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We develop a mathematically consistent approach for treating the quantum systems based on moving
classical reference frames. The classical and quantum exact solutions show excellently classical-quantum
correspondence, in which the quantum chaotic coherent states correspond to the classically chaotic motions.
Applying the approach to the periodically driven linear and nonlinear oscillators, the regular and chaotic
quantum states and quantum levels, and the quantum chaotic regions are evidenced. The results indicate that
chaos may cause the collapse of matter wave packets and suppress the quantum effect of energy.
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I. INTRODUCTION

In 1905, Einstein proposed the well-known principle of
relativity �1�; that is, the laws of physics are the same in
different inertial reference frames. Here both the physical
systems and their reference frames are classical. In quantum
mechanics, a problem has arisen, how do the physical laws
change if the considered systems are quantum and the refer-
ence frames are classical? Quantum measurement based on
the classical reference frame is the basis of quantum mechan-
ics. In many quantum treatments, only the motionless classi-
cal reference frames are considered. When the reference
frame moves obeying the classical-mechanical law, the inter-
action between macroscopic and microscopic systems will
induce the coupling between them. The macroscopic-
microscopic coupled systems are a kind of general systems
in any laboratory, where the microscopic systems may be
some atoms, molecules and photons, or say the correspond-
ing very weak fields in macroscopic viewpoint. Some experi-
mentally interesting examples of them are the microscopic
systems on the surfaces of moving macroscopic systems or
the microscopic systems probed by the macroscopically
moving detectors.

Usually, the macroscopic and microscopic systems are de-
scribed by the classical variables and the quantum ones, re-
spectively. In the viewpoints of quantum mechanics �2,3�,
the quantum variables can also be used to explore the mac-
roscopic systems through their classical limits. But the clas-
sical variables cannot be employed for treating the micro-
scopic systems, except for the semiclassical description �4�.
The classical limit of quantum mechanics leads to a route to
an important principle, the classical-quantum correspon-
dence �CQC�. However, a serious problem has arisen in the
fully quantum-mechanical treatments for the classically cha-
otic systems, that is the breakdown of the correspondence
principle �5–7�.

The quantum dynamics of classically chaotic systems has
been a subject of considerable interest in recent years �8,9�.

The usual definition on classical chaos emphasizes the sen-
sitive dependence of phase-space trajectories on the initial
conditions and resists direct transition to quantum mechan-
ics, since quantum mechanics admits wave functions and
does not admit the classical trajectories �10,11�. Hence, in-
vestigating the CQC on chaotic behaviors cannot rely upon
the standard formulations of quantum and classical mechan-
ics. Fortunately, the correspondence between a classical par-
ticle and a quantum Gaussian wave packet has been demon-
strated as a good scheme, which can be realized by a
harmonic oscillator of coherent states �12–14� with the quan-
tum wave packet propagating along the classical trajectory.
The result was extended to the generalized harmonic oscilla-
tors with time-dependent frequencies �15–18�. On the other
hand, we have suggested a method to construct the classi-
cally chaotic solutions �19� of the linearized equations for the
nonlinear weak chaotic systems �20,21�. This method has
also been applied to several different physical systems and
resulted in some interesting results �22�. Apparently, the lin-
earized systems of the original systems are just a kind of
generalized harmonic oscillators. This supplies a route to
CQC between the classical chaos in the linearized systems
and the irregular motions of the quantum wave packet for the
generalized harmonic oscillators.

Recently, the classical-quantum coupled systems have at-
tracted significant interests �23,24�. The coupling between a
quasiclassical variable and a quantum one was phenomeno-
logically described by using the variational principle and the
theory of continuous quantum measurement �25,26�. The
mixed quantum-classical treatments were applied in many
different areas �27,28�. In this paper, we shall present a math-
ematically consistent approach for treating the quantum sys-
tems based on classically moving reference frames. Utilizing
a direct perturbation theory, we separate the combined sys-
tem of the macroscopic frame with microscopic field into n
subsystems and identify the zero-order and first-order sub-
systems as the classical and quantum ones, respectively. That
is, the leading order subsystem obeys classical dynamics, but
its first-order correction obeys quantum mechanics. Applying
the approach to the systems of weakly driven linear and non-
linear oscillators, we find excellent CQC in chaos, in which
the quantum chaotic coherent states correspond to the clas-
sically chaotic solutions. The classical and quantum exact
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solutions of the microscopic subsystems reveal many inter-
esting properties such as the classical and quantum chaotic
states, the regular and chaotic quantum levels, and the quan-
tum chaotic regions.

The outline of this paper is as follows. We present the
approach for separating the macroscopic-microscopic
coupled systems in the next section. In Sec. III, we propose
the general CQC protocol of the microscopic subsystem, that
is valid for both the regular and chaotic systems. The ap-
proach and protocol are applied to the systems of a periodi-
cally driven linear oscillator and a nonlinear Duffing system,
respectively, in Sec. IV and Sec. V. Last, we briefly summa-
rize the results and discuss some challenging topics.

II. SEPARATION OF THE COUPLED SYSTEM

In order to study a microscopic system on the surface of a
macroscopically moving system, say a flight simulator, or to
probe a microscopic system by employing a macroscopically
moving detector, one must consider the coupling between the
macroscopic and microscopic systems. For a general
macroscopic-microscopic coupled system, its dynamics is
dominated by the Hamiltonian

H =
p2

2m
+ V0�r,t� + �V1�r,t� , �1�

where V0 denotes the macroscopic potential governing the
classical reference frame, V1 is the interaction potential with
strength �� � �1 being of the microscopic order, which may
result from some atoms, molecules, and photons. According
to the viewpoint of quantum mechanics, the system including
the microscopic subsystem cannot be treated by using clas-
sical mechanics. In the fully quantum-mechanical treatment,
the macroscopic-microscopic coupled system is usually un-
solvable that necessitates the quantum perturbation theory
�29–31�. However, if the system �1� is a classically chaotic
one, the fully quantum-mechanical treatment may lead to a
breakdown of the correspondence principle �5–7�. In order to
seek the CQC for the chaotic systems, one had to employ
some semiclassical approximate methods �32,33�. In this sec-
tion we shall adopt the classical perturbation theory to sepa-
rate such coupled systems into a completely classical system
and a pure quantum one that supplies a mathematically con-
sistent procedure for investigating the considered problems.

For simplicity, we only consider the one-dimensional case
of Eq. �1�. The classical canonical equations of motion ẋ
=�H /�p , ṗ=−�H /�x are equivalent to the second order equa-
tion

mẍ = −
�

�x
�V0�x,t� + �V1�x,t�� . �2�

Using the direct perturbation method, we first expand the
coordinate variable as

x = x0 + �
i=1

�

xi �3�

with xi in the order of �i. Therefore, x0 represents the mac-
roscopic variable of the classical reference frame, x1 is a

microscopic quantity being proportional to the perturbation
parameter �, and xi for i�1 are the infinitesimals of i�2
orders which will be neglected in the latter. Near x0, one can
expand V0�x , t� as V0�x0 , t�+ ��V0 /�x0�x1+¯. Inserting this
expansion and Eq. �3� into Eq. �2� and comparing the terms
of same order in both sides, one can obtain the zero-order
equation

mẍ0 = −
�

�x0
V0�x0,t� �4�

for the classical reference frame and the first-order equation

mẍ1 = − V0��t�x1 − �V1��t� �5�

for the quantum subsystem. Here, V0��t�=�2V0 /�x0
2

=V0��x0�t� , t� ,V1��t�=�V1 /�x0=V1��x0�t� , t�. The system domi-
nated by Eq. �4� is a Hamilton’s one with the Hamiltonian

H0 =
p0

2

2m
+ V0�x0,t� , �6�

where p0 is the conjugate momentum of the canonical coor-
dinate x0. The Hamilton system �6� is independent of the
perturbation parameter � and the microscopic variable x1, so
it is a pure macroscopic system and can be solved directly by
the classical law of motion. Applying the zero-order solution
x0�t� of Eq. �4� to Eq. �5�, the latter becomes a linearized
equation with the variable coefficient −V0��t� and nonhomo-
geneous term −�V1��t�. When Eq. �4� is a nonlinear system,
the coefficient of Eq. �5� depends on the classical solution
x0�t�, and the linear equation �4� leads the coefficient of Eq.
�5� to be independent of x0�t�.

Replacing the macroscopic coordinate x0 with its time-
dependent classical solution x0�t�, the spatial variable in Eq.
�5� is only the microscopic one x1. Therefore, the system
governed by Eq. �5� is a pure microscopic one that should be
treated by employing quantum mechanics. To quantize the
microscopic subsystem �5�, we construct the corresponding
Hamiltonian operator

H1 =
p1

2

2m
+

1

2
V0��t�x1

2 + �V1��t�x1, �7�

with p1=−i�� /�x1 denoting the conjugate momentum of x1.
Obviously, the canonical equations ẋ1=�H1 /�p1 and ṗ1
=−�H1 /�x1 are equivalent to the equation of motion �5�. The
quantum dynamics of the linearized system �5� is dominated
by the Schrödinger equation �2,3�

i�
���x1,t�

�t
= H1��x1,t� �8�

with wave function ��x1 , t�. Thus we have separated the
coupled macroscopic-microscopic system �1� into the macro-
scopic subsystem �6� and microscopic subsystem �7�. The
former is governed by only the classical equation �4� and the
latter is dominated by both the classical equation �5� and the
quantum one �8�. Clearly, the former play the role of a mov-
ing reference frame for the latter. It is worth noting that Eq.
�8� completely differs from the perturbed equation in the
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previous quantum perturbation theory. Particularly, Eqs. �1�,
�6�, and �7� mean that H�H0+H1 in our theory.

III. CLASSICAL-QUANTUM CORRESPONDENCE

We are interested in the CQC of the microscopic sub-
system �7�. It is easy to solve the linearized nonhomoge-
neous equation �5�. Utilizing the techniques of constant
variation and the natural units, the general solutions of Eq.
�5� in classical phase space can be expressed as �19�

x1c�t� = A�1�t� + B�2�t� + ���1�t��
0

t

�2�t�V1��t�dt

− �2�t��
0

t

�1�t�V1��t�dt	 ,

p1c�t� = A�̇1�t� + B�̇2�t� + ���̇1�t��
0

t

�2�t�V1��t�dt

− �̇2�t��
0

t

�1�t�V1��t�dt	 , �9�

where �1�t� and �2�t�=�1
��1�−2dt denote the two linearly
independent solutions of the Eq. �5� with �=0, A and B are
two arbitrary constants determined by the classical initial
conditions of the system, and the terms proportional to �
represent a special solution of Eq. �5�. If Eq. �4� is a nonlin-
ear equation, �i�t� is related to its solution x0�t�. Further if
x0�t� is a homoclinic or heteroclinic solution �21� and V1��t� is
a time-periodic function, Eq. �9� is just the chaotic solution
�22� under the Melnikov’s chaos criterion �20�.

Now, we begin to seek the relationship between the clas-
sical solutions Eq. �9� and the quantum wave function in Eq.
�8�. We have known the similar relationship for the time-
dependent harmonic system �7� with �=0 �15–17�. Applying
the Husimi’s test-function method �34� and using the natural
units with m=�=1, we take the solution of Eq. �8� in the
form

�n�x,t� = an�t�Hn�	�e�b�t�x1−c�t�x1
2−f2�t�/2�,

	 = e�t�x1 − f�t�, n = 0,1, . . . . �10�

Here an�t� ,b�t� ,c�t� are the complex functions of time and
e�t� , f�t� the real functions, and Hn�	� the Hermitian polyno-
mial of variable 	. Taking the first-order partial derivative
with respect to time and the second one with respect to co-
ordinate from Eq. �10� results in

i
��n

�t
= ian� ȧn

an
Hn + �ėx1 − ḟ�

�Hn

�	
+ �ḃx1 − f ḟ

− ċx1
2�Hn	e�b�t�x1−c�t�x1

2−f2�t�/2�,

�2�n

�x1
2 = an�e2�2Hn

�	2 + �2b − 4cx1�e
�Hn

�	
+ �b2 − 2c − 4bcx1

+ 4c2x1
2�Hn	e�b�t�x1−c�t�x1

2−f2�t�/2�.

Applying these and Eq. �7� to Eq. �8�, we arrive at the equa-
tion

e2�2Hn

�	2 + 2�be − i ḟ + iėx1 − 2cex1�
�Hn

�	
+ 2�i

ȧn

an
− if ḟ +

b2

2

− c + �iḃ − 2bc − �V1��t��x1 + �2c2 − iċ −
1

2
V0��t�	x1

2�Hn

= 0. �11�

Notice that the Hermitian polynomial must obey the Hermit-
ian equation �2Hn /�	2−2	�Hn /�	+2nHn=0. Comparing this
with Eq. �11� yields

iċ = 2c2 − V0��t�/2, iḃ = 2bc + �V1��t�, iė = 2ce − e3,

i ḟ = be − e2f , iȧn/an = if ḟ − b2/2 + c + ne2. �12�

This group of equations is similar to Eq. �4� of Ref. �16� and
Eq. �5� of Ref. �35�, when �=0 is set. Adopting the same
method with Refs. �16,35� we can easily derive its formally
exact solution as follows.

The first of Eq. �12� is a complex Riccati equation, which
can be transformed into a complex equation of a classical
harmonic oscillator with time-dependent frequency,


̈ = − V0��t�
 , �13�

through the function transformation c= 
̇ / �2i
�. The general
solution of Eq. �13� can be easily found as


 = 
1 + i
2 = ��t�exp�i��t�� , �14�

where the real functions 
1 and 
2 are the real and imaginary
parts of 
. We will use 
i, �, and � in Eq. �14� as the known
functions throughout the paper. Comparison between Eq.
�13� with Eq. �5� shows that Eq. �13� has the form of the
homogenous equation of Eq. �5� with �=0. However, the
solutions of Eq. �13� can be some complex functions and Eq.
�5� has only real solutions physically. Given the two linearly
independent solutions of the homogeneous equation �i as in
Eq. �9�, the real function 
i reads


i = Ci�1 + Di�2, �15�

where Ci and Di are arbitrary real constants adjusted by the
initial conditions of the classical harmonic oscillator, and the
real functions ��t� and ��t� obey

� = 
1
2 + 
2

2 = �C1�1 + D1�2�2 + �C2�1 + D2�2�2,

� = arctan

2


1
= arctan

C2�1 + D2�2

C1�1 + D1�2
. �16�

Given the function 
, the transformation between it and c
gives
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c =

̇

2i

=

1

2
�̇ − i

�̇

2�
. �17�

Substituting Eq. �14� into Eq. �13� yields the equations of the
amplitude and phase as

�̈ = − 2�̇�̇/�, �̈ = ��̇2 − V0��t�� �18�

with the first integration constant

c0 = �2�̇ = 
1
̇2 − 
2
̇1, �19�

which equates the Wronskian constant. Given the function
c�t� as in Eq. �17�, from equation group �12� we can easily
obtain the complex functions a�t� ,b�t� and real functions
e�t� , f�t�. At first we insert Eq. �17� into the second equation
of Eq. �12� and apply the constant-variation method, produc-
ing

b�t� = b��t� + ib��t�

= 
−1�b0 − i��
0

t

V1��t�
dt	
=


1 − i
2

�2 �b0� + ib0� − i��
0

t

V1��t��
1 + i
2�dt	 ,

b��t� =

1

�2�b0� + ��
0

t

V1��t�
2dt	 +

2

�2�b0� − ��
0

t

V1��t�
1dt	 ,

b��t� =

1

�2�b0� − ��
0

t

V1��t�
1dt	 −

2

�2�b0� + ��
0

t

V1��t�
2dt	 .

�20�

Here b0� and b0� are two real constants related to the initial
conditions, and b��t� ,b��t� are two real functions. Noticing
that e�t� is a real function and applying Eqs. �17� and �19� to
the third equation of Eq. �12�, we get

ė

e
= −

�̇

�
, e = ± �̇ = ±

c0

�
. �21�

Similarly, because f�t� is a real function and b�t� in Eq. �20�
is a complex function, the fourth equation of Eq. �12� and
Eq. �21� give

ḟ = eb� = ± c0
b�

�
, f =

b�

e
= ±

b��

c0

. �22�

This implies the relationship �d /dt��b��� /c0=c0b� /�,
which is just satisfied by Eq. �20�. In fact, with 
1 /�

=cos �, 
2 /�=sin �, and �̇=c0 /�2, from Eq. �20� we can
immediately obtain this relationship. The final equation of
Eq. �12� seems to be complicated, whose solution can be
constructed by the direct integration

a = an = An exp� f2

2
+ i� �b2

2
− c − ne2	dt� , �23�

where An is a normalization constant. Noticing b2=b�2−b�2

+2ib�b� and Eq. �22�, we have the integration 
b�b�dt

=
fdf = f2 /2. Substituting this and Eqs. �17� and �21� into
Eq. �23� leads to

an =
An

�
exp�− i��1

2
+ n	� −

1

2
� �b�2 − b�2�dt��

�24�

in terms of the real functions ��t�, ��t�, b��t�, and b��t�. It is
interesting that by Eqs. �17�, �21�, and �22� we mean

b�t�x1 − c�t�x1
2 −

f2�t�
2

= �b�x1 −
�̇

2
x1

2 −
f2

2
	 + i�b�x1 +

�̇

2�
x1

2	
= �efx1 −

e2

2
x1

2 −
f2

2
	 + i�b�x1 +

�̇

2�
x1

2	
= −

1

2
	2 + i�b�x1 +

�̇

2�
x1

2	 ,

where 	=ex1− f , as in Eq. �10�. Applying this and Eq. �24� to
Eq. �10� produces the orthonormalized exact wave function

�n�x1,t� = Rn�x1,t�exp�in�x1,t�� ,

Rn�x1,t� =
�c0/��1/4

2nn!��t�
Hn�	�exp�−

1

2
	2	 ,

n�x1,t� = b��t�x1 +
�̇�t�

2��t�
x1

2

− �1

2
+ n	��t� +

1

2
� �b�2�t� − b�2�t��dt ,

	 =
c0

��t�
x1 −

��t�
c0

b��t�, n = 0,1,2, . . . . �25�

Here the normalization condition 
��n�2dx1

=An
2c0

−1
Hn
2�	�exp�−	2�d	=An

2�c0
−12nn!=1 has been used

to give the normalization constant An= �c0 / ��2nn!��1/2. In
Eq. �25�, the function ��t� and ��t� depend on the macro-
scopic potential V0�x0�t� , t� through Eqs. �13� and �14�, and
Eq. �20� shows the correlation of the functions b��t� and b��t�
to the microscopic potential V1�x0�t� , t�.

In Eqs. �15�, �19�, and �20�, more arbitrary constants are
introduced for the quantum solution �25�, but only two arbi-
trary constants are needed in the classical solution �9�. These
constants may not be independent and there exist some rela-
tions between Ci, Di, and c0. For example, combining Eqs.
�15�, �16�, and �19�, and noticing the Wronskian constant
�̇2�1− �̇1�2=1, we find one of the relations

c0 = 
̇2
1 − 
̇1
2

= �C1D2 − C2D1���̇2�1 − �̇1�2� = C1D2 − C2D1.

However, there have four independent constants associated
with c�t� and b�t�, since the equations governing them are
complex ones in Eq. �12�, which contain four independent
integration constants. Hence the quantum solution �25� in-
cludes more independent constants and more choices of
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states than the classical Eq. �9�. We now seek the interesting
kind of these quantum states, the coherent state, through the
selections of the arbitrary constants. The Schrödinger’s origi-
nal definition �12–14� of the coherent state �n requires x1c
=x1q, p1c= p1q with �x1q= ��n�x1��n� , p1q= ��n�p1��n�� being
the quantum expectation values of �x1 , p1�. Noticing the or-
thonormalization condition ��n ��n��=�nn� and the formulas

	�n = n/2�n−1e−i� + �n + 1�/2�n+1ei�,

2	2�n = n�n − 1��n−2e−2i� + �2n + 1��n

+ �n + 1��n + 2��n+2e2i�,

1

Hn

�Hn

�	
�n = 2n

Hn−1

Hn
�n = 2n�n−1e−i�, �26�

from Eqs. �25�, �22�, and �20� we immediately obtain

x1q�t� = ��n�x1��n�

=
�2

c0
b� =


1

c0
�b0� + ��

0

t

V1��t�
2dt	 +

2

c0
�b0�

− ��
0

t

V1��t�
1dt	 ,

p1q�t� = ��n� − i
�

�x1
��n�

= b� +
�̇

�
x1q

= b� +
�̇�

c0
b�

=
2�̇�

c0
b� +

�2

c0
ḃ�

= ẋ1q =

̇1

c0
�b0� + ��

0

t

V1��t�
2dt	 +

̇2

c0
�b0�

− ��
0

t

V1��t�
1dt	 . �27�

When the constants Ci and Di of Eq. �15� are selected as
C1=D2=c0, C2=D1=0, Eq. �15� becomes


1 = c0�1, 
2 = c0�2. �28�

Applying them to Eq. �27� and setting b0� /c0=A, b0� /c0
=B lead Eq. �27� to the same form with Eq. �9�, namely
�x1q , p1q�= �x1c , p1c�. In other words, the definition of coher-
ent state makes the numbers of independent constants to re-
duce to 2, namely only the classical constants A and B of Eq.
�9� are required in the quantum-mechanical coherent state
included in Eq. �25�.

The norm Rn
2�x1 , t� of exact solution �25� for any quantum

number n describes the wave packet train consisting of n
+1 packets at any time, since it is proportional to the Her-
mitian polynomial Hn

2�	�. The instantaneous ground state

with n=0 is a Gaussian wave packet similar to that of the
coherent state of a harmonic oscillator �12–14�. The function
��t� that appears in 	 of Rn describes the widths of the wave
packet train and each packet. For any train the average width
of the packets is � /c0. The same function that appears in the
radical of equation �25� determines the heights of every
packet. When the changes in the widths and heights are
small, the wave packets agree approximately with a propa-
gating train without deformation. The normalization condi-
tion implies that the broader wave packet train associates
with smaller mean height, and the narrower wave packet
train corresponds to larger mean height. The orbit of the
center of the wave packet train is given as x1=xc�t� from 	
=0. Applying Eqs. �20�–�22� and �27�, from 	=0 we have the
center orbit

xc�t� =
f

e
=

b�

e2 =
�2

c0
b� = x1q�t� = x1c�t� . �29�

This means that in the considered case the center of the
quantum wave packets moves along the corresponding clas-
sical orbit. Thus under the condition �28� we arrive at a good
CQC in the microscopic subsystem. Therefore, we can assert
that Eq. �28� is also the requirement of the correspondence
principle. This CQC is valid for the classical chaotic systems
with x1c�t� being the chaotic solution �22� under the Melni-
kov’s chaos criterion, since the corresponding quantum wave
packets propagate along the chaotic orbit, xc�t�=x1c�t�, and
the quantum-mechanical expectation orbit is also the chaotic
one, x1q�t�=x1c�t�.

The phase of wave function n�x1 , t� is a complicated
temporal-spatial function, which is directly related to the en-
ergy of the microscopic subsystem. Applying Eqs. �25�–�27�
to calculate the expectation value of energy, we obtain

En�t� = ��n�i
�

�t
��n� = ��n��i

Ṙn

Rn
− ̇n	��n�

The imaginary part vanishes, because of the equation

��n�
Ṙn

Rn
��n� = −

i�̇

2�
+ i��n�	̇� 1

Hn

�Hn

�	
− 		��n�

= −
i�̇

2�
− i��n�2n

�̇

�
	��n−1� + i��n�

�̇

�
	2��n−1� = 0,

where Eqs. �25� and �26�, and 	̇=xė− ḟ =−�̇�	+ f� /�− ḟ have
been used. Given this equation, the real energy becomes

En�t� = − ��n�̇n��n�

= �1

2
+ n	�̇ −

1

2
�b�2 − b�2� − ḃ�x1c −

d

dt
� �̇

2�
	��n���2

c0
	2

+
�4

c0
2 b�2	��n�

= �1

2
+ n	� c0

�2 −
�2

c0

d

dt
� �̇

2�
	� −

1

2
�b�2 − b�2� − ḃ�x1c
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−
d

dt
� �̇

2�
	x1c

2 .

From Eqs. �27� and �22� we get b�=�2x1c /c0, b�= p1c
− �̇x1c /�. Applying them and Eqs. �5�, �18�, and �19� to the
energy formula yields

En�t� = �1

2
+ n	 1

2c0
� c0

2

�2 + �̇2 + V0��t��
2	 +

1

2
�p1c

2 + V0��t�x1c
2 �

+ �V1��t�x1c. �30�

Here the functions �, x1c=x1q and p1c= p1q are shown in Eqs.
�16� and �27�. It is very interesting noting that the expecta-
tion value of energy consists of the classical energy as in Eq.
�7� and the quantum level. In the case V0�=constant,
1
2 �c0

2 /�2+ �̇2+V0��
2� is just one of the first integration con-

stants of Eq. �18�. Thus for the time-independent Hamil-
tonian with V0�=constant and V1�=constant, the quantum level
becomes the well-known level of a stationary state harmonic
oscillator. In the viewpoint of quantum mechanics, the sys-
tem can transit between the different energy states with dif-
ferent quantum number n.

IV. EXACT QUANTUM MOTION OF A DRIVEN
OSCILLATOR

To evidence the above-mentioned results, we now take a
macroscopic harmonic oscillator driven by a microscopic pe-
riodic potential as a simple example. In the natural units with
m=�=�=1, the macroscopic and microscopic potential read

V0�x0� = 1
2x0

2, �V1�x0,t� = �x0 cos �t . �31�

Consequently, the functions V0��t�, V1��t� and the Hamiltonian
of microscopic subsystem become

V0� = 1, V1��t� = cos �t ,

H1 =
p1

2

2
+

1

2
x1

2 + �x1 cos �t . �32�

Here � and � are the harmonic frequency and driving fre-
quency, respectively. Such linear oscillator has been experi-
mentally realized by laser driving a Paul trapped ion �36�.
Inserting Eqs. �31� and �32� into Eqs. �4� and �5�, respec-
tively, we obtain the zero order equation and the first order
one. The homogenous equation associated with the latter is
in the same form with the former. So they possess the same
two linearly independent solutions as �22�

�1 = sin t, �2 = �1� ��1�−2dt = − cos t . �33�

The general solution of Eq. �4� is the linear superposition of
the two solutions. The application of Eqs. �32� and �33� to
the first of Eq. �9� gives the classical general solution of the
nonhomogenous equation �5�,

x1c�t� = A sin t − B cos t + ��cos t� cos��� − 1�t� − 1

2�� − 1�

−
cos��� + 1�t� − 1

2�� + 1� 	 − sin t� sin��� − 1�t�
2�� − 1�

+
sin��� + 1�t�

2�� + 1� 	� . �34�

The limits of x1c�t� at �= ±1��� is called the resonance so-
lution, which reads

x1,�=±1�t� = lim
�→±1

x1c�t�

= A sin t − B cos t +
�

2
�cos t sin2 t − sin t�t

+
1

2
sin 2t	� . �35�

The resonance solution contains the nonperiodical term
− 1

2�t sin t, which oscillates with amplitude being propor-
tional to time t. With the increase of time, this will lead to
loss of stability. In quantum mechanics, the resonance is as-
sociated with the quantum transitions between different
states represented by the different quantum numbers.

Let us now derive the quantum-mechanical exact solution
of the periodically driven harmonic oscillator from the given
procedure. Combining Eq. �33� with Eq. �28�, we get the
CQC condition


1 = c0 sin t, 
2 = − c0 cos t �36�

for the considered system. Applying this to Eqs. �16�, �17�,
�20�–�22�, and �27� produces the solutions of Eq. �12� as

� = c0, � = t −
�

2
, c =

1

2
, e = ± 1, f = ± b�

�37�

and

b� = x1c�t� = x1q�t� = ��n�x1��n� ,

b� = B sin t + A cos t − ��sin t� cos��� − 1�t� − 1

2�� − 1�

−
cos��� + 1�t� − 1

2�� + 1� 	 − cos t� sin��� − 1�t�
2�� − 1�

+
sin��� + 1�t�

2�� + 1� 	� , �38�

an =
1

�2nn!
exp�− i��1

2
+ n	�t −

�

2
	

−
1

2
� �b�2 − b�2�dt�� , �39�

where the formulas b0� /c0=A, b0� /c0=B have been em-
ployed. Combining these with Eq. �25� leads to the ampli-
tude and phase of the wave function,
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Rn�x1,t� =
1

�2nn!
Hn�	�exp�−

1

2
	2� for 	 = x1 − b��t� ,

n�x1,t� = b��t�x1 − �1

2
+ n	t +

1

2
� �b�2�t� − b�2�t��dt .

�40�

Here a constant phase factor has been omitted. Because of
�=constant, the wave packet train described by Rn

2 in Eq.
�40� keeps its shape in the temporary evolution. However, its
center oscillates with coordinate xc=x1c, as in Eq. �34� gen-
erally or in Eq. �35� for the resonance case.

In the state �n=Rnein, we calculate the expectation value
of energy for the microscopic subsystem as Eq. �30�. Apply-
ing Eqs. �32� and �37� to Eq. �30�, we easily find the average
energy

En�t� = 1
2 + n + 1

2 �p1c
2 �t� + x1c

2 �t�� + �x1c�t�cos �t , �41�

for n=0,1 , . . . . Here the first two terms are the quantum
level of the harmonic oscillator, and the other terms consti-
tute the classical energy in the form of Eq. �32�. At �=0 the
classical energy is a constant and the average energy agrees
with the quantum level after omitting a constant energy. Note
that the corresponding macroscopic subsystem possesses the
constant energy E�0�= 1

2 �ẋ0
2�t�+x0

2�t��, since it is a conserva-
tive system. On the other hand, for the instantaneous ground
state of the microscopic subsystem, n=0, the quantum-
mechanical expectation energy is equal to the corresponding
classical energy after omitting the zero-point energy 1/2.
This property is similar to that of the common coherent state
of a harmonic oscillator. In fact, setting �=0 and n=0, Eq.
�40� is just in agreement with the well-known coherent state
�12–14�. Therefore, we can call our wave function the gen-
eralized coherent state with multiple wave packets.

At the end of this section we emphasize that Eqs. �40� and
�41� express the quantum-mechanical exact solutions of the
driven oscillator system �32�. In previous quantum mechan-
ics �3�, such a system was usually solved by using the quan-
tum perturbation theory, where the driving field was treated
as a perturbation. Obviously, our exact solutions completely
differ from the previous quantum perturbed solutions, and
there does not exist contradiction between them. In general,
the perturbation theory is no longer valid in quantum me-
chanics, when the driving field is strong enough or too weak.
The system under a microscopically strong field necessitates
the exact solutions, and the system with a microscopically
weak field requires the quantum perturbed solutions, where
the driving fields are looked at as the classical fields. The
very weak driving fields must be quantized by the scheme of
quantum field theory and then are applied to the above-
mentioned procedure, where the Fock representation may be
more convenient �15,36�.

In addition, from Eqs. �35� and �41� we know that in the
resonance cases �= ± �En+1−En�= ±1���, the wave packet
center with coordinate xc=x1c=x1,�=±1 and the expectation
value of energy will oscillate with infinite amplitude as time
tending to infinity. This implies the resonance loss of stabil-
ity for both the classical and quantum solutions, that may

lead the system to transit to a state �37�. Thus we have pro-
posed a method for studying the stabilities of quantum sys-
tems.

V. CHAOTIC COHERENT STATES OF A NONLINEAR
OSCILLATOR

We have shown a kind of interesting CQC for the regular
motions of a linear system, namely the particle wave packet
correspondence in which the classical particle is the har-
monic oscillator and the quantum wave packet is in the gen-
eralized coherent state of the harmonic oscillator. In this sec-
tion, we are interested in suppressing the breakdown of the
correspondence principle in the full quantum-mechanical
treatment of a classical chaotic system �5–7�. We take the
periodically driven Duffing oscillator with a macroscopic
nonlinear potential and a microscopic periodic potential as
an exemplification. The periodically driven Duffing oscilla-
tor model has many physical sources such as the magneto-
elastic beams driven by an external periodic force �38,39�,
the Bose-Einstein condensate in a oscillating field �22,40�
and so on. The macroscopic and microscopic potential of the
model are written as �21,38,39�

V0�x0� = − 1
2m�2x0

2 + 1
4�x0

4,

�V1�x0,t� = �x0 cos �t �42�

with � denoting the strength of nonlinearity. We will adopt
the natural units m=�=�=1 such that the space-time vari-
ables are normalized in units of the oscillator length lx

=� / �m�� and inverse frequency �−1, respectively. Here a
nonlinear term has been added compared to Eq. �31�. So the
functions V1��t� and V0��t� including the nonlinear effects read

V0��t� =
�2V0

�x0
2 = − 1 + 3�x0

2�t� ,

V1��t� =
�V1

�x0
= cos �t . �43�

The corresponding macroscopic and microscopic Hamilto-
nians become

H0 =
p0

2

2
−

1

2
x0

2 +
1

4
�x0

4,

H1 =
p1

2

2
−

1

2
�1 − 3�x0

2�t��x1
2 + �x1 cos �t . �44�

Differing from the linear system, the microscopic Hamil-
tonian here directly depends on the classical solution x0�t�.
We well know that the macroscopic system governed by H0
is nonchaotic and has several kinds of regular solutions, for
example, the periodic solution and homoclinic one. The latter
is associated with chaos of the microscopic subsystem in the
sense of Smale’s U-shaped transformation �41� under the
Melnikov’s chaos criterion �20,21�. For our purpose, we will
employ the homoclinic solution x0�t�=xh�t� of the macro-
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scopic nonlinear oscillator to the microscopic Hamiltonian
H1 for demonstrating the CQC in the chaotic system.

The well-known homoclinic solution of the nonlinear os-
cillator dominated by H0 in Eq. �44� reads �21,41�

x0 =2

�
sech �, � = t − �0,

�0 = t0 − arcsech��

2
x0�t0�	 , �45�

where t0 is the initial time and x0�t0� the initial value of the
macroscopic solution determined by the initial conditions.
Note that the homoclinic solution describes the motion of the
classical reference frame, there is no chaos in the reference
frame thereby. Substituting Eq. �45� into the second of Eq.
�44� produces the Hamiltonian

H1 =
p1

2

2
−

1

2
�1 − 6 sech2 ��x1

2 + �x1 cos �t . �46�

Given Eq. �46�, the Hamilton’s canonical equations results in
the classical equation

ẍ1 = �1 − 6 sech2 ��x1 − � cos �t . �47�

The homogenous equation of Eq. �47� with �=0 has the two
linearly independent solutions �19,22�

�1 = ẋ0 = −2

�
sech � tanh � ,

�2 = �1� ��1�−2dt =
3�

22
�� sech � tanh � − sech �

+
1

3
cosh �	 , �48�

and the exact general solution of Eq. �47� can be expressed in
terms of �1 and �2 as

x1c�t� = �1�t��A + ��
0

t

�2�t�cos �tdt	
+ �2�t��B − ��

0

t

�1�t�cos �tdt	 ,

p1c�t� = �̇1�t��A + ��
0

t

�2�t�cos �tdt	
+ �̇2�t��B − ��

0

t

�1�t�cos �tdt	 , �49�

which is similar to Eq. �9�. The solution �x1c�t� , p1c�t�� of Eq.
�49� is bounded if and only if the condition

I+ = B − � lim
t→�

�
0

t

�1�t�cos �tdt = 0 �50�

is satisfied �19,22�, because of ��2→� , �̇2→�� as time
tending to infinity. The necessity of Eq. �50� can be easily

seen by noticing the unboundedness of �2 at t→�. Applying
Eqs. �48� and �50� and the l’Hospital rule, one can calculate
the superior and inferior limits of Eq. �49� as

lim
x→�

x1c�t� = lim
x→�

p1c�t� = lim
x→�

�� cos �t� = � ,

lim
x→�

x1c�t� = lim
x→�

p1c�t� = lim
x→�

�� cos �t� = − � . �51�

This just supplies proof on the sufficiency of Eq. �50�. In the
calculation, the constant B is determined by Eq. �50�.

An interesting result is that Eqs. �50� and �48�
infer the formula I−=B−�
0

−��1�t�cos �tdt=B
−� cos ��0
0

−��1���cos ��d�= I+=0 for sin���0�t0��=0. From
�I+− I−� /�=0 we arrive at the Melnikov’s chaos criterion
�20�

M�t0� = �
−�

�

�1�t�cos �tdt = 2�� sin���0�t0��sech
��

2
= 0

�52�

for some t0 values. Here M�t0� is the Melnikov function,
which measures the distance between the stable and unstable
manifolds in the Poincare section at t0. The simple zero of
Eq. �52� indicates the existence of chaos �42,43�. Applying
��0= j� to Eq. �45� we get the initial condition for chaos as

x0�t0� =2

�
sech�t0 − j

�

�
	, j = 0,1, . . . . �53�

We call the solution �49� obeying the chaos criterion �52�
the “chaotic solution” �19�. Combining Eqs. �48� with �49�
we perceive that the final term of the solution x1c consists of
an unbounded function �2�t� and an analytically unsolvable
integration, which cannot be expressed by the finite numbers
of elementary functions. In the procedure of numerically
simulating the time evolution of Eq. �49�, the small devia-
tions from the unsolvable integration are unavoidable, due to
any computer cannot calculate the infinite terms. But any
infinitesimal deviation will destroy the boundedness condi-
tion �50� and will be amplified exponentially rapid by the
function �2�t�. Therefore, the chaotic solution is analytically
unsolvable and numerically uncomputable so that it is unpre-
dictable. Although precisely predicting chaotic orbit is im-
possible, making use of Eq. �51� we can determine the posi-
tion and momentum of the Duffing oscillator to a
microscopic interval, �x1c , p1c�� �−� ,�� with widths �x1c

=�p1c=2� for any sufficiently large time.
Our main tasks are to derive the quantum-mechanical ex-

act solution of the chaotic oscillator from the above-
mentioned procedure, and reveal the corresponding quantum
chaotic properties. Applying the known functions �i�t� in Eq.
�48� to the CQC condition of Eq. �28� gives the solutions of
Eq. �13�


1 = c0�1�t�, 
2 = c0�2�t� . �54�

Combining this equation with Eqs. �16�, �17�, and �20�–�22�,
we obtain the solutions of Eq. �12� as
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c =
1

2
�̇ − i

�̇

2�
, � = c0��1

2 + �2
2� ,

� = arctan
�2

�1
= arctan�3�

4
�coth � − � −

1

3
cosh3 � csch �	� ,

e = ±
c0

�
, f = ±

�b�
c0

, �55�

b� =
c0�1

�2 �b0� + �c0�
0

t

�2 cos �tdt	
+

c0�2

�2 �b0� − �c0�
0

t

�1 cos �tdt	 ,

b� =
c0�1

�2 �b0� − �c0�
0

t

�1 cos �tdt	 −
c0�2

�2 �b0�

+ �c0�
0

t

�2 cos �tdt	 ,

an =
c0

1/4

�2nn!��t�
exp�− i��1

2
+ n	� −

1

2
� �b�2

− b�2�dt�� . �56�

Here functions �i�t� are given in Eq. �48�. Inserting Eqs. �55�
and �56� into Eq. �25� can get the evident form of the chaotic
wave function, which is of the generalized coherent state �not
shown here�. Examining Eq. �25� we find that the norm of
the wave function represents a train of Gaussian wave pack-
ets with the width and height being proportional to ��t� and
�−1�t�, respectively. That is, the deformations of wave pack-
ets are described by the function ��t�, which is deterministic
in Eq. �55� with Eq. �48�. Using Eqs. �29� and �56� and the
formulas b0� /c0=A ,b0� /c0=B, we obtain the expectation
value x1q�t�=x1c�t� of x1 and the center position xc�t�
=x1c�t� of the wave packet train in the form of Eq. �49�,
whose value is unpredictable in the chaotic region �−� ,��.

In Fig. 1�a�, we show the time evolution of the quantum
expectation value x1q�t� from Eqs. �49� and �48�, where the
parameter set �=A=�=1, �0=0, �=0.1, B
=� limt→−�
0

��1�t�cos �tdt=−0.020 975 has been used to
plot the curve. The corresponding phase orbit is plotted as in
Fig. 1�b�. Here the black parts are the sketch maps of the
chaotic region x1q� �−� ,��= �−0.1,0.1�, p1q� �−� ,��
= �−0.1,0.1� in which the quantum state cannot be exactly
determined. Substituting Eqs. �49� and �48� into Eq. �30�
produces the expected energy En�t� of the chaotic state,
which depends on the classical chaotic solution and the func-
tion ��t�=c0��1

2+�2
2�. Therefore, such quantum level is

also unpredictable for a long time, as shown in Fig. 2.
Asymptotic behavior of the chaotic state is very interest-

ing, since Eqs. �48�, �55�, and �56� mean that

lim
t→�

��t� = lim
t→�

�̇�t� = �, lim
t→�

� = −
�

2
,

lim
t→�

an = lim
t→�

b� = lim
t→�

b� = 0. �57�

Inserting them into Eq. �30� and noticing Eqs. �43�, �45�, and
�51�, the asymptotic energies are evaluated as

lim
x→�

En�t� = lim
x→�

� 1
2 �p1c

2 − x1c
2 � + � cos��t�x1c� = 3

2�2,

FIG. 1. �a� The time evolution of the quantum expectation co-
ordinate x1q�t�=x1c�t� from Eqs. �49� and �48� for the parameter set
�=A=�=1, �0=0, �=0.1, B=−0.020 975. The chaotic system be-
comes unpredictable at about t=14. �b� The phase orbit of x1q�t�,
p1q�t� for the same parameters with �a�. The black circle is the
sketch map of the chaotic region in the phase space. The space-time
coordinates have been normalized in units of lx=� / �m�� and �−1,
respectively.

FIG. 2. The time evolution of the expected energy En in the
chaotic state �n�x1 , t� for the parameters n=2, c0=1, �=A=�=1,
�0=0, B=−0.020 975, and �a� �=0.1, �b� �=1. The energy and time
are in units of �� and �−1. The thick lines after t=17 are the sketch
maps of the chaotic regions of energy with the width �E=3�2.
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lim
x→�

En�t� = lim
x→�

� 1
2 �p1c

2 − x1c
2 � + � cos��t�x1c� = − 3

2�2,

�58�

which are independent of the quantum number n. This result
exhibits the chaotic region of energy, �− 3

2�2 , 3
2�2� with width

�E=3�2, and implies that chaos may suppress the quantum
effect of energy. The chaotic region of energy has been
hinted as the thick lines in Fig. 2 for �a� �=0.1 and �b� �
=1, respectively.

The space-time distribution of the chaotic probability den-
sity Rn

2�x1 , t� is shown by the three-dimensional plot as in
Fig. 3. It can be clearly seen from this figure that the nonzero
probability distribution exists only in the space-time region
x1� �−5,5� , t� �0,3�. The probability density decays to zero
for the spatial variable outside the region and t�3��−1�. In
fact, adopting the asymptotic values of Eq. �57� to Eq. �25�
shows that at t→� the wave packets described by the norm
of wave function will collapse to the waves of zero height
and infinite width, however, the normalization condition is
still valid and the expectation values of physical quantities
can be nonzero and finite. These properties are similar to that
of the normalized plane wave L−1eix with normalization
constant L being an infinite spatial distance. The chaotic
wave, of course, differs from the plane wave. Its center plays
chaotic oscillations as time tends to infinity, and the expec-
tation values of the coordinate, momentum and energy fall in
some small regions and cannot be predicted precisely.

VI. CONCLUSIONS AND DISCUSSIONS

We have proposed a mathematically consistent protocol
for investigating the macroscopic-microscopic coupled sys-
tem. Applying the classical perturbation theory and treating
the microscopic interactions as the perturbations, we separate
the system into the macroscopic reference frame and micro-
scopic subsystem. The classical and quantum exact solutions
of the microscopic subsystems are constructed, which con-
tain the quantum chaotic coherent state corresponding to the
classically chaotic solution, while the macroscopic reference
frame moves along the classical homoclinic orbit. The good
classical-quantum correspondences are found in the micro-
scopic subsystems through their exact solutions. The regular
and chaotic quantum states and levels, and the quantum cha-
otic regions are revealed in the systems exemplified by the
periodically driven linear oscillator and nonlinear Duffing
system. The results show that chaos may cause the collapse
of matter wave packets and suppress the quantum effect of
energy.

For the quantum wave packets describing the microscopic
subsystem, the width, height, and center-of-mass motion de-
pend on the classical solutions of the subsystem. This implies
that the microscopic subsystems in different quantum states
associated with different classical solutions possess different
features of motion. We well know that any classical solution
is determined by the initial conditions of the classically
treated subsystem. The latter are related to the arbitrary con-
stants A and B in Eq. �9�. Therefore, how to prepare and
detect experimentally the quantum states by adjusting the
classical initial conditions becomes quite an interesting and
important problem. However, the classical initial conditions
concern the initial coordinate and momentum, which cannot
be set and controlled precisely in quantum mechanics, be-
cause of the Heisenberg uncertainty relation. Particularly, the
classical and quantum chaotic states are unpredictable even
for the given initial conditions, although we have derived the
chaotic regions and revealed some chaotic features. These
difficulties and challenges deserve further investigations.
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