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We propose an efficient decoy-state protocol for practical quantum key distribution using coherent states.
The protocol uses four intensities of different coherent light. A good final key rate is achieved by our protocol
with typical parameters of existing practical setups, even with a very low channel transmittance.
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I. INTRODUCTION

Quantum key distribution�QKD� �1–3� has drawn much
attention from scientists since it can help two remote parties
to set up the unconditionally secure key �4–7�. However,
there are still some limitations for QKD in practice. In par-
ticular, large channel loss seems to be the main challenge to
the long-distance QKD with weak coherent states. If the per-
fect single-photon source were used in practice, large chan-
nel loss would not be a problem for the security because
those lost pulses can be regarded as a vacuum �4�. Given a
perfect single-photon source, Eve has to disturb the transmit-
ted qubits if she wants to have some information about them.
However, in practice, a perfect single-photon does not exist.
Even an almost-perfect single-photon source is a difficult
technique �8�. We normally use the weak coherent state. The-
oretical results about secure QKD with an imperfect source
has also been given �10�. There, the concept of “tagged” bits
are used. Say, since the source is imperfect, Eavesdropper
�Eve� is able to have full information of some of the bit
values without causing any disturbance. In particular, the fi-
nal key rate can be calculated by the formula �10�:

r = 1 − � − H�t� − �1 − ��H�t/�1 − ��� , �1�

if we use a random classical CSS code �4� to distill the final
key �10�. Here, t is the detected flipping error rate, � is the
fraction of tagged bits �10� at Bob’s side, i.e., the fraction for
those counts in cases when Alice sends out a multiphoton
pulse if we use coherent light. The functional H�x�
=−x log2 x− �1−x�log2�1−x�. From this formula we can see
that, if � value is small, we can still have a good key rate.
However, in practice, the channel can be rather lossy, say, the
overall transmittance can be even less than 0.1%. This is to
say, even we use an almost-perfect single photon source with
only 1% of multiphoton pulses, it does not work unless we
have a way to make tight verification of the upper bound of
�. Trivial worst-case estimation does not work because here
it is possible that all single-photon pulses have been lost,
therefore the upper bound �=1 and the key rate is 0.

In a protocol using coherent light, all those bits carried by
multiphoton pulses are regarded as tagged bits. Eve may split
each of them, keep one of them, and send the remaining

photons in each pulse to Bob, which is called the photon-
number-splitting �PNS� attack. Therefore, we have to seek a
way to overcome this �9�.

A. Photon-number-splitting attack

The state of coherent light

��ei�� = �
n=0

� ��e�/2

�n!
ein��n� , �2�

from a conventional laser is actually a mixed state of

�u =
1

2�
	

0

2�

��ei��
�ei��d� = �
n

Pn����n�
n� , �3�

and Pn���=�ne−� /n!, since the phase � is unknown. �Even
in the case where � can be known, one can still randomize
it.� Here, � is a non-negative number. In practice, especially
in doing long-distance QKD, the channel transmittance � can
be rather small. An Eve may choose to first measure the
photon number of each pulses. In measuring the photon
number, Eve in principle does not necessarily destroy the bit
value of the pulse. Given a multiphoton pulse, e.g., a two-
photon pulse, she split it into two beams, with one beam
containing one photon. She keeps one photon and sends the
other to Bob through a highly transparent channel. After Al-
ice and Bob announce the measurement, Eve measures the
photon in the right basis. In such a way, to all those multi-
photon pulses sent by Alice, Eve may have full information
of their bit value without changing their bit values at all. This
is completely different from the case with the single-photon
source, where Eve has no way to obtain the information of
bit values of the transmitted qubit without disturbing them.
Note that by doing so, Eve does not change the total channel
transmittance because she can in principle change the trans-
mittance for different pulses as she likes. For example, she
may choose to block all �or most of� single-photon pulses,
split the multiphoton pulses, and send them through a less
lossy channel. To Alice and Bob, the overall transmittance
appears the same as that of their usual physical channel. In
particular, if �� �1−e−�−�e−�� /�, Eve in principle can
have the full information of Bob’s sifted key by the PNS
attack �9� lossless channel.

Originally, the PNS attack has been investigated where
Alice and Bob monitor only how many nonvacuum signals*Email address: wang@qci.jst.go.jp
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arise, and how many errors happen. However, it was then
shown �11� that the simple-minded method does not guaran-
tee the final security. It is shown �11� that in a typical param-
eter regime, nothing changes if one starts to monitor the
photon number statistics as Eve can adapt her strategy to
reshape the photon number distribution such that it becomes
Poissonian again. It is not a trivial task to make uncondition-
ally secure QKD even under possible PNS attack. Some pos-
sible ways have been raised to solve the issue �12–14�. One
promisiong method is the so called decoy-state method pro-
posed by Hwang �12�.

B. Decoy-state method

A very important method with decoy states was then pro-
posed by Hwang �12�, where the unconditional verification
of the multiphoton counting rate is given. The main idea is to
use two different intensities of pulses. By observing the
counting rate of the pulses of the larger intensity �the decoy
state�, one can verify the upper bound of �, the fraction of
multiphoton counts at Bob’s side for the pulses of less inten-
sity �the signal pulses�, given whatever type of Eve’s action,
including PNS attack.

From formula �1�, we see that the value of � is crucial.
Hwang’s decoy-state method is so important because it gives
a way to verify the upper bound of � and, consequently, it
gives a way toward the unconditional security of QKD with
coherent light. However, Hwang’s initial protocol �12� does
not give a sufficiently tight bound. If the intensity of decoy
state is �� and signal state is � in Hwang’s protocol, the
verified upper bound of � in the normal case of no Eaves-
dropping is

� =
�e−�

��e−��
. �4�

For example, in the case of �=0.3, by Hwang’s method, the
optimized verified upper bound of � is 60.4%. As it has been
mentioned �12,15�, the decoy-state method can be combined
with GLLP �10� to unconditionally distill the secure final
key. With the value �=60.4%, the key rate can be rather low
in practice �10�. In particular, formula �1� requires the bit-flip
rate to be less than 2% for a larger-than-0 key rate, given that
�=60.4%. This is a tough requirement in practice. A tight
bound for � is needed in both the key rate and the threshold
of flipping rates. Following Hwang’s work �12�, the decoy-
state method was then further studied �15–20�. It is shown
�15� that Hwang’s idea can be also used to estimate the quan-
tum bit error rate. However, the main protocol in �15� re-
quires an infinite number of different intensities decoy states.
This seems impractical. Prior to this, a review of PNS attack
was given with some very shortly stated rough ideas for a
possible solution �16�. However, no explicitly demonstrated
result was given there �16�. For example, no explicit formula
was given on the verified fraction of multiphoton counts.
Neither were the effects of statistical fluctuation with only
reasonably large number of pulses considered there. In par-
ticular, Ref. �16� suggests using two states, vacuum and very
weak coherent states to verify the yield �counting rate� of
single-photon pulses: ‘‘On one hand, by using a vacuum as

decoy state, Alice and Bob can verify the so called dark
count rates of their detectors. On the other hand, by using a
very weak coherent pulse as decoy state, Alice and Bob can
easily lower bound the yield of single-photon pulses.’’ If this
idea is used, as it has been shown by us in Ref. �20�, the
intensity of the very weak coherent state must be less than
the channel transmittance. Given the channel transmittance.
Given the channel transmittance of �=10−4 and the dark
count rate s0=10−6, the number of counts caused by single-
photon pulses is only 1/100 of the dark counts. Note that one
must estimate the dark counts of the very weak coherent
states rather precisely in order to make a meaningful verifi-
cation of the counting rate of those single-pulses from the
very weak coherent states. This is to say, we must limit the
possible statistical fluctuation of dark counts to be around the
order of 10−3 for a meaningful verification. For the uncondi-
tional security, we must be exponentially certain that the
relative statistical fluctuation is less than O�10−3� therefore
we can deduce the dark counts for the very weak coherent
state with the observed counting rate of the vacuum state.
Such an exponential certainty requests at least 1014pulses in
one protocol. This is obviously too large to be realized by
our existing technologies. It was then for the first time pro-
posed and explicitly demonstrated by us �19� that one can
actually make a rather tight verification of value of � even
with three intensities of coherent light, with one of them
being a vacuum. The three-intensity protocol raised by us is
different from the previously proposed two-intensity idea
�16� not only in using one more intensity, but also in jointly
using the counting rates of all three intensities with non-
trivial inequalities and simultaneous equations �20�. There
�19�, the effect of statistical fluctuation is also studied. How-
ever, the final key rate has not been calculated. In this paper,
based on the protocol given in �19�, we propose an improved
protocol using four intensities of coherent light. We calculate
the the final key rate for typical setups in practice, with the
effect of statistical fluctuation being considered. A good key
rate is demonstrated in comparison with the theoretically al-
lowed maximal key rate. This paper is arranged as follows.
In the next section, we present our protocol and show how it
works, why we need four different intensities. Later, we cal-
culate the final key rate of our protocol. We shall end this
work with a summary.

II. PROTOCOL WITH FOUR INTENSITIES
OF COHERENT LIGHT

We first state the main idea of this protocol. Alice shall
use coherent pulses to carry the bit values. We can choose
either the polarization space or the phase-coding method for
bit values and measurement basis. The intensities of pulses
have nothing to do with the bit values. The different intensi-
ties may help to verify the the upper bound of fraction of
multiphoton counts � or lower bound of fraction of single-
photon counts �1. After the verification, the do the key dis-
tillation. As it has been shown in �19�, to do a tight verifica-
tion, three different intensities will be enough. However, in
doing so, the intensities of coherent light cannot be chosen
freely, while the final key rate is maximized at only one
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value of intensity. To maximize the final key rate, we do the
task in this way: We first estimate the lossy rate of the physi-
cal channel. According to this, we choose good values of
intensities �� ,�. These, together with vacuum pulses, will
give a very good verification of values � ,�1. Before the
protocol is carried out, we can also expect the bit-flip rate of
the channel and we choose another intensity �s which gives
a maximum key rate given the bit-flip rate and �1, according
to the existing theoretical results �10�. After verification and
error test, the verified values could be a bit different from the
expected ones. However, in the normal case that there is no
Eve, the verified values must be rather close to expected
ones. In short, there will be four intensities of coherent light
in our protocol, they are 0, � ,�� ,�s. Alice shall randomize
the order of all pulses. The first three intensities will be used
for verification of of �1 and error test. The last one, �s is the
intensity of main signal pulses and will be used for final key
distillation. Of course, � ,�� can also be used for final key
distillation, in case that the key rate is not zero for these two
intensities.

A. Intensity and key rate

How to choose �s, the intensity of main signal pulses, is a
problem. For clarity, we consider the perfect case where we
can use true single-photon source to test the value of �1 or �
and use the coherent light for key distillation. Given all those
single-photon pulses, Eve has no way to tell which ones are
from the single-photon source and which ones are from the
coherent light source. Consider s1, the transmittance of
single-photon pulse. There are two sets of single-photon
pulses, the set of all those pulses from single-photon source
�Set 1� and the set of all those single-photon pulses from
coherent light �Set 0�. Since Eve does not know which ones
belongs to which set, we have

s1�1� = s1�0� . �5�

Here, s1�1� and s1�0� are the transmittance for single-photon
pulses in Sets 1 and 0, respectively. After sending out all
pulses, Alice announces which pulses belong to Set 1. In
counting the number of counts caused by all pulses from Set
1, they shall know the value s1�1�, therefore the value of
s1�0�. They can then calculate the value of �1 ,�. �For sim-
plicity we assume zero dark count here, at this moment.� In
this way, they can verify � ,�1 explicitly, if we neglect the
statistical fluctuation. For clarity, we consider the ideal case
that � is known exactly, i.e., �=1−e−�s. The dark count is
zero and the channel transmittance is �. They use coherent
states to generate the key. Suppose the tested QBER is t1�,
and then they can upperbound the QBER of those single-
photon states in signal pulses by

t1 	 �1 + 
�t1�. �6�

They use coherent state with intensity �s to generate the key.
According to Ref. �10�, the overall key rate is

R = ��s�1 − 2H�t1� − �1 − e−�s��1 − H�t1��� . �7�

They may choose an appropriate value �s to maximize R.
For example, given t1=0, maximized value is R=��se

−� at

the point of �s=1. In this paper, we shall consider the typical
case that the QBER is t1=0.03 and for this value the
TAMKR is

RTAMKR = 0.149� , �8�

with �s=0.572. This is the theoretically allowed maximum
key rate. This also shows that, given � and bit-flip rate, one
can choose an appropriate value �s to maximize the key rate.
We shall now consider the practical case where the single-
photon source is not available and the dark count is nonzero,
toward the goal of achieving a large key rate. Note that the
value 0.572 does not always maximize the key rate, in prac-
tice, because we have different verified values of bit-flip rate
and �.

B. Verification

One can use the method in Ref. �19� to verify various
parameters. For simplicity, we denote those pulses produced
in state ��ei�� , ���ei��, �0� as class Y�, Y��, and Y0, respec-
tively. The counting rate of any state � is defined as the
probability that Bob’s detector clicks whenever a state � is
sent out by Alice. We disregard what state Bob may receive
here. The counting rate is called the yield in other literature
�12,15�. We use notations s0, S� and S�� for the counting
rates �yields� of a vacuum and class Y0 ,Y� ,Y��, respectively.
These three parameters are observed in the protocol itself.
For convenience, we always assume ����; ��e−����e−�.
A coherent state of class Y� has the following convex form:

�� = e−��0�
0� + �e−��1�
1� + c�c �9�

and c=1−e−�−�e−��0, �c=1/c�n=2
� Pn����n�
n�. Similarly,

a state in class Y�� is

��� = e−���0�
0� + ��e−���1�
1� + c
��2e−��

�2e−� �c + d�d,

�10�

and d=1−e−��−��e−��−c��2e−�� /�2e−��0, �d is a density
operator. We shall use notations s0, s1,sc,S�, S��, and sd for
the counting rates of state �0� �0�, �1� �1�, �c, ��, ���, and �d,
respectively.

For security, we only consider the overall transmittance
which is jointly determined by the channel loss and Bob’s
device loss �19�. Equations �9� and �10� lead to

S�� = e−��s0 + ��e−��s1 + c
��2e−��

�2e−� sc + dsd, �11�

S� = e−�s0 + �e−�s1 + csc. �12�

Given that sd�0, Eq. �11� leads to

csc 	
�2e−�

��2e−��
�S�� − e−��s0 − ��e−��s1� . �13�

With the crude upper bound for sc given by Eq. �13�, we
have the nontrivial lower bound for s1 now:
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s1 � S� − e−�s0 − csc � 0. �14�

Therefore, tight values for sc and s1 can be obtained by solv-
ing the simultaneous constraints of Eq. �12� and inequality
�13�. There are two unknown parameters with two con-
straints. Parameters of sc, s1 can be solved analytically �19�,
and they are indeed very close to the true values in the nor-
mal case when there is no Eve.

C. Statistical fluctuation

The results above are only for the asymptotic case, i.e.,
we have assumed that pulses of the same states will be
treated identically by �Eve’s� channel, because no one knows
which pulse of the state are from which class. In practice,
this is not precisely true because the number of pulses are
always finite therefore statistical fluctuations have to be con-
sidered. That is to say, Eve has a non-negligibly small prob-
ability to treat the pulses from different classes a little bit
differently, even though the pulses have the same state.
Mathematically, this can be stated by s�����= �1+r��s����,
and the real number r� is the relative statistical fluctuation for
counting rate of state � in different classes of pulses. Our
task remains to verify a tight lower bound of s1 and the
probability that the real value of s1 breaks the verified lower
bound is exponentially close to 0. We shall use the primed
notation for the counting rate for any state in class Y�� and
the original notation for the counting rate for any state in
class Y�. We convert Eqs. �12� and �13� to

e−�s0 + �e−�s1 + csc = S�,

cs�c 	
�2e−�

��2e−��
�S�� − ��e−��s�1 − e−��s�0� . � �15�

One should set sx�= �1−rx�sx for x=1, c and s0�= �1+r0�s0

with rx�0 to obtain the worst-case results. Consider the dif-
ference of counting rates for the same state from different
classes, Y� and Y��. To make a faithful estimation, we re-
quire the probability to be less than e−O�100� for the failure of
verification. With these settings, one can calculate the lower
bound of s1. The numerical results of some typical values of
s1 are listed in Table I.

III. FINAL KEY RATE

Now we calculate the final key rate. It is not likely to give
the explicit formula with fluctuation being considered. We
shall give the numerical results for typical parameter sets in

practice. According to the transmittance of the physical chan-
nel, we first choose a reasonable value for �, e.g., 0.1 or 0.22
and then find a good value �� so that � and �� will help to
verify a satisfactorily value of transmittance of single-photon
pulses, s1. According to s1, we then choose the value �s so
that the key rate of main signal states is maximized. In a real
protocol, Alice is supposed to calculate these values accord-
ing to the transmittance of physical channel in advance. Al-
ice mixes all classes of pulses, sends them to Bob, and then
verifies the value of the single-photon transmittance accord-
ing to the counting rates of states of vacuum, � and ��. If the
verified value of a single-photon counting rate is too much
smaller than the expected value, they give up the protocol.
Otherwise, they go on to distill the final key with the method
stated in �10�. In order to compare the final key rate of our
protocol with that of the ideal protocol, we need to estimate
the QBER. For a fair comparison of the ideal protocol and
our protocol, we assume the same channel and the same
device for both protocols. The bit-flip part of the two proto-
cols should be equal. The bound of phase-flip rate of our
protocol should be larger than that in the ideal protocol, be-
cause here we have to assume all phase-flip errors have hap-
pened to the single-photon pulses. Our main task remaining
is to estimate the upper bound of error rate of those single-
photon pulses, i.e., e1. We shall use the observed results in
class Y� for the estimation of e1 �15,21�. For such a goal, we
first use

E� = e +
e−�s0���

2S�

, �16�

where E� is the observed error rate of class Y� e is the actual
error rate of those nonvacuum pulses and s0��� is the rate of
vacuum counts in class Y�. We shall first verify the value e,
the true error rate to the nonvacuum pulses, and later we use
the worst-case assumption that all of them have happened to
the single-photon pulses. Note that E� is directly observed,
while s0��� is derived from observed counts of class Y0. We
have

�1 + r0�s0 � s0��� � �1 − r0�s0, �17�

with a probability exponentially close to 1. The likely range
for r0 is, e.g., in the case of �=10−6 with 4109 pulses in
class Y0 is �−1/2�10,1 /2�10�. Therefore, we have a range
for the value of e, whose upper bound is

ê 	 E� − �1 −
1

2�10
� s0

2S�

= e +
s0

4�10S�

. �18�

Here, ê is our estimated upper bound of actual error rate of
nonvacuum pulses in class Y�. In the worst case, all of these
flips could have happened to those single-photon pulses. We
have

ê1 = f � �E� −
s0���
2S�

� ; f = �1
−1��� , �19�

and ê1 is the estimated upper bound of net flipping rate of
single-photon pulses and �1���=s1 /S�. In the normal case
that there is no Eve., the observed value S�=1−e−��

+S0��� therefore

TABLE I. Verification of transmittance of single-photon pulse.
We need the pulses in class Y0 ,Y� ,Y�� for verification. Class Y� or
Y�� need 1010 pulses and Y0 needs 4109.

� 10−3 10−3 10−4 10−4

s0 10−6 210−7 10−6 210−7

� 0.1 0.1 0.22 0.1

�� 0.27 0.26 0.48 0.35

s1 /� 0.958 0.969 0.821 0.922
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�1��� =

s1

�
· ��e−�

1 − e−�� + s0���
�

e−�s1

�
/�1 + s0���/����� .

�20�

We should choose the worst value of r0 among its likely
range so that ê1 is maximized. We can also estimate the
phase-flip error by using the data of class �� in a similarly
way.

As it has been shown in Ref. �21�, in case of nonzero dark
count, one can have a key rate formula even stronger than
Eq. �1�. Actually, for phase-flip part, one only needs to cor-
rect those phase-flip of single-photon pulses. Therefore the
key rate for class Ys is �21�:

Rs = S�s
��1��s� − H�Es�

− �1��s�H� f � �E� −
e−�s0

2S�

+
r0e−�s0

2S�
��� , �21�

and �1��s�=s1 /S�s
. In the normal case that there is no Eve.,

the observed value S�s
=1−e−��+S0��s� therefore

�1��s� =

s1

�
· ��e−�s

1 − e−��s + s0��s�
�

s1

�
· ��e−�s

��s + s0��s�
. �22�

In calculating �1��s�, since ��s is much larger than s0��s�,
we simply replace s0��s� by s0. Note that the quantities S�s

,
E�s

, and E� are directly observed in the protocol itself. Here,
we use the averaged values in normal cases for these quan-
tities to estimate the final key rate. Of course in a real pro-
tocol, the observed values could be a bit different from our
assumed values; consequently, the key rate in a real protocol
could be also a bit different. Normally, the observed value of
S�s

must be around 1−e−��s +s0���s+s0. Es is the error
rate of the main signal pulses. It should be dependent on both
the net flipping rate of nonvacuum pulses and the dark count.
If the net flipping rate of nonvacuum pulses is 3%, then the
observed value for Es must be around Es=0.03+s0 /2S�s

.
Similarly, E�=0.03+s0 /2S�. Given all these, our formula for
key rate is given by

Rs = S�s��1��s� − H�0.03 +
s0

2S�s

�
− �1��s�H��0.03 +

�1 − e−��s0

2S�

+
e−�r0s0

2S�
� f�� .

�23�

Here, we have assumed that the error rate of single-photon
pulses in class Y� and class Ys are equal for simplicity. We
shall argue it later that this assumption does not change our
main results. The key rate of the ideal protocol is

R0��x� = S�x�D1��x� − H�0.03 +
s0

2S�x

��
− D1��x�H�0.03 + � s0

2�� + s0��� . �24�

and

D1��x� =
��xe

−�x

1 − e−��x + s0
, �25�

and the value �x is chosen to maximize the key rate in Eq.
�24�. We shall calculate Rs / �Max�R0��x��� for the relative
key rate. The key rates for class Ys in various cases is listed
in Table II. In our comparison, we have ignored the statistical
fluctuation of the error rate, i.e., we have assumed the error
rate of tested bits are equal to that of untested bits. This does
not change our main result because we have only considered
the relative key rate, i.e., the ratio of our protocol’s key rate
and the ideal protocol’s key rate and the ideal protocol also
has a fluctuation in error rate. Now, we consider a more
restricted condition: The two protocols use the same number
of test bits in error test. Consider the error values in Eqs. �23�
and �24�. We now assume the values of bit-flip rate and
phase-flip rate in Eq. �24� are values after taken the statistical
fluctuation, which is about 0.5% in our setting. Therefore the
bit-flip rate in Eq. �23� remains the same because the fluc-
tuation of this part is almost same with that in the ideal
protocol. We only need to consider the change in phase-flip
part of Eq. �23�. Consider the worst specific setting of �
=10−4, s0=10−6 in Table II. Given such a setting, the phase-
flip of our protocol is about two times of that of the ideal
protocol. Therefore, its likely statistical fluctuation is almost
two times of that ideal protocol, i.e., about 1%. �We have
assumed that the number of single-photon pulse in class Y�

in our protocol is equal to the number of pulses from perfect
single-photon source in the ideal protocol.� But now, we
have assumed the phase-flip value in Eq. �24� to be the one
after taking the fluctuation, therefore we only need to raise
the phase-flip value in our protocol by 0.5% for a new com-
parison. This will decrease the result of R /R0 by only 5%.
Even though we assume zero-statistical fluctuation for the
ideal protocol, the net effect here is to raise the bit-flip rate
by 0.5% and the phase-flip rate by 1% in our protocol, and a

TABLE II. Final key rate, R. The last row is the ratio of key rate
from main signal pulses and the theoretically allowed maximal
value. We have assumed the QBER for signal states in the Ideal
protocol is bounded by t=3%. The number of pulses of in Ys can be
any number larger than 1010. RTAMKR: Theoretically allowed maxi-
mum key rate.

� ,s0 10−3 ,10−6 10−3 ,210−7 10−4 ,10−6 10−4 ,210−7

� ,�� 0.1,0.27 0.1,0.26 0.22,0.45 0.1,0.35

s1��s� /� 0.958 0.969 0.821 0.922

�s 0.548 0.555 0.452 0.532

R /RTAMKR 87.0% 90.1% 42.0% 78.3%
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fairly good key rate can still be obtained for our protocol
with a very lossy channel.

IV. SUMMARY

In summary, we have proposed an efficient and feasible
decoy-state protocol with four intensities to do QKD over
very lossy channel. We have clearly demonstrated how it
works efficiently in practice. That is, how it works with typi-
cal parameter sets in practice and with statistical fluctuations
given only a reasonable number of total pulses. Our results
show that, to improve the distance of secure QKD, reducing
the rate of the dark count is crucially important. Raising the
system repetition rate is also important because it reduces the

possible relative statistical fluctuation. Our protocol with
four different intensities of coherent states can be realized
immediately by using current existing setups.

Note added: Several months after the initial presentation
of Ref. �19� and this work �quant-ph/0411047�, our
3-intensity protocol �19� was further studied in Ref. �22�.
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