written in terms of the 2�2 partitioned matrices A, B, C,
and CT:

V = � A C

CT B
 ; A = � �q̂1

2� �	q̂1p̂1
�
�	q̂1p̂1
� �p̂1

2�
 ,

B = � �q̂2
2� �	q̂2p̂2
�

�	q̂2p̂2
� �p̂2
2�

 ,

C = ��q̂1q̂2� �q̂1p̂2�
�p̂1q̂2� �p̂1p̂2�

 ; CT = ��q̂1q̂2� �q̂2p̂1�
�p̂2q̂1� �p̂1p̂2�

 , �3�

where p̂i=−i� /�qi is the operator conjugate to q̂i, i=1,2 and

�	âb̂
�= �âb̂+ b̂â� /2.
These are explicitly calculated in terms of the coefficients

of the wave function in Eq. �2� as

�q1
2� = 	1/�2�2�; �q2

2� = �1/�2�2�; �q1q2� = − 
1/�2�2�;
�4a�

�p1
2� =

	1���2 − �1�
1
2 − 
2

2� − 2
1
2�2

2�2 ;

�p2
2� =

�1�	�2 − 	1�
1
2 − 
2

2� − 2
1
2	2

2�2 ;

�p1p2� =
��1
1 + �2
2��2 + ��1
2 − �2
1���1	2 − 
1
2�

2�1�2 ;

�4b�

�	q1p1
� =
�
1
2 − �2	1�

2�2 ; �q1p2� =
�
1	2 − 
2	1�

2�2 ;
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�q2p1� =
�
1�2 − 
2�1�

2�2 ; �	q2p2
� =
�
1
2 − �1	2�

2�2 .

�4c�

These will be used in Sec. II in the discussion of the en-
tanglement criterion and in Sec. III in the discussion of the
entanglement of formation. Calculation of the entanglement
of formation also requires the two one-mode marginal den-
sity matrices of the two-mode wave function:

�q1��̂I�q1�� = �
−�

�

dq2��q1,q2��*�q1�,q2�

=
�

��	1

exp�−
1

4	1
	�2�1	1 − 
1

2 + 
2
2�

��q1
2 + q1�

2� + 2i��2	1 − 
1
2��q1
2 − q1�

2�

− 2�
1
2 + 
2

2�q1q1�
 �5�

and similarly:

�q2��̂II�q2�� =
�

���1

exp�−
1

4�1
	�2	1�1 − 
1

2 + 
2
2��q2

2 + q2�
2�

+ 2i�	2�1 − 
1
2��q2
2 − q2�

2� − 2�
1
2 + 
2

2�q2q2�
 .

�6�

III. ENTANGLEMENT CRITERION

We evaluate the separability criterion for continuous vari-
able two-mode states derived by Simon �10� using the wave
function of Eq. �2�. This criterion involves the determinants
of the covariance matrix and the partitioned submatrices in
Eq. �3� and these can be evaluated using Eq. �4�:

det A = �q1
2��p1

2� − �	q1p1
�2 =
�1	1 + 
2

2

4�2 =
1

4
+


1
2 + 
2

2

4�2

= det B = �q2
2��p2

2� − �	q2p2
�2; det C = −

1

2 + 
2
2

4�2 ;

det V = det A det B + �det C�2 − Tr = 1/16, �7�

where

Tr � tr�AJCJBJCTJ� =
�
1

2 + 
2
2�

8�2 �1 +
�
1

2 + 
2
2�

�2 � �8�

and

J = � 0 1

− 1 0
 .

The expressions for det A and det B represent the vari-
ances for each of the modes which enter the one-mode
Heisenberg uncertainty relations. These would equal 1

4 for
minimum uncertainty states. That these deviate from the
minimum uncertainty is due to the entanglement of the two

one-mode states which is present for nonzero values of the
coefficient 
 in Eq. �2�. However, the amount of entangle-
ment depends not only on 
 but also on � and 	 as well, as
will be shown in Sec. III. Note that the two one-mode den-
sity matrices in Eqs. �5� and �6� are distinct as expected from
the one-mode dispersions of position given in Eq. �4a�. This
reflects the fact that Eq. �2� represents a generally asymmet-
ric pure two-mode Gaussian. In spite of this, the uncertainty
relations given in Eq. �7� show that the two systems have the
same uncertainty content.

The two-mode Heisenberg uncertainty relation �10� is
given by V+ i� /2�0, where �= � J 0

0 J
�. It follows from this

that �2
2�det�V+ i� /2� obeys the inequality:

�2
2 � det A det B + �1

4
− det C2

−
1

4
�det A + det B� − Tr

� det V +
1

16
−

1

4
�det A + det B + 2det C� � 0. �9�

From Eqs. �7� and �8�, it is seen that �det A+det B
+2 det C�=1/2 so that the equality sign is obtained for the
state in Eq. �2�, as is expected for a pure Gaussian state.

Simon �10� established the separability of bipartite con-
tinuous variable states by showing that the criterion of posi-
tivity under partial transpose is the mirror reflection in phase
space. Under this transformation, �q1 , p1�→ �q1 ,−p1� and
det C→−det C while others remain unchanged. The two
mode uncertainty for such a density matrix then becomes the

separability criterion V+ i�̃ /2�0, where �̃= � J 0
0 −J

�. It fol-

lows from this that ES�det�V+ i�̃ /2� obeys the inequality:

ES = det A det B + �1

4
− �det C�2

− Tr −
1

4
�det A + det B�

= det V +
1

16
−

1

4
�det A + det B + 2�det C�� � 0. �10�

This becomes a necessary and sufficient condition for bipar-
tite Gaussian states and thus also serves as an entanglement
criterion �10�. For the two-mode Gaussian of Eq. �2�, this is
found from Eqs. �7� and �8� to be

ES = −
�
1

2 + 
2
2�

4�2 = det C . �11�

This shows that the two-mode wave function is always en-
tangled for nonzero values of 
. That the sign of det C de-
termines the entanglement of the two-mode Gaussian was
already shown by Simon �10�.

IV. ENTANGLEMENT OF FORMATION

As shown in the Introduction, we will now express the
one-mode marginal density matrices, given by Eqs. �5� and
�6�, associated with the pure two-mode Gaussian state, Eq.
�2�, in terms of an eigenexpansion which will enable the
calculation of the von Neumann entropy of the marginal den-
sity matrix. Unlike the two-mode squeezed state, we resort to
an indirect method for accomplishing this as will be ex-
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plained presently. For the pure state of Eq. �2� considered
here, the entanglement of formation can be obtained by cal-
culating the eigenvalues and evaluating the von Neumann
entropy. In order to discuss the results in a physical way, it is
important to recall the corresponding results for a one-mode
Gaussian system. The following construction is inspired by
different ways of obtaining the Gaussian density matrix in
the literature �27–29�. We take the approach that a density
matrix may be generated by a Hermitian Hamiltonian. While
this is not the most general way to realize a given density
matrix, it leads to a practical procedure. We therefore con-
sider the following biquadratic Hamiltonian generated by the

canonically conjugate Hermitian operators Q̂ , P̂ obeying the

standard commutation rules, �Q̂ , P̂�= i and others zero:

Ĥ =
1

2
�DQ̂2 + EP̂2 + F�Q̂P̂ + P̂Q̂�� , �12�

where D, E, and F are real parameters due to Hermiticity of
the Hamiltonian. We introduce the one-mode squeezing op-
erators such that

Â = �Q̂ + i�P̂, Â† = �*Q̂ − i�*P̂ , �13�

where � ,� are two complex numbers such that

�Â , Â†�=1=��* +�*�, and the other commutators are zero.
The standard parameterization in terms of a squeezing pa-
rameter, s, and phase � is

� = �cosh s + ei�sinh s�/�2, � = �cosh s − ei�sinh s�/�2.

�14�

We find that Eq. �12� can be recast into the standard form

Ĥ = ��Â†Â +
1

2
 �15�

provided we identify the parameters in the following way:

����2 = D/2; ����2 = E/2; i���*� − ��*� = F . �16�

Clearly we have the identity

�2 = DE − F2. �17�

We now find the eigenstates of the Hamiltonian in terms of
the usual number representation by working in the represen-

tation where Q̂�x�=x�x�, P̂=−i� /�x. These are

�x�n� = �n�x/����2�exp − i�F/4����2�x2

Ĥ�n� = ��n +
1

2
, n = 0,1,2, . . . . �18�

The eigenfunctions in Eq. �18� are the orthonormal harmonic
oscillator wave functions. We now use Mehler’s formula �30�

�
n==0

�

zn�n�x��n
*�y� =

1
���1 − z2�

exp − ��1 + z2

1 − z2� x2 + y2

2


− 2� z

1 − z2xy� �19�

to express the density matrix in the form:

�x��̂1�x�� =
�x�exp − ���Â†Â + 1/2��x��

Z

=
1

����2�
�1 − e−��

1 + e−��1/2

exp�− iF�x2

− x�2�/4��2���exp −
1

2���2��1 + e−2��

1 − e−2��
�� x2 + x�2

2
 − � 2e−��

1 − e−2��xx�� . �20�

Equivalently we express this in terms of the eigenvalues of
the density matrix:

�x��̂1�x�� = �1 − e−����
m=0

�

�e−���m�m�x��m
* �x�� . �20��

Expressing this in the form of the marginal one-mode density
matrices given in Eqs. �5� and �6�, we have

�x��̂1�x�� =
�a − c
��

�exp −
1

2
	a�x2 + x�2� − 2cxx�
exp −

ia�

2
�x2 − x�2�

�21�

with

a =
1

2���2�1 + e−2��

1 − e−2�� ; c =
1

2���2� 2e−��

1 − e−2�� ;

�22�

a� =
F

2����2
.

Calculating the three variances associated with this density
matrix results in

�x̂2� =
1

2�a − c�
; �p̂2� =

�a + c�
2

+
a�2

2�a − c�
;

�	x̂p̂
� = −
a�

2�a − c�
. �23�

The one-mode Heisenberg relationship, �H1
2 ��x̂2��p̂2�

− �	x̂p̂
�2�1/4, is then

�H1
2 =

1�a + c�
4�a − c�

=
1

4
�1 + e−��

1 − e−��2

. �24�

The von Neumann entropy associated with this density ma-
trix is

S = − Tr �̂1 ln �̂1 �25�

and using Eqs. �20�� and �24� we find
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S = ��H1 + 1/2�ln��H1 + 1/2� − ��H1 − 1/2�ln��H1 − 1/2� .

�26�

Equation �24� shows an interesting relationship between the
parameters in the Hamiltonian and the density matrix and the
expectation values of the quadratures:

�� = ln��H1 + 1/2

�H1 − 1/2
 . �27�

Comparing the marginal one-mode density matrices obtained
from the two-mode system with the above, we obtain
a1A= �2�1	1−
1

2+
2
2� /2	1; c1A= �
1

2+
2
2� /2	1. Using Eq.

�24�, we have

�HA
2 =

1

4
+


1
2 + 
2

2

4�2 =
1

4
��1	1 + 
2

2

�1	1 − 
1
2 . �28�

The results for �HB
2 turn out to be the same as �HA

2 , as is
expected for a pure state, even though the marginal density
matrices in Eqs. �5� and �6� are different. We therefore find
that the two marginal von Neumann entropies are the same
and determine the entanglement of formation for the two-
mode Gaussian wave function in terms of the quadrature
coefficients as

EF = ��HA + 1/2�ln��HA + 1/2� − ��HA − 1/2�ln��HA − 1/2� .

�29�

Note that EF=0 for vanishing coupling between the modes,

=0 in Eq. �2�, as would be expected. However, the magni-
tude of the entanglement also generally depends on the val-
ues of � and 	, but only through their real parts.

In the special case of a two-mode squeezed state,
the quadrature coefficients in Eq. �2� take the form
�=	= �1+�2� / �1−�2� and 
=−2� / �1−�2�, where the
squeezing parameter r and phase � are defined by
�=−exp�i��tanh r. For this particular symmetric Gaussian,
the quadrature coefficients obey the relation �2−
2=1. From
Eq. �28�, the two-mode squeezed state has �HA=cosh 2r /2
so that the entanglement of formation in Eq. �29� reduces to
the known squeezed state expression in Eq. �1�. Note that the
squeezed state entanglement depends only on the squeezing
parameter r and is independent of the phase, �.

Equations �28� and �29� can also be compared with the
symmetric mixed state expression for the entanglement of
formation EF from Giedke et al. �22,23� in the case of sym-
metric pure two-mode Gaussians. The mixed-state result re-
lies on applying local unitary transformations �which do not
modify the entanglement� to the covariance matrix in Eq. �3�
to bring it into standard form �31�:

VS =�
a 0 c1 0

0 a 0 c2

c1 0 b 0

0 c2 0 b
� . �30�

For the case of a=b, which is the case of symmetric two-
mode Gaussians, Giedke et al. are able to perform the infi-
mum in the definition of the entanglement of formation for
the state corresponding to Eq. �30�. The result is that EF for

the general symmetric �i.e., a=b� two-mode Gaussian in Eq.
�30� is equal to the entanglement of the special two-mode
squeezed state having the same value of EPR correlation as
the state in Eq. �30�, with additional coordinate and momen-
tum scalings �22�. This implies that the entanglement can be
obtained from Eq. �1� with a special squeezing parameter
equal to rsym=−ln�2��a−c1��a+c2�� /2. We can compare this
to the present result if we restrict Eqs. �28� and �29� to the
special case of symmetric states �i.e., �=	� and restrict the
Giedke et al. result to pure states. A symmetric pure state
requires a=b and det VS=1/16 in Eq. �30�, so that c1=−c2
and a2−c1

2=1/4. Using these results in the expression for
rsym leads to a=cosh 2rsym/2. Using this in Eq. �1� and com-
paring with Eq. �29�, we find that the entanglement of
Giedke et al. can also be described by Eq. �29� with
�HA=a. The value of a in Eq. �30� is then related to the
quadrature coefficients of Eq. �2� by Eq. �28�. The entangle-
ment of symmetric pure two-mode Gaussians can be found
either by Eq. �1� with a special value of rsym after transform-
ing V into standard form Eq. �30� or directly using Eq. �29�.
Note that for the special case of two-mode squeezed states,
rsym reduces to r.

V. GAUSSIAN OPERATIONS ON ENTANGLEMENT

The ability to accurately manipulate Gaussian quantum
states by means of optical elements leads to possibilities of
quantum information processing using continuous variables
�7–9�. Understanding the effect of operations on Gaussian
states and the resulting affect on the corresponding entangle-
ment is therefore of interest. Of particular concern are Gauss-
ian operations �with classical communication� �32�, which
are just the experimentally accessible set of operations that
can be realized with optical elements such as beam splitters,
phase shifts, and squeezers, together with homodyne mea-
surements. The effect of optical elements on the entangle-
ment of two-mode Gaussians has been studied in terms of
logarithmic negativity �25�. In the following, we examine
how such transformations affect the quadrature coefficients
of the pure-state wave function of Eq. �2� and thereby the
entanglement of formation from Eqs. �28� and �29�.

The pure two-mode Gaussian wave function in Eq. �2�
may be considered as having been generated in a number of
ways by applying various operations to the vacuum �33�. For
example, the state resulting from application of a two-mode

squeezing, Ŝ12=exp− ��12â1
†â2

†−�12
* â1â2�, �12=r12e

�12, fol-

lowed by a one-mode squeezing, Ŝ1=exp− 1
2 ��1â1

†2−�1
*â1

2�,
�1=r1ei�1 �15� to the vacuum is equivalent to Eq. �2� to
within local unitary transformations �17–19�. Here the two
complex parameters, �12 and �1, represent the squeezings. It
is sufficient to apply the one-mode squeezing to only one of
the two modes. The squeezed mode annihilation operators,

ãi= Ŝ1Ŝ12âiŜ12
† S1

†, acting on the squeezed vacuum lead to the
equations:

	�q1�1 + �1� + ip1�1 − �1��cosh r1 + �q2 − ip2��12
��q1,q2�

= 0,
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	�q1�1 + �1
*� − ip1�1 − �1

*���12 cosh r1 + �q2 + ip2�
��q1,q2�

= 0, �31�

where the squeezing parameters are defined as
� j =ei�j tanh rj, j=1 and j=12. The wave function is
the quadrature amplitude representation of the squeezed

vacuum, ��q1 ,q2�= �q1 ,q2�Ŝ1Ŝ12�0,0�, since 0=a1a2�0,0�
= ã1ã2�Ŝ1Ŝ12�0,0��. From the solution to these differential
equations, it is then found that �, 	, and 
 in Eq. �2� are
related to the squeezing parameters as follows:

� =
�1 + �1� + �12

2 �1 + �1
*�

�1 − �1� − �12
2 �1 − �1

*�
, 	 =

�1 − �1� + �12
2 �1 − �1

*�
�1 − �1� − �12

2 �1 − �1
*�

,


 =
2�12

��1 − ��1�2�
�1 − �1� − �12

2 �1 − �1
*�

. �32�

From Eqs. �28�, �29�, and �32�, we find that the entanglement
of formation of Eq. �2� in this example can be expressed in
terms of both the one- and two-mode squeezing parameters.
The most general case of Eq. �2� can be obtained if local
unitaries were applied in addition to the squeezing operators.
Equation �32� would then be further modified by parameters
describing the unitaries in addition to the one- and two-mode
squeezing parameters. In the special case when the one-mode
squeezing is turned off, r1=0, we obtain a symmetric Gauss-
ian wave function with �=	. This corresponds to the two-
mode squeezed state with entanglement described by Eq. �1�.
This is equivalent to the general symmetric pure Gaussian by
local unitaries �17–19�. If the two-mode squeezing is turned
off instead, r12=0, we obtain an asymmetric but unentangled
Gaussian given by the product of two single-mode squeezed
states.

The state in this example could be further modified by
using additional operators representing various optical ele-
ments. For example, a beam splitter and a phase plate can be
described by �34�

B̂12 = �e−i� cos �/2 − e−i� sin �/2

sin �/2 cos �/2
 . �33�

Consider applying this to the two-mode squeezed state. Then

the requirement that the operator B̂12Ŝ12âiŜ12
† B̂12

† annihilate
the vacuum again leads to differential equations analogous to

Eq. �31� which can be solved to find the new quadrature
coefficients representing two-mode squeezing, beam split-
ting, and a phase shift:

� =
1 + 2�̃ cos � + �̃2

1 − �̃2
, 	 =

1 − 2�̃ cos � + �̃2

1 − �̃2
, �34�


 =
2�̃ cos �

1 − �̃2,

where �̃=�12e
i�. The entanglement resulting from these op-

erations can be calculated using Eqs. �28� and �29�. If single-
mode squeezings were also applied to each mode, then the
effective annihilation operator becomes

B̂12S2Ŝ1Ŝ12âiŜ12
† S1

†S2
†B̂12

† , and the quadrature components and
entanglement could again be calculated in a similar way. In
this case, Eq. �34� would be modified by six additional pa-
rameters due to the single-mode squeezings. Reference �25�
had examined the entangling capability of passive optical
elements in terms of the logarithmic negativity and focused
on two-mode Gaussians. The present results allow a similar
study in terms of the entanglement of formation for arbitrary
two-mode Gaussians.

VI. CONCLUDING REMARKS

This work examined the entanglement properties for gen-
eral pure two-mode Gaussian states directly in terms of the
quadrature coefficients of the wave function. The entangle-
ment criterion and the entanglement of formation were
evaluated as a function of these coefficients. This direct cal-
culation eliminates the need for local unitary transformations
to put the covariance matrix into standard form. The results
were compared to those for symmetric Gaussians which re-
late two-mode squeezed states and Einstein-Podolsky-Rosen
correlations. The modification of the quadrature coefficients
and the corresponding entanglement due to application of
various optical elements was also derived. A discussion of
the effects of dissipation or noise on the two-mode system is
given in �35�.
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