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We propose a quantum secret sharing protocol between multiparty �m members in group 1� and multiparty
�n members in group 2� using a sequence of single photons. These single photons are used directly to encode
classical information in a quantum secret sharing process. In this protocol, all members in group 1 directly
encode their respective keys on the states of single photons via unitary operations; then, the last one �the mth
member of group 1� sends 1/n of the resulting qubits to each of group 2. Thus the secret message shared by
all members of group 1 is shared by all members of group 2 in such a way that no subset of each group is
efficient to read the secret message, but the entire set �not only group 1 but also group 2� is. We also show that
it is unconditionally secure. This protocol is feasible with present-day techniques.
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I. INTRODUCTION

Suppose two groups such as two government depart-
ments, where there are m and n members, respectively, want
to correspond with each other, but members of each group do
not trust each other. What can they do? Classical cryptogra-
phy gives an answer which is known as secret sharing �1�. It
can be used to guarantee that no single person or part of each
department can read out the secret message, but all members
of each group can. This means that for security to be
breached, all people of one group must act in concert,
thereby making it more difficult for any single person who
wants to gain illegal access to the secret information. It can
be implemented as follows: from his original message, every
person �called sender� of group 1 separately creates n coded
messages and sends each of them to each member �called
receiver� of group 2. Each of the encrypted message contains
no information about the senders’ original message, but the
combination of all coded messages contains the complete
message of group 1. However, either a �m+n+1�th party �an
“external” eavesdropper� or the dishonest member of two
groups who can gain access to all senders’ transmissions can
learn the contents of their �all senders� message in this clas-
sical procedure. Fortunately, quantum secret sharing proto-
cols �2–5� can accomplish distributing information securely
where multiphoton entanglement is employed. Recently,
many kinds quantum secret sharing with entanglement have
been proposed �6–10�. Lance et al. have reported an experi-
mental demonstration of a �2,3� threshold quantum secret
sharing scheme �11�. The combination of a quantum key dis-
tribution �QKD� and classical sharing protocol can realize
secret sharing safely. Quantum secret sharing protocol pro-
vides for secure secret sharing by enabling one to determine
whether an eavesdropper has been active during the secret
sharing procedure. But it is not easy to implement such mul-
tiparty secret sharing tasks �2,6�, since the efficiency of pre-
paring even tripartite or four-partite entangled states is very
low �12,13�; at the same time, the efficiency of the existing

quantum secret sharing protocols using quantum entangle-
ment can only approach 50%.

More recently, a protocol for quantum secret sharing with-
out entanglement has been proposed by Guo and Guo �14�.
They present an idea to directly encode the qubit of the quan-
tum key distribution and accomplish one splitting of a mes-
sage into many parts to achieve multiparty secret sharing
only by product states. The theoretical efficiency is doubled
to approach 100%. Brádler and Dušek have given two pro-
tocols for secret-information splitting among many partici-
pants �15�.

In this paper, we propose a quantum secret sharing
scheme employing single qubits to achieve the aim men-
tioned above—the secret sharing between multiparty �m par-
ties of group 1� and multiparty �n parties of group 2�. That is,
instead of giving his information to any one individual of
group 1, each sender splits his information in such a way that
no members of group 1 or group 2 have any knowledge of
the combination of all senders �group 1�, but all members of
each group can jointly determine the combination of all
senders �group 1�. The security of our scheme is based on the
quantum no-cloning theory just as the BB84 quantum key
distribution. Comparing with the efficiency 50% limiting for
the existing quantum secret sharing protocols with quantum
entanglement, the present scheme can also be 100% efficient
in principle.

II. QUANTUM KEY SHARING BETWEEN MULTIPARTY
AND MULTIPARTY

Suppose there are m�m�2� and n�n�2� members in gov-
ernment department 1 and department 2, respectively, and
Alice 1, Alice 2, …, Alice m and Bob 1, Bob 2, …, Bob n are
their respective all members. m parties of department 1 want
quantum key sharing with n parties of department 2 such that
neither one nor part of each department knows the key, but
only by all members working together can each department
determine what the string �key� is. In this case it is the quan-
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tum information that has been split into n pieces, no one of
which separately contains the original information, but
whose combination does.

Alice 1 begins with A1 and B1, two strings each of nN
random classical bits. She then encodes these strings as a
block of nN qubits,

��1� = �k=1
nN ��ak

1bk
1�

= � j=0
N−1��anj+1

1 bnj+1
1 ���anj+2

1 bnj+2
1 � ¯ ��anj+n

1 bnj+n
1 � , �1�

where ak
1 is the kth bit of A1 �and similar for B1� and each

qubit is one of the four states

��00� = �0� , �2�

��10� = �1� , �3�

��01� = � + � =
�0� + �1�

�2
, �4�

��11� = �− � =
�0� − �1�

�2
. �5�

The effect of this procedure is to encode A1 in the basis Z
= ��0� , �1�	 or X= ��+ � , �−�	, as determined by B1. Note that
the four states are not all mutually orthogonal; therefore, no
measurement can distinguish between all of them with cer-
tainty. Alice 1 then sends ��1� to Alice 2 over their public
quantum communication channel.

Depending on a string A2 of nN random classical bits
which she generates, Alice 2 subsequently applies a unitary
transformation �0= I= �0�
0�+ �1�
1� �if the kth bit ak

2 of A2 is
0� or �1= i�y = �0�
1�− �1�
0� �if ak

2=1� on each ��ak
1bk

1� of the
nN qubits she receives from Alice 1 such that ��ak

1bk
1� is

changed into ��ak
2bk

1
0 �, and obtains nN-qubit product state

��20�= �k=1
nN ��ak

2bk
1

0 �. After that, she performs a unitary opera-

tor I �if bk
2=0� or H= �1/�2���0�+ �1��
0�+ �1/�2���0�

− �1��
1� �if bk
2=1� on each qubit state ��ak

2bk
1

0 � according to her

another random classical bits string B2 and makes ��ak
2bk

1
0 � to

be turned into ��ak
2bk

2�. Alice 2 sends Alice 3 ��2�=
�k=1

nN ��ak
2bk

2�. Similar to Alice 2, Alice 3 applies quantum op-
erations on each qubit and sends the resulting nN qubits to
Alice 4. This procedure goes on until Alice m.

Similarly, Alice m first creates two strings Am and Bm of
nN random classical bits. Then she makes a unitary operation
�0 �if ak

m=0� or �1 �if ak
m=1� on each qubit state ��ak

m−1bk
m−1�.

It follows that ��ak
m−1bk

m−1� is changed into ��ak
mbk

m−1
0 �. After

that, she applies operator I �if bk
m=0� or H �if bk

m=1� on the
resulting qubit state ��ak

mbk
m−1

0 � such that ��ak
mbk

m−1
0 � is

turned into ��ak
mbk

m�. Alice m sends N-qubit product states
��1

m� = � j=0
N−1��anj+1

m bnj+1
m � , ��2

m� = � j=0
N−1��anj+2

m bnj+2
m � ,… , ��n

m� =
� j=0

N−1��anj+n
m bnj+n

m � of the resulting nN-qubit state ��m�=
�k=1

nN ��ak
mbk

m� to Bob 1, Bob 2, …, Bob n, respectively.
When all Bob 1, Bob 2, …, Bob n have announced the

receiving of their strings of N qubits, Alice 1, Alice 2, …,

Alice m publicly announce the strings B1 ,B2 ,… ,Bm one af-
ter another, respectively. Note that B1 ,B2 ,… ,Bm reveal noth-
ing about Ai �i=1,2 ,… ,m�, but it is important that all Alice
1, Alice 2, …, Alice m not publish their respective
B1 ,B2 ,… ,Bm until after all Bob 1, Bob 2, …, Bob n an-
nounce the reception of the N qubits Alice m sends to them.

Bob 1, Bob 2, …, Bob n then measure each qubit of their
respective strings in the basis X or Z according to the XOR

result of corresponding bits of strings B1 ,B2 ,… ,Bm. Since
the unitary transformation �1= i�y flips the states in both
measuring bases such that �1�0�=−�1�, �1�1�= �0�, �1�+ �=
�−�, and �1�−�=−�+ �, i.e., I , i�y leave bases X and Z un-
changed, but H turns �0� , �1� , �+ �, and �−� into �+ � ,
�−� , �0�, and �1�, respectively, i.e., H changes bases X and Z,
so if � i=2

m bk
i =bk

2
� bk

3
� ¯ � bk

m=0, then ��ak
mbk

m� should be
measured in the same basis with ��ak

1bk
1�; if � i=2

m bk
i =1, ��ak

mbk
m�

should be measured in the basis different from ��ak
1bk

1�, where
the symbol � is the addition modulo 2. Therefore, if
� i=2

m bk
i =bk

1, ��ak
mbk

m� is measured in the Z basis, otherwise in
the basis X. That is, if � i=1

m bnj+l
i =0, then Bob l measures

��anj+l
m bnj+l

m � in the basis Z; otherwise, he measures in the basis
X. Moreover, after measurements, Bob l can extract out all
Alices’s encoding information � i=1

m anj+l
i , j=0,1 ,2 ,… ,N−1,

for l=1,2 ,… ,n.
Now all Alices and Bobs perform some tests to determine

how much noise or eavesdropping happened during
their communication. Alice 1, Alice 2, …, Alice m
select some bits njr+ l �of their nN bits� at random and
publicly announce the selection. Here jr
� �j1 , j2 ,… , jr0

	� �j1 , j2 ,… , jr0
, jr0+1 ,… , jN	= �0,1 ,2 ,… ,N

−1	 and l=1,2 ,… ,n. All Bobs and all Alices then publish
and compare the values of these checked bits. If they find too
few the XOR results � i=1

m anjr+l
i of the corresponding bits anjr+l

i

of these checked bits of all Alices and the values of Bob l’s
checked bits ��anjr+l

m bnjr+l
m � agree, then they abort and retry the

protocol from the start. The XOR results � l=1
n �� i=1

m anjs+l
i � of

Bob l’s corresponding bits � i=1
m anjs+l

i of the rest unchecked
bits njs+ l of �� i=1

m anj+1
i 	 j=0

N−1 , �� i=1
m anj+2

i 	 j=0
N−1 ,… ,

�� i=1
m anj+n

i 	 j=0
N−1 �or � j=0

N−1��anj+1
m bnj+1

m � , � j=0
N−1��anj+2

m bnj+2
m � ,… ,

� j=0
N−1��anj+n

m bnj+n
m �� can be used as raw keys for secret sharing

between all Alices and all Bobs, where js= jr0+1 , jr0+2 ,… , jN.
This protocol is summarized as follows.
�M1� Alice 1 chooses two random nN-bit strings A1 and

B1. She encodes each data bit of A1 as ��0� , �1�	 if the corre-
sponding bit of B1 is 0 or ��+ � , �−�	 if B1 is 1. Explicitly, she
encodes each data bit 0 �1� of A1 as �0� ��1�� if the corre-
sponding bit of B1 is 0 or �+ � ��−�� if the corresponding bit of
B1 is 1; i.e., she encodes each bit ak

1 of A1 as ��ak
1bk

1� of Eqs.
�2�–�5�, where bk

1 is the corresponding bit of B1. Then she
sends the resulting nN-qubit state ��1�= �k=1

nN ��ak
1bk

1� to Alice
2.

�M2� Alice 2 creates two random nN-bit strings A2 and
B2. She applies �0 or �1 to each qubit ��ak

1bk
1� of nN-qubit

state ��1� according to the corresponding bit of A2 being 0 or
1; then, she applies I or H to each qubit of the resulting
nN-qubit state depending on the corresponding bit of B2 be-
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ing 0 or 1. After this, she sends Alice 3 the resulting nN-qubit
state ��2�.

�M3� Alice i does likewise, i=3,4 ,… ,m−1. Depending
on the corresponding bit ak

m of a random nN-bit string Am,
which she generates on her own, Alice m performs �0 �if
ak

m=0� or �1 �if ak
m=1� on each qubit of ��m−1�. According to

a random bit string Bm which she generates, she subsequently
applies I �if the corresponding bit bk

m of Bm is 0� or H �if
bk

m=1� on each qubit of the resulting nN-qubit state ��m0�,
which results in nN-qubit state ��m�= �k=1

nN ��ak
mbk

m�. After it,
she sends N-qubit state � j=0

N−1��anj+l
m bnj+l

m � to Bob l, 1� l�n.
�M4� Bob 1, Bob 2, …, Bob n receive N qubits and an-

nounce this fact, respectively.
�M5� Alice 1, Alice 2, …, Alice m publicly announce the

strings B1 ,B2 ,… ,Bm, respectively.
�M6� Bob 1, Bob 2, …, Bob n measure each qubit of their

respective strings in the basis Z or X according to the XOR
results of corresponding bits of strings B1 ,B2 ,… ,Bm. That is,
Bob l measures ��anj+l

m bnj+l
m � in the basis Z �if � i=1

m bnj+l
i =0� or

in the basis X �if � i=1
m bnj+l

i =1�, j=0,1 ,… ,N−1, l
=1,2 ,… ,n.

�M7� All Alices select randomly a subset that will serve as
a check on Eve’s interference and tell all Bobs the bits they
choose. In the check procedure, all Alices and Bobs are re-
quired to broadcast the values of their checked bits and com-
pare the XOR results of the corresponding bits of checked bits
of A1 ,A2 ,… ,Am and the values of the corresponding bits of
Bob 1, Bob 2, …, Bob n. If more than an acceptable number
disagree, they abort this round of operation and restart from
first step.

�M8� The XOR results � l=1
n �� i=1

m anjs+l
i � of Bob l’s corre-

sponding bits � i=1
m anjs+l

i of the remaining bits njs+ l of
�� i=1

m anj+1
i 	 j=0

N−1 , �� i=1
m anj+2

i 	 j=0
N−1 ,… , �� i=1

m anj+n
i 	 j=0

N−1 �or
� j=0

N−1��anj+1
m bnj+1

m � , � j=0
N−1��anj+2

m bnj+2
m � ,… , � j=0

N−1��anj+n
m bnj+n

m �� can
be used as key bits for secret sharing between all Alices and
all Bobs, where js= jr0+1 , jr0+2 ,… , jN.

For example, m=2 and n=3. Suppose A1
= �1,0 ,0 ,1 ,0 ,1 ,0 ,1 ,1 ,0 ,0 ,0 ,1 ,1 ,1 ,0 ,1 ,0	 and B1

= �0,1 ,0 ,1 ,1 ,0 ,1 ,1 ,0 ,0 ,1 ,0 ,1 ,0 ,1 ,0 ,0 ,1	 are two ran-
dom 18-bit strings of Alice 1. Depending on B1, then she
encodes A1 as ��1�= �1��+ ��0��−��+ ��1��+ ��−��1��0��+ ��0�
�−��1��−��0��1��+ �. If Alice 2’s two strings of random bits are
A2= �1,1 ,1 ,0 ,0 ,1 ,1 ,1 ,0 ,0 ,0 ,1 ,0 ,1 ,1 ,0 ,0 ,1	 and B2

= �1,0 ,0 ,1 ,1 ,0 ,0 ,0 ,1 ,1 ,1 ,1 ,0 ,0 ,0 ,1 ,0 ,1	, she applies
i�y to the 1st, 2nd, 3rd, 6th, 7th, 8th, 12th, 14th, 15th, 18th
qubits of ��1�, getting ��20�= �0��−��1��−��+ ��0��−��+ ��1��0�
�+ ��1��−��0��+ ��0��1��−�; then, she performs H on 1st, 4th,
5th, 9th, 10th, 11th, 12th, 16th, 18th qubits of ��20�, obtain-
ing ��2�= �k=1

18 ��ak
2bk

2�= �+ ��−��1��1��0��0��−��+ ��−��+ ��0��−�
�−��0��+ ��+ ��1��1�. After that, she sends the 6-qubit
states ��1

2�= � j=0
5 ��a3j+1

2 b3j+1
2 �= �+ ��1��−��+ ��−��+ �, ��2

2�=
� j=0

5 ��a3j+2
2 b3j+2

2 �= �−��0��+ ��0��0��1�, and ��3
2�=

� j=0
5 ��a3j+3

2 b3j+3
2 �= �1��0��−��−��+ ��1� to Bob 1, Bob 2, and

Bob3, respectively. When each of Bob 1, Bob 2, and Bob 3
has received 6-qubit state and announced the fact, Alice 1
and Alice 2 publicly inform all Bobs their respective strings
B1 and B2. Then Bob l measures his qubit state ��a3j+l

2 b3j+l
2 � in

the basis Z if b3j+l
1

� b3j+l
2 =0 or in the basis X if b3j+l

1
� b3j+l

2

=1, for j=0,1 ,… ,5, l=1, 2, 3. From this, Bob 1, Bob 2, and
Bob 3 derive Alice 1 and Alice 2’s encoding information
�0,1,1,0,1,0	, �1,0,0,0,0,1	, and �1,0,1,1,0,1	 of their respec-
tive 6-qubit states if no Eve’s eavesdropping exists. If Alice 1
and Alice 2 choose the 1st, 2nd, 3rd, 13th, 14th, 15th bits as
the check bits, then the XOR results 1 � 0 � 0, 1 � 0 � 1, 0
� 0 � 1, 0 � 1 � 1 �or 1, 0, 1, 0� of the corresponding bits of
Bob 1, Bob 2, and Bob 3’s remaining bits �1,1,0,0	, �0,0,0,1	,
and �0,1,1,1	 are used as raw keys for secret sharing between
two Alices and three Bobs.

Note that B1 ,B2 ,… ,Bm reveal nothing about Ai �i
=1,2 ,… ,m�, but it is important that all Alice 1, Alice 2, …,
Alice m not publish their respective B1 ,B2 ,… ,Bm until after
all Bob 1, Bob 2, …, Bob n announce the reception of the N
qubits Alice m sends to them. If all Alices broadcast their
respective B1 ,B2 ,… ,Bm before all Bobs announce the recep-
tion of the N qubits Alice m sends to them, then either a
�m+n+1�th party �an “external” eavesdropper� or the dis-
honest member of two groups intercepts the nN-qubit state
��m�= �k=1

nN ��ak
mbk

m� can learn the contents of their �all send-
ers� message in this procedure by measuring each qubit in
the Z basis �if � i=1

m bnj+l
i =0� or in the X basis �if � i=1

m bnj+l
i

=1�.
It is necessary for Alice i �2� i�m� applying unitary op-

eration H randomly on some qubits. Each sender Alice i
encoding string Bi on the sequence of states of qubits is to
achieve the aim such that no one or part of Alice 1, …, Alice
m can extract some information of others. Case I: Alice 2
does not encode a random string of I and H on the sequence
of single photons; Alice 1 can enforce the intercept-resend
strategy to extract Alice 2’s whole information. Alice 1 can
intercept all the single photons and measure them, then re-
send them. As the sequence of single photons is prepared by
Alice 1, Alice 1 knows the measuring basis and the original
state of each photon. She uses the same measuring basis
when she prepared the photon to measure the photon and
read out Alice 2’s complete secret messages directly. Case II:
Alice i0 �3� i0�m� is the first one who does not encode a
random string of I and H on the sequence of single photons;
then, one of Alice 1, Alice 2, …, Alice �i0−1� can also en-
force the intercept-resend strategy to extract Alice i0’s whole
information by their cooperation. Without loss of generality,
suppose that Alice 2 intercepts all the particles that Alice i0
sends. Alice 2 can obtain Alice i0’s secret message if Alice 1,
Alice 3, …, Alice �i0−1� inform her their respective strings
B1 ,B3 ,… ,Bi0−1 and A1 ,A3 ,… ,Ai0−1.

This secret sharing protocol between m parties and n par-
ties is almost 100% efficient as all the keys can be used in
the ideal case of no eavesdropping, while the quantum secret
sharing protocols with entanglement states �2� can be at most
50% efficient in principle. In this protocol, quantum memory
is required to store the qubits which has been shown avail-
able in the present experiment technique �16�. However, if no
quantum memory is employed, all Bobs measure their qubits
before Alice i’s �1� i�m� announcement of basis, the effi-
ciency of the present protocol falls to 50%.

Two groups can also realize secret sharing by Alice 1
preparing a sequence of nN polarized single photons such
that the n-qubit product state of each n photons is in the basis
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Z or X as determined by N-bit string B1, instead that in the
above protocol. For instance, �A� Alice i �1� i�m� creates a
random nN-bit string Ai and a random N-bit string Bi, and
Alice 1 encodes her two strings as a block of nN-qubit states
��1�= � j=1

N ��an�j−1�+1
1 bj

1���an�j−1�+2
1 bj

1�¯ ��an�j−1�+n
1 bj

1�, where each

qubit state ��an�j−1�+l
1 bj

1� is one of ��00�= �0�, ��10�= �1�, ��01�
= �+ �, and ��11�= �−�. Then Alice 1 sends ��1� to Alice 2.
Alice i �2� i�m� applies �0 or �1 to each qubit state
��an�j−1�+l

i−1 bj
i−1� �1� l�n� according to the corresponding bit

an�j−1�+l
i of A2 being 0 or 1; then, she applies I �if bj

i =0� or H

�if bj
i =1� to each resulting qubit state ��an�j−1�+l

i bj
i

0 �. Alice m

sends N qubits � j=1
N ��an�j−1�+l

m bj
m� of the resulting nN-qubit

state ��m�= � j=1
N ��an�j−1�+1

m bj
m���an�j−1�+2

m bj
m�¯ ��an�j−1�+n

m bj
m� to

Bob l, 1� l�n. After all Bobs receive their respective N
qubits, Alice i announces Bi; then, Bob l measures each of
his qubit states ��an�j−1�+l

m bj
m� in the basis Z if � i=1

m bj
i =0 or X if

� i=1
m bj

i =1 and deduces its value � i=1
m an�j−1�+l

i if there is no
Eve’s eavesdropping. A subset of �� l=1

n �� i=1
m an�j−1�+l

i �	 j=1
N will

serve as a check, passing the test; the unchecked bits of
�� l=1

n �� i=1
m an�j−1�+l

i �	 j=1
N will take as the raw keys for secret

sharing between two groups. �B� Alice i chooses two random
N-bit strings Ai and Bi, and Alice 1 prepares a block of
nN-qubit states ��1�= � j=1

N ��aj1
1 bj

1���aj2
1 bj

1�¯ ��ajn
1 bj

1�, where ajl
1

is 0 or 1 and � l=1
n ajl

1 =aj
1. Alice i applies a unitary operation

�0 or �1 to each qubit state ��ajl
i−1bj

i−1� depending on the j th
bit aj

i of Ai being 0 or 1, following it, I or H according to Bi,
to each particle. Bob l measures each of his particles ��ajl

mbj
m�

in the basis Z �if � i=1
m bj

i =0� or X �if � i=1
m bj

i =1�. All Alices
select randomly some bits and announce their selection. All
Bobs and all Alices compare the values of these check bits. If
the test passes, then the rest of the unchecked bits of
�� l=1

n �ajl
1

� aj
2

� ¯ � aj
m�	 j=1

N are the raw key for secret shar-
ing between two groups. We should emphasize that n must
be odd in case �B� since � l=1

n �ajl
1

� aj
2

� ¯ � aj
m�=aj

1
� naj

2

� ¯ � naj
m=aj

1 if n is even.

III. SECURITY

Now we discuss the unconditional security of this quan-
tum secret sharing protocol between m parties and n parties.
Note that the encoding of secret messages by Alice i �1� i
�m� is identical to the process in a one-time-pad encryption
where the text is encrypted with a random key as the state of
the photon in the protocol is completely random. The great
feature of a one-time-pad encryption is that as long as the
key strings are truly secret, it is completely safe and no secret
messages can be leaked even if the cipher text is intercepted
by the eavesdropper. Here the secret sharing protocol is even
more secure than the classical one-time-pad in the sense that
an eavesdropper Eve cannot intercept the whole cipher text
as the photons’ measuring basis is chosen randomly. Thus the
security of this secret sharing protocol depends entirely on
the second part when Alice m sends the lth sequence of N
photons to Bob l �1� l�n�.

The process for ensuring a secure block of nN qubits �n
secure sequences of N photons� is similar to that in the BB84
QKD protocol �17�. The process of this secret sharing be-
tween m parties and n parties after all Alices encoding their
respective messages using unitary operations is in fact iden-
tical to n independent BB84 QKD processes, which has been
proven unconditionally secure �18,19�. Thus the security for
the present quantum secret sharing between multiparty and
multiparty is guaranteed.

In practice, some qubits may be lost in transmitting. In
this case, all Alices and Bobs can take two kind strategies:
one is removing these qubits, the other using a qubit chosen
at random in one of four states ��0� , �1� , �+ � , �−�	 as a substi-
tute for a lost qubit. If a member does not receive a qubit and
wants to delete it, she or he must announce and let all mem-
bers in the two groups know the fact. All Alices and all Bobs
sacrifice some randomly selected qubits to test the “error
rate.” If the error rate is too high, they abort the protocol.
Otherwise, by utilizing a Calderbank-Shor-Steane �CSS�
code �18,20,21�, they perform information reconciliation and
privacy amplification on the remaining bits to obtain secure
final key bits for secret sharing. They proceed to this step,
obtaining the final key while all Alices communicate with all
Bobs. In a CSS mode, classical linear codes C1 and C2

� are
used for bit and phase error correction, respectively, where
C2�C1. The best codes that we know exist satisfy the quan-
tum Gilbert-Varshamov bound. The number of cosets of C2
in C1 is �C1� / �C2�=2M, so there is a one-to-one correspon-
dence uK→K of the set of representatives uK of the 2M

cosets of C2 in C1 and the set of M-bit strings K. As in the
BB84 protocol, C1 is used to correct bit errors in the key and
C2 to amplify privacy. For the sake of convenience, we sup-
pose that after the verification test all Alices are left with
the N�-bit string v= �� l=1

n �� i=1
m an+l

i � , � l=1
n �� i=1

m a2n+l
i � ,… ,

� l=1
n �� i=1

m anN�+l
i �	= �� l=1

n �� i=1
m ans+l

i �	s=1
N� , but all Bobs with v

+	 by the effect of losses and noise. Let us assume that a
priori it is known that along the communication channel
used by all Alices and all Bobs, the expected number of
errors per block caused by losses and all noise sources in-
cluding eavesdropping is less than t=
N�, where 
 is the bit
error rate. How can an upper bound be placed on t? In prac-
tice, this can be established by random testing of the channel,
leaving us with a protocol which is secure �22�, even against
collective attacks. If 
 is low enough, we can be confident
that error correction will succeed, so that all Alices and all
Bobs share a secure common key. The secure final key for
secret sharing can be extracted from the raw key bits �con-
sisting of the remaining noncheck bits� at the asymptotic rate
R=Max�1−2H�
� ,0	 �22�, where 
 is the bit error rate found
in the verification test �assuming 
�1/2�. Using a predeter-
mined t error correcting CSS code �18�, the two groups share
a secret key string and realize secure communication. Sup-
pose that government department 1 wishes to send messages
to government department 2. Then, all Alices gather together,
choose a random code word u in C1 �u may be u1+u2+ ¯

+um, where ui is a code word in C1 selected randomly by
Alice i�, and encode their M-bit message P by adding the
message and the M-bit string K together, where u+C2=uK
+C2. Then they send it to government department 2. Bobs

FENG-LI YAN AND TING GAO PHYSICAL REVIEW A 72, 012304 �2005�

012304-4



receive the secret message and publicly announce this fact.
All Alices announce u+v. All Bobs subtract this from their
result v+	 and correct the result u+	 with code C1 to obtain
the code word u. All Alices and all Bobs use the M-bit string
K as the final key for secret sharing. That is, all Alices and all
Bobs perform information reconciliation by the use of the
classical code C1 and perform privacy amplification by com-
puting the coset of u+C2. All Bobs can decode and read out
the message P by subtracting K. No one in department 1 tells
the final key K to someone in or others part of department 2,
since the aim of all Alices is to let all Bobs know their
message.

In summary, we propose a scheme for quantum secret
sharing between multiparty and multiparty, where no en-
tanglement is employed. In the protocol, Alice 1 prepares a
sequence of single photons in one of four different states
according to her two random bit strings; the other Alice i
�2� i�m� directly encodes her two random classical infor-
mation strings on the resulting sequence of Alice �i−1� via
unitary operations. After that, Alice m sends 1/n of the se-

quence of single photons to each Bob l �1� l�n�. Each Bob
l measures his photons according to all Alices’ measuring-
basis sequences. All Bobs must cooperate in order to infer
the secret key shared by all Alices. Any subset of all Alices
or all Bobs cannot extract secret information, but the entire
set of all Alices and the entire set of all Bobs can. As en-
tanglement, especially the inaccessible multiparty entangled
state, is not necessary in the present quantum secret sharing
protocol between m and n parties, it may be more applicable
when the numbers m and n of the parties of secret sharing are
large. Its theoretic efficiency is also doubled to approach
100%. This protocol is feasible with present-day techniques.
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