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We derive the optimal trade-off between the estimation fidelity and the fidelity of the state after the estima-
tion for a single copy of an unknown pure state of a d-level system belonging to a specific subset of the set of
all pure states. The set of states to be considered here is formed by all pure states of a d-level system produced
by d-independent phase shifts of some reference state. We also propose a measurement scheme realizing such
an optimal partial estimation of multiple phases in which the trade-off between the fidelities can be controlled
by the state of the ancilla.
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I. INTRODUCTION

A general quantum measurement on an unknown pure
quantum state ��� provides classical information on the state
in the form of the measurement outcome. This information
can be converted into an estimate of the state �est. Simulta-
neously, the measurement device produces an output quan-
tum state �out that is an approximate replica of the original
state. It holds that the better the estimate is, the worse the
replica is. To quantify this peculiar property of quantum
measurement one can use two mean fidelities �1�: the mean
fidelity of the output quantum state with respect to the input
state F that characterizes the disturbance introduced by the
measurement and the mean fidelity of the state estimation G
that describes the information gain. In terms of the fidelities
F and G one then can define an optimal partial measurement
as a measurement that gives for a given output fidelity F the
largest possible estimation fidelity G. To seek the optimal
trade-off between the fidelities F and G as well as the opti-
mal measurement schemes is an interesting issue as the
trade-off varies with the set of input states and it was found
to date only in a few cases. To be more specific, recently the
optimal fidelity trade-off was found analytically for a single
copy of a completely unknown pure state of a d-level particle
�1� and numerically for an ensemble of identically prepared
2-level systems �2�. Many quantum information protocols,
such as quantum cryptography �3,4� or phase-covariant
quantum cloning �4,5�, work, however, with pure states of
the form

������ =
1
�d

�
j=1

d

ei�j�j� , �1�

where �= ��1 ,�2 ,… ,�d�, � j � �0,2��, j=1,… ,d, and
	�j�
 j=1

d is an orthonormal basis of a d-level system. Note that
the states �1� can be generated by d independent phase shifts
of the reference state �+ �= �1/�d�� j=1

d �j� �6� and represent a
d-dimensional generalization of the well-known equatorial
states—i.e., states of qubits �d=2� lying on the equator of the
Poincaré sphere. The equatorial states also find practical ap-
plication in quantum cryptography with phase coding �7,8�.
In view of the fact that the optimal estimation strategy gives
for the set of states �1� a higher estimation fidelity Gmax

= �2d−1� /d2 �6,9� than the optimal estimation strategy for a
completely unknown pure state when Gmax� =2/ �d+1� �10�
we also expect that the optimal trade-off between F and G
for a completely unknown pure state derived in �1� will not
be optimal for the set of states �1�.

In this paper we show that the optimal trade-off between
the mean output fidelity F and the mean estimation fidelity G
for a generic trace-preserving quantum operation is for the
set of states �1� of the form

�d2G − d + 1 = �d�1 − F� +�dF − 1

d − 1
�2�

and surpasses the trade-off derived for a completely un-
known state �1�. Further, we construct explicitly a scheme
performing such an optimal partial estimation of multiple
phases. Our scheme is based on the standard quantum non-
demolition �QND� coupling programmed by the state of an-
cilla that allows one to continuously control the flow of in-
formation between the output state and the estimated state.
Programmable quantum devices implementing unitary opera-
tions were considered in �11� and exteded to quantum maps
in �12�. Finally, we also show that such an optimal partial
estimation can be performed even using a weak QND cou-
pling that encodes the information on the input state into
nonorthogonal states of the ancilla.

The paper is organized as follows. In Sec. II we derive the
optimal fidelity trade-off. In Sec. III we design a measure-
ment scheme satisfying the trade-off. Finally, Sec. IV con-
tains the conclusions.

II. DERIVATION OF THE OPTIMAL TRADE-OFF

At the outset we establish a general method how to deter-
mine the optimal partial measurement on a quantum state
which gives for a given mean output fidelity F the largest
possible mean estimation fidelity G. We will be concerned
with the sets of input states that form an orbit of a group G,
���g��=U�g����0��, where U�g�, g�G, is a unitary represen-
tation of the group on the input Hilbert space Hin and ���0��
is a reference state. We will also assume that the a priori
distribution of the input states coincides with the invariant
measure dg on the group.
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With each particular outcome of the considered measure-
ment device labeled by a group element h is associated a
trace-decreasing completely positive �CP� map which can be
represented by a positive-semidefinite operator ��h� on the
tensor product of input and output Hilbert spaces �13�. If the
measurement outcome h has been detected, then the esti-
mated state is ���h�� whereas the output state reads

��h�g� = Trin���h���g�T
� 1out� , �3�

where we have defined ��g�����g�����g�� and 1out is the
identity operator on the output Hilbert space Hout. The output
state �3� is normalized such that its trace is equal to the
probability density P�h�g� of this outcome, P�h�g�dh
=Trout���h�g��dh. The overall input-output transformation
should be a trace-preserving CP map which implies


g

Trout���g��dg = 1in, �4�

where �g denotes integration over the whole group G and 1in
is the identity operator on the input Hilbert space. Perform-
ing many times the considered measurement on the input
state ���g�� we obtain on average the estimated state �est�g�
=�hP�h�g����h�����h��dh and the output state �out�g�
=�h��h�g�dh, where �hdh is the averaging over all possible
measurement outcomes for a fixed input state. The amount of
information acquired on the input state from the considered
measurement can be quantified by the mean estimation fidel-
ity defined as

G = 
g

��g�dg , �5�

where ��g�= ���g���est�g����g�� is the estimation fidelity.
Similarly, the disturbance caused by the measurement can be
quantified by the mean output fidelity defined as

F = 
g

	�g�dg , �6�

where 	�g�= ���g���out�g����g�� is the output fidelity. Any
device described by the set of CP maps ��g� can be con-
verted by twirling operation �14� into a covariant machine
whose fidelities ��g� and 	�g� do not depend on the input
state—i.e., G=��g� and F=	�g�. The covariant machine is
fully characterized by a single operator �0, and all the opera-
tors �cov�g� can be obtained as follows:

�cov�g� = �Uin
* �g� � Uout�g���0�Uin

T �g� � Uout
† �g�� . �7�

It can be shown by direct calculation that if the operator �0 is
chosen to be

�0 = 
g

�Uin
T �g� � Uout

† �g����g��Uin
* �g� � Uout�g��dg , �8�

then the mean fidelities F and G for the covariant machine
�cov�g� become equal to the mean fidelities for the original
machine ��g�. It follows that without loss of any generality
we can restrict our attention to the covariant machines.

For a covariant device, the fidelities can be conveniently
expressed as

F = 
g

Tr��0��g�T
� ��g��dg ,

G = 
g

Tr��0��g�T
� 1out�Tr���g���0��dg . �9�

Next we define positive-semidefinite operators

RF = 
g

��g�T
� ��g�dg ,

RG = 
g

Trout�„��g�T
� ��g�…„1in � ��0�…� � 1outdg .

�10�

Note that RG=Trout�RF1in � ��0�� � 1out. With the use of these
operators the mean fidelities can be written as

F = Tr��0RF�, G = Tr��0RG� . �11�

We seek the optimal trade-off between the fidelities F and G;
i.e., we want to maximize G for a fixed F. This is equivalent
to maximizing a convex mixture of these two fidelities, F
= pF+ �1− p�G, where p� �0,1� controls the trade-off be-
tween the quality of the state estimation and the quality of
the output replica of the state. We can write F=Tr��0Rp�,
where

Rp = pRF + �1 − p�RG. �12�

Taking into account that the trace preservation constraint
yields Tr��0�=d, where d=dim H is the dimension of the
Hilbert space, we have that F is upper bounded by the maxi-
mum eigenvalue rp,max of Rp, F
drp,max. If we find an op-
erator �0 that saturates this bound and satisfies the trace-
preservation constraint �4�, then the covariant machine �7�
generated from �0 is the optimal one that achieves optimal
trade-off between F and G.

In what follows we shall use this general method to de-
termine the optimal partial phase-covariant measurement on
a single d-level system �qudit�. The set of input states has the
form �1�. The underlying group representation U�g� is a ten-
sor product of representations of d-Abelian groups U�1� and
dg= �2��−dd�1¯d�d. The state ���0����+ �, where �+ �
= �1/�d�� j=1

d �j�.
The operators RF and RG can be easily evaluated by inte-

gration over the d phases � j, and after some manipulations
we arrive at

RF =
1

d2�1 + d��+���+� − �
j=1

d

�j j��j j�� ,
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RG =
1

d2��1 −
1

d
�1 + � + ��+ � � ��1out� . �13�

Here ��+�= �1/�d�� j=1
d �j j� is the maximally entangled state

of two qudits and 1 is the identity operator on the total Hil-
bert space Hin � Hout.

In order to determine the optimal �0 we have to investi-
gate the eigenvalues and eigenstates of the operator

Rp =
1

d2��1 −
1 − p

d
�1 + Y� , �14�

where

Y = pd��+���+� − p�
j=1

d

�j j��j j� + �1 − p�� + ��+ � � 1out.

�15�

It is only necessary to determine the eigenvalues � j and
eigenstates �� j� of the operator Y, and the eigenvalues  j of
Rp are then given by  j = �1− �1− p� /d+� j� /d2. It turns out
that Y possesses only four different nonzero eigenvalues, and
they can be all expressed analytically. The eigenvalues

�1,2 =
1

2
�1 + p�d − 2� ± ��1 − pd�2 + 4p�1 − p��d − 1�/d�

�16�

are nondegenerate and the corresponding eigenstates are

��1,2� = ���+� + �� + �� + � , �17�

with properly chosen � and �. Note that

�1 �
1

2
�1 + p�d − 2� + �1 − pd�� � 1 − p . �18�

The other two nonzero eigenvalues are �d−1�-fold degener-
ate,

�3,4 =
1

2
�1 − 2p ± �1 − 4p�1 − p�/d� . �19�

The �d−1�-dimensional subspace of the eigenstates with ei-
genvalue �3��4� is spanned by the states

����j j� −
1
�d

��+�� + ���� + ��j� −
1
�d

� + �� + �� . �20�

It follows from Eq. �19� that

�3 

1 − 2p + 1

2
= 1 − p . �21�

Hence, the eigenvalue �1 is the largest one and the corre-
sponding eigenstate is given by Eq. �17� with both � and �
non-negative. If we choose �0 to be proportional to this
eigenstate, then the machine will be optimal. The normaliza-
tion can be determined from the trace-preservation condition,
and we find that �0= ��0���0�, where

��0� = da� + �� + � + �d�b − a���+� , �22�

where the coefficients b�a�0 satisfy

�d − 1�a2 + b2 = 1, �23�

which can be derived from the condition Tr��0�=d. It can be
easily verified that �cov��� satisfies the trace-preservation
condition �4�, so it represents the optimal phase-covariant
partial measuring device. The optimal map �22� is a coherent
superposition of two extremal transformations: the term ��+�
represents the identity operation, where the initial state is
perfectly preserved and the measurement result is fully ran-
dom, while the term �+ ��+ � can be interpreted as the optimal
phase-covariant estimation on a single qudit, and the output
state coincides with the estimated state.

On inserting the explicit form of �0 into Eq. �11� we get
the mean fidelities F and G expressed in terms of a and b,

F =
1

d
+ b2�1 −

1

d
�, G =

d − 1

d2 +
1

d2 �a�d − 1� + b�2.

�24�

If we combine the formula for F with the normalization con-
dition �23�, we can express a and b in terms of F. Upon
inserting this into the formula for G we finally obtain the
sought optimal trade-off �2� between F and G.

Equation �2� describes the optimal trade-off between the
mean fidelity G of estimation of an unknown state �1� and
the mean fidelity F of the state after the estimation. Squaring
this equation two times one finds after some algebra that the
bound is a fraction of an ellipse depicted for several values
of d in Fig. 1. Figure 1 clearly reveals that the fidelity trade-
off �2� indeed surpasses the fidelity trade-off for optimal par-
tial estimation of a completely unknown pure state �1�:

�F −
1

d + 1
=�G −

1

d + 1
+��d − 1�� 2

d + 1
− G� .

�25�

III. IMPLEMENTATION

The optimal partial estimation of the multiple phases can
be easily performed using the QND-type measurement
scheme depicted in Fig. 2. Initially, the qudit S is prepared in
an unknown state �1� that can be expressed as

FIG. 1. Optimal trade-off between the fidelities F and G for a
partially known state �1� �solid curve� and a completely unknown
state �dashed curve�.
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������S = �
j=1

d

f j� j̃�S, �26�

where f j = �1/d��k=1
d �*jkei�k are inverse Fourier images of

the original complex amplitudes ei�j /�d and 	� j̃�S�F�j�S
 j=1
d

is the basis obtained from the original basis 	�j�S
 j=1
d by the

finite-dimensional Fourier transform �15�

F =
1
�d

�
j,k=1

d

� jk�j��k� , �27�

where �=exp�i2� /d�. Then, the optimal partial QND mea-

surement of the basis states 	� j̃�S
 j=1
d is performed on this

qudit. This measurement can be implemented by coupling
the qudit S to a single properly prepared ancillary qudit A by
the unitary coupling UQND and performing a suitable mea-
surement on the ancilla �17�. The coupling UQND has the
property that there is a normalized state of the ancilla ���A

such that UQND� j̃�S���A= � j̃�S�j�A, where 	�j�A
 j=1
d is an ortho-

normal basis in the state space of the ancilla. Further, we
assume that there is another normalized state ���A that
“switches off” the coupling—i.e., UQND� j̃�S���A

= � j̃�S�1/�d�� j=1
d �j�A. Optimal partial nondemolition measure-

ment of the basis 	� j̃�S
 j=1
d is achieved if the ancilla is pre-

pared in the coherent superposition x���A+y���A of the two
states, where the amplitudes x and y are nonnegative real
numbers satisfying the normalization condition

x2 + y2 +
2xy
�d

= 1 �28�

and the qudit A is measured in the basis 	�j�A
 j=1
d after the

coupling. If the ancilla is found in the state �r�A, we prepare
the state �r̃� �see Fig. 2�. Note that for y=0 the proposed
measurement scheme satisfies the criteria for ideal QND
measurement formulated in �16�. The transformation UQND
can be, for instance, realized by the standard controlled-NOT

�CNOT� gate and its d-dimensional generalization �17�
UCNOT�ĩ�S� j̃�A= �ĩ�S�ĩ � j̃�A, where � denotes addition modulo
d �18�. The CNOT gate was already realized experimentally
with trapped ions �19� as well as with photons �20�.

In order to calculate the fidelities F and G it is convenient
to describe the optimal partial QND measurement by the set
of operators �1�

Ar = x�r̃�S�r̃� +
y
�d

1S, r = 1,2,…,d . �29�

Then, the probability of the measurement of the state �r�A can
be calculated as pr=S������Ar

†Ar������S= �1−y2��fr�2+y2 /d.
After many runs of the protocol with the same input state we
prepare the estimated state �est=�r=1

d pr�r̃��r̃� for which we
find using Eq. �26� the estimation fidelity

���� = �������est������ =
y2

d
+ �1 − y2��

i=1

d

�f i�4. �30�

On the other hand, if the state �r�A is detected on the ancilla,
the state �26� transforms as

������S → Ar������S = xfr�r̃�S +
y
�d

������S. �31�

After repeating our protocol many times with the same input
state we obtain at the output the state �out
=�r=1

d Ar������S������Ar
† for which we arrive using Eqs. �26�

and �31� at the output fidelity

	��� = �������out������ = �1 − x2� + x2�
i=1

d

�f i�4. �32�

In order to calculate the mean fidelities G and F it remains to
integrate the fidelities �30� and �32� over d phases � j. Ex-
pressing the complex amplitudes f i in Eqs. �30� and �32� in
terms of the original complex amplitudes ei�j /�d and per-
forming the integration we finally arrive after some algebra
at the following formulas for the mean fidelities F and G:

G =
2d − 1

d2 −
d − 1

d2 y2, F = 1 − �d − 1

d
�2

x2. �33�

Substituting these fidelities into Eq. �2� and using the nor-
malization condition �28� we find that the equation is satis-
fied and therefore the proposed scheme is optimal. In order
for the scheme in Fig. 2 to be covariant—i.e., to produce the
fidelities ���� and 	��� independent of �—one has to
implement the twirling operations U���� ��� is chosen ran-
domly with uniform probability distribution� and U−1���� on
the qudit S before and after the QND coupling and one has to
prepare the state U−1�����r̃� if the detected state was �r�A.

The optimal partial estimation can be implemented even
with a weak QND coupling U that encodes the information
on the input state into nonorthogonal states of the ancilla—
i.e., U� j̃�S���A= � j̃�S�� j�A, where generally A��i�� j�A�0 for i
� j and A��i��i�A=1 for i=1,… ,d. The coupling transforms
the input state ������S���A into the state

U������S���A = �
j=1

d

f j� j̃�S�� j�A. �34�

After the coupling, we perform the measurement 	�i
i=1
d on

the ancilla which minimizes the error rate of the discrimina-
tion among the states 	��i�A
i=1

d �21�. As the a priori prob-
abilities of these states are not known �the complex ampli-
tudes f j are unknown� the best strategy is to treat the states as

FIG. 2. The scheme of optimal partial estimation of multiple
phases: UQND: quantum nondemolition coupling. M&P: measure-
ment and preparation. See text for details.
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all having equal a priori probabilities. If the outcome �r is
detected, we prepare the state �r̃�. After being repeated many
times the described scheme produces the estimated state
�est=�r=1

d pr�r̃��r̃�, where pr=� j=1
d �f j�2A�� j��r�� j�A is the prob-

ability of detecting the outcome �r. Calculating now the
fidelity ����= �������est������ and integrating it over all d
phases � j we successively arrive at the mean estimation fi-
delity of the form

G =
2d − 1

d2 −
Pe

d
, �35�

where Pe=1− �1/d��r=1
d

A��r��r��r�A is the error rate. At the
output of the coupling the qudit S is in the state �out

=�i,j=1
d f i

*f j� j̃�S�ĩ�A��i�� j�A. Calculating the output fidelity
	���= �������out������ and integrating it over all d phases
� j one finds that the mean output fidelity is upper bounded as
follows:

F 

2d − 1

d2 +
d − 1

d3 �
i�j=1

d

�A��i�� j�A� . �36�

The inequality is saturated if the scalar products ��i�� j�, i
� j are non-negative real numbers. In the case of qubits �d
=2� this condition can be satisfied for any coupling U by
transforming the qubit S after the coupling by phase shift

�1̃�S→ �1̃�S and �2̃�S→exp�−i arg��1��2���2̃�S.
Equation �35� reveals that if the coupling U is such that

the states 	��i�A
i=1
d of the ancilla are nonorthogonal, the pro-

posed scheme does not allow one to achieve maximum pos-
sible estimation fidelity for the state �1� Gmax= �2d−1� /d2

�6�. This is because the error rate is always greater than zero
in this case—i.e., Pe�0—and therefore the estimation fidel-
ity �35� will be always less than Gmax. Interestingly, however,
one can show at least for equatorial qubits �d=2� that the
considered measurement scheme can be made still optimal in
the sense of the trade-off �2�. This happens if the discrimi-
nation measurement on the ancilla is such that the proba-
bility of error Pe is minimum equal to Pe,min
= �1−�1− ���1��2��2� /2 �21�. �In this formula and in what
follows we drop the subscript A in states 	��i�
i=1

d .� By using
the latter formula and Eqs. �35� and �36� one obtains the
output fidelity and the estimation fidelity in the form

F2 =
3 + ���1��2��

4
, G2 =

2 + �1 − ���1��2��2

4
. �37�

Substituting finally the fidelities back into Eq. �2� for d=2
one finds that the equality is satisfied and therefore the con-
sidered measurement is indeed optimal. Equation �37� dem-

onstrates that the smaller the overlap O= ���1��2��2 is, the
larger the fidelity G2 is, the optimum Gmax,2=3/4 being
achieved for the case of orthogonal states 	��i�
i=1

2 . However,
the optimal estimation fidelity Gmax,2=3/4 can be achieved
probabilistically even with the weak coupling U for which
0�O�1. The way to achieve this is via replacing the pre-
vious discrimination measurement by the optimal unambigu-
ous discrimination measurement �22� of the states of ancilla
	��i�
i=1

2 similarly as in �17�. The optimal unambiguous dis-
crimination measurement allows one to discriminate these
states perfectly as soon as they are linearly independent—
i.e., O�1. The price to pay for this is that in the best case
these states are discriminated perfectly only with the prob-
ability Pmax=1− ���1��2��. Obviously, on the subensemble
corresponding to successful discrimination the estimated

state is �est,succ=�i=1
2 �f i�2�ĩ��ĩ� for which the mean estimation

fidelity achieves the maximum possible value G2=Gmax,2
=3/4. On the same subensemble, the output state is the same
mixed state whence also F2=3/4. The obtained result thus
clearly illustrates that it is possible to estimate an equatorial
qubit with the highest possible estimation fidelity even using
a weak QND interaction U which encodes the information on
the input state into the nonorthogonal states of ancilla.

IV. CONCLUSIONS

In this paper we have derived analytically the optimal
trade-off between the mean estimation fidelity and the mean
output fidelity for the set of states �1�. Further, we have pro-
posed a scheme realizing such optimal partial estimation of
these states. The scheme is based on the quantum nondemo-
lition coupling fed by a properly prepared ancilla. For qubits
the scheme can be implemented using the controlled-NOT

gate recently demonstrated experimentally by several groups
�19,20� and for qudits it can be realized using the
d-dimensional generalization of this gate. Finally, we have
also shown that optimal partial estimation of the considered
states can be performed even with weak QND coupling that
encodes the information on the input state into the nonor-
thogonal states of the ancilla.
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