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We calculate the second-order roughness correction to the Casimir energy for two parallel metallic mirrors.
Our results may also be applied to the plane-sphere geometry used in most experiments. The metallic mirrors
are described by the plasma model, with arbitrary values for the plasma wavelength, the mirror separation, and
the roughness correlation length, with the roughness amplitude remaining the smallest length scale for pertur-
bation theory to hold. From the analysis of the intracavity field fluctuations, we obtain the Casimir energy
correction in terms of generalized reflection operators, which account for diffraction and polarization coupling
in the scattering by the rough surfaces. We present simple analytical expressions for several limiting cases, as
well as numerical results that allow for a reliable calculation of the roughness correction in real experiments.
The correction is larger than the result of the proximity force approximation, which is obtained from our theory
as a limiting case �very smooth surfaces�.
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I. INTRODUCTION

The Casimir force of attraction between metallic mirrors
�1� has been measured with high experimental precision over
the last few years �2�. These new experiments allow for an
accurate comparison with theoretical models �3�, opening the
way for the search for new weak forces with submillimetric
ranges �4�. On the theoretical front, accurate results based on
realistic models are sorely needed in order to match the de-
sired levels of accuracy. Three important effects provide the
main corrections to the ideal configuration considered by Ca-
simir: nonzero temperature �5�, finite conductivity �6,7�, and
roughness of the mirrors �8–11�. Temperature corrections are
important when the distance L between the mirrors is above
1 �m, whereas finite conductivity and roughness provide the
major corrections for the short distances �of the order of a
few hundred nanometers� probed by most experiments.

In principle, these effects must be taken into account si-
multaneously. The overall correction is not in general the
product of the separate corrections calculated independently.
In particular, the correlation between finite conductivity and
roughness effects is essential, because they both intervene at
the same range of L. Therefore, a reliable theory for short
distances must analyze the roughness effect in the context of
a finite-conductivity model for the material medium. To this
aim, we describe the optical properties of the metallic mir-
rors by the plasma model.

When the surface profiles are nearly smooth over dis-
tances of the order of L, the roughness correction may be
calculated from the proximity force approximation �PFA�
�12�. In this approximation, the Casimir energy is computed
from the formula for parallel planes by averaging the “local”
distance over the surface �11�. In order to derive more gen-
eral results, we develop a perturbative theory for the Casimir
energy with rough plane mirrors, allowing for the computa-
tion of the energy correction when the surface profile varies
on arbitrarily short length scales, provided that they are

larger than the roughness amplitude �otherwise the perturba-
tive approximation would not apply�. Our approach is appli-
cable to most Casimir force measurements between metallic
mirrors.

We follow the approach of Ref. �13� and consider the two
mirrors as a plane Fabry-Perot cavity, which is treated as a
composed optical network in order to calculate the intracav-
ity field fluctuations. We then derive a formal result for the
Casimir energy up to second order in the amplitude of rough-
ness in terms of generalized reflection coefficients describing
the scattering by rough surfaces, taking into account the cou-
pling between transverse electric �TE� and transverse mag-
netic �TM� polarizations. Numerical results derived from the
present calculation were presented in a Letter �14�, together
with some analytical limiting cases. In this paper we present
the complete derivation and the explicit formulas used in
�14�.

This paper is organized in the following way. In Sec. II,
we present some basic definitions and assumptions, and dis-
cuss the validity of the PFA in two different contexts. In Sec.
III, we derive the formal, general result for the second-order
roughness energy correction, which is then applied to the
specific plasma-model calculation presented in Sec. IV. Sev-
eral limiting cases are discussed in the following sections:
the short-roughness-wavelength regime �Sec. V�, the per-
fectly reflecting limit �Sec. VI�, and the plasmon limit �Sec.
VII�. In Sec. VIII, we discuss the example of a Gaussian
roughness spectrum and present some concluding remarks.
Three appendixes present additional details of the deriva-
tions.

II. GENERAL CONSIDERATIONS AND ASSUMPTIONS

Our Fabry-Perot cavity of length L is composed of two
parallel mirrors with rough surfaces, as shown in Fig. 1. We
analyze the cavity as a composed optical network and calcu-
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late the fluctuations of the intracavity fields propagating

along the positive and negative z axes, E� C and E� C, in terms
of the fluctuations of the incoming free-space fields EL

in and
ER

in �also shown in Fig. 1 are the outgoing fields EL
out and

ER
out�. In Appendix A, we show that the Casimir energy turns

out to depend only on the coefficients describing the reflec-
tion of the intracavity fields by the internal sides of mirrors
M1 and M2. The functions h1�r� and h2�r� define their sur-
face profiles with respect to reference planes at z=0 �see Fig.
2� and z=L, respectively. r collects the two transverse coor-
dinates �x ,y� orthogonal to the cavity extension. By con-
struction, both h1 and h2 have zero spatial averages: �hj�=0,
j=1,2, and are counted as positive when they correspond to
local length decreases below the mean value L.

We assume that the two surfaces are statistically indepen-
dent, so that the cross correlation function vanishes:

�h1�r�h2�r��� = 0. �1�

Translational symmetry on the xy plane implies that the self-
correlation functions satisfy

�hj�r�hj�r��� = �hj�r − r��hj�0��, j = 1,2.

Then in the Fourier domain we have �k is a two-dimensional
vector�

�Hj�k�Hj�k��� = �2��2��2��k + k��� j j�k� , �2�

where Hj�k� is the Fourier transformation of hj�r� and the
roughness spectrum � j j�k� is the Fourier transform of the
self-correlation function:

� j j�k� =� d2re−ik·r�hj�r�hj�0�� .

We assume that the area A of the mirrors contains many
correlation areas: A��C

2 , where �C is the correlation length
characteristic of the self-correlation function. In this case, a
single mirror already contains many independent realizations
of surface profiles, and hence spatial and ensemble averages
are equivalent.

We also assume that the deformation amplitudes are very
small, in the scale of the mean cavity length, �hj��L, as well
as in the scale of the correlation length, �hj���C, so that the
surface profile gradients satisfy ��hj��1. This allows us to
treat the surface deformations as small perturbations of the
ideal plane geometry. The Casimir energy is then calculated

up to second order of the deformation amplitudes. More pre-
cisely, the energy correction is obtained in terms of

�Hj�k�Hj�− k�� = A� j j�k� , �3�

where we have used Eq. �2�.
Most experiments are performed with a plane-sphere �PS�

setup, instead of the plane-plane �PP� cavity used as the
benchmark for our perturbative calculation. However, our
results may also be applied to those experiments, provided
that we use the PFA to connect the two different geometries.
In this case, the force FPS between a sphere of radius R and
a plane at a distance of closest approach L is given in terms
of the energy EPP for the plane-plane cavity as follows:

FPS�L� = 2�R
EPP�L�

A
. �4�

The relative roughness correction of the force in the plane-
sphere geometry may then be obtained from the relative en-
ergy correction calculated in this paper:

	 =
�FPS

FPS
=

�EPP

EPP
. �5�

We emphasize that the PFA amounts to the addition of con-
tributions corresponding to different local interplate dis-
tances, assuming these contributions to be independent. But
the Casimir energy is not additive, so that the PFA cannot be
exact, although it is often improperly called a theorem.

Note that the conditions required for applying the PFA to
connect the plane-sphere and plane-plane geometries are
quite different from those necessary for using the PFA in the
computation of the roughness correction itself. In the first
case, it is necessary that the radius R be large enough, so that
the separation L satisfies L�R �15�. Moreover, to avoid any
interplay between curvature and roughness effects, one re-
quires the correlation length �C to be small enough, so that
many correlation areas are contained in a given nearly plane
local section of the spherical surface: �C

2 �RL. In contrast,
applying the PFA to roughness requires the surfaces to be

FIG. 2. Magnified detail of the internal surface of mirror M1.

FIG. 1. Fabry-Perot cavity of length L.
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nearly plane in the scale of the separation: �C�L. Then, the
following second-order roughness correction to the Casimir
energy is obtained �11�:

�EPP 	
EPP� �L�

2
�h1

2 + h2
2� �PFA� . �6�

Hence, the PFA result for the roughness correction depends
on the second-order derivative of the energy and on the vari-
ances of the length deformations h1 and h2. This expression
is equivalent to the procedure used for analyzing the effect of
roughness in recent experiments �9,16�. In the following sec-
tions, we will assume the PFA to provide a valid description
of curvature, but not of roughness.

III. REFLECTION AND LOOP FUNCTIONS FOR ROUGH
MIRRORS

In this section we start to develop a description of reflec-
tion by the internal sides of the cavity mirrors �see Fig. 1�,
leaving the more general theory which takes into account the
coupling with the external fields to Appendix A.

We take the mixed Fourier representation for the intrac-
avity fields:

E� C�k,z,
� = �E� C
TE�k,
��̂TE + E� C

TM�k,
��̂TM�eikzz, �7�

where 
 is the frequency, k is the two-dimensional wave
vector associated with propagation parallel to the xy plane,
and kz=sgn�
�

2 /c2−k2, with sgn denoting the sign func-
tion. The complete wave vector is given by K=k+kzẑ. The

field E� C is written in a similar way, except for the replace-
ment kz→−kz. The TE and TM unitary vectors are defined in
the following way:

�̂TE = ẑ � k̂ , �8�

�̂TM = �̂TE � K̂. �9�

It is useful to employ the Dirac notation, with the ket

�E� C�
�� providing a compact notation for the field ampli-
tudes:

E� C
p �k,
� = �k,p�E� C�
�� ,

where p=TE, TM denotes the polarization.
The reflection by the mirror M1 at frequency 
 is written

as

�E� C�
�� = R1�
��E� C�
�� . �10�

When the surface is rough, the operator R1�
� mixes up
different values of k and polarizations. On the other hand,
the field frequency is conserved, since the surface is at rest.
The explicit form of Eq. �10� is

E� C
p �k,
� =� d2k�

�2��2�
p�

�k,p�R1�
��k�,p��E� C
p��k�,
� .

�11�

The reflection by mirror M2 is defined in a similar way in
terms of the operator R2�
�.

We expand the reflection operators R j�
�, j=1,2, in pow-
ers of the deformation amplitudes hj:

R j�
� = R j
�0��
� + �R j

�1��
� + �R j
�2��
� . �12�

The zeroth-order operators R j
�0� correspond to ideally plane

surfaces. They do not modify the polarization or the momen-
tum k, and hence are diagonal in the basis ��k , p�
:

�k,p�R j
�0��
��k�,p�� = �2��2��2��k − k���pp�rj

p�k,
� ,

�13�

where rj
p�k ,
� are the specular reflection coefficients for a

plane mirror.
For the ideal Fabry-Perot cavity, the Casimir effect may

be entirely described by these reflection coefficients, which
characterize the optical properties of the cavity as seen by the
intracavity field �17�. As shown in Appendix A, a similar
result holds for a cavity with rough mirrors, except that the
specular reflection coefficients are replaced by the reflection
operators defined above. The Casimir force is calculated
from the spectral density characterizing the vacuum field
fluctuations. For the intracavity field, the free-space spectral
density for polarization p is multiplied by the generalized
Airy function gp�k ,
�, which quantifies the joint boundary
effect of the two mirrors. We then derive the Casimir force
after including the contribution of evanescent waves:

FPP = A�
p
� d2k

�2��2�
0


 d


2�
�kz�1 − gp�k,
�� . �14�

FPP is defined as the z component of the force on mirror M1;
hence it is positive in the case of attraction.

We compute gp�k ,
� up to second order in h1 and h2:

gp�k,
� = gp
�0��k,
� + �gp

�1��k,
� + �gp
�2��k,
� . �15�

gp
�0��k ,
� is the Airy function for the ideal plane cavity �13�:

gp
�0��k,
� = 1 + fp�k,
� + fp�k,
�*,

where fp�k ,
� is the corresponding loop function. It is given
by the superposition of all propagation factors representing a
closed loop with n round-trips inside the cavity:

fp�k,
� = �
n=1




�r1
p�k,
�r2

p�k,
�e−2�L�n

=
r1

p�k,
�r2
p�k,
�e−2�L

1 − r1
p�k,
�r2

p�k,
�e−2�L , �16�

where �=−i

2 /c2−k2. When replacing gp by gp
�0� in Eq.

�14�, we find the well-known result for the Casimir force in
the ideal case �17�.

The first-order Casimir force correction, coming from
�gp

�1��k ,
� in Eq. �15�, vanishes because it is proportional to
the averages �h1� and �h2�. Thus, the roughness correction
is of second order and results from the contribution of
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�gp
�2��k ,
�. These functions are written in terms of “rough”

loop functions �fp
�2i��k ,
� and �fp

�2ii��k ,
�, gathering the
second-order contributions of the first-order ��R j

�1�� and
second-order ��R j

�2�� reflection operators, respectively:

�gp
�2��k,
� = �fp

�2i��k,
� + �fp
�2ii��k,
� + c.c. �17�

�fp
�2ii��k ,
� is the superposition of all closed loops involving

a single second-order rough reflection at one of the mirrors:

�fp
�2ii��k,
� =

1

A
�
j=1

2

�k,p�D�
�−1e−K�
�LR�j+1�
�0� �
�

�e−K�
�L�R j
�2��
�D�
�−1�k,p� , �18�

with �j+1� representing a sum modulo 2. Like R j
�0��
� in Eq.

�13�, the operators D�
� and K�
� are diagonal operators,
with elements 1−r1

p�k ,
�r2
p�k ,
�e−2�L and �, respectively.

To understand why �fp
�2ii��k ,
� is a generalization of the

ideal loop function fp�k ,
�, we should read the right-hand
side �RHS� of Eq. �18� from right to left. The second-order
rough reflection at mirror j is followed by a one-way propa-
gation between the two mirrors (operator exp�−K�
�L�) and
then by a specular reflection at mirror �j+1�. The loop is
closed by a second one-way propagation back to mirror j.
This loop can be preceeded and/or followed by arbitrary
numbers of round-trips with specular reflections; hence the
entire expression is sandwiched between two operators
D�
�−1.

“Closing the loop” means to ensure that the initial and
final states are the same, which is represented by the ket
�k , p� and the corresponding bra in Eq. �18�. Since all zeroth-
order processes conserve momentum and polarization, only
second-order rough reflections that also conserve momentum
and polarization are allowed, so that only diagonal elements
of �R j

�2� are expected to contribute in Eq. �18�. Its explicit
evaluation indeed yields �18�

�fp
�2ii��k,
� =

1

A
�
j=1

2 r�j+1�
p �k,
��k,p��R j

�2��
��k,p�e−2�L

�1 − r1
p�k,
�r2

p�k,
�e−2�L�2 .

�19�

Those diagonal matrix elements are of the form

�k,p��R j
�2��
��k,p� =� d2k�

�2��2Rj;p
�2��k,k�;
��Hj�k − k���2,

�20�

where the nonspecular coefficients Rj;p
�2��k ,k� ;
� are inde-

pendent of the profile functions Hj�k�.
On the other hand, nondiagonal matrix elements of �R j

�1�

contribute to the loop function �fp
�2i��k ,
�, because the latter

contains two first-order rough reflections instead of just one
second-order reflection. These elements are of the form

�k,p��R j
�1��
��k�,p�� = Rj;pp�

�1� �k,k�;
�Hj�k − k�� , �21�

where again the coefficients R
j;pp�
�1� �k ,k� ;
� are independent

of Hj�k�. According to this expression, a given Fourier com-
ponent 	k of the surface profile leads to a field momentum
modification by 	k.

Since the elements �k , p��R j
�1��
��k� , p�� are proportional

to Hj�k−k��, the terms associated with first-order rough re-
flections at different mirrors are proportional either to the
product

H1�k − k��H2�k� − k�

or to its complex conjugate. As discussed in Sec. II, we as-
sume that their average values vanish because the two sur-
face profiles are statistically independent. Thus, we only
keep the terms associated with two first-order rough reflec-
tions at the same mirror when deriving �fp

�2i��k ,
� �omitting
the dependence with 
 in the RHS�:

�fp
�2i��k,
� =

1

A
�
j=1

2

�k,p�D−1e−KLR�j+1�
�0� e−KL�R j

�1�D−1

�e−KLR�j+1�
�0� e−KL�R j

�1�D−1�k,p� . �22�

As for Eq. �18�, the sequence of events associated with
these loops may be read from right to left on the RHS of Eq.
�22�: first-order rough reflection by mirror j, one-way propa-
gation to mirror �j+1�, specular reflection, one-way back to
j, and second first-order rough reflection by j. To restore the
initial sense of propagation, the loop is closed by one or
more specular round-trips. Before each rough reflection, ar-
bitrary numbers of specular round-trips are allowed. Explicit
evaluation yields

�fp
�2i��k,
� =

1

A
�
j=1

2

�
p�
� d2k�

�2��2

e−2��+���Lrj+1
p �k�rj+1

p� �k���k,p��R j
�1��
��k�,p���k�,p���R j

�1��
��k,p�

�1 − r1
p�k,
�r2

p�k,
�e−2�L�2�1 − r1
p��k�,
�r2

p��k�,
�e−2��L�
, �23�

where ��=−i

2 /c2−k�2.
Before replacing all these results into Eq. �14�, we first

write the Casimir force as the real part of integrals of the
loop functions �13�. Since these functions are analytical, the

Cauchy theorem allows us to replace the integral over real
frequencies by an integral over the imaginary axis in the
complex plane of frequency. As a result, 
 is replaced by �
=−i
 and exp�−�L� becomes a real exponential factor, with
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� =
k2 +
�2

c2 � 0.

The resulting integrals turn out to be real, and the roughness
correction is then given by

�FPP�L� = 2A� d2k

�2��2�
0


 d�

2�
��

��
p

��fp
�2i��k,�� + �fp

�2ii��k,��� . �24�

According to Eqs. �19� and �20�, �fp
�2ii��k ,�� is given

by an integral over k� with the integrand proportional to
�Hj�k−k���2. We also obtain this factor when computing
�fp

�2i��k ,�� from Eqs. �21� and �23�. According to Eq. �3�,
when averaged it yields A� j j�k−k��, due to translational
symmetry on the xy plane. Hence both loop functions are
independent of A, yielding a force proportional to A as ex-
pected.

The energy correction is computed from Eq. �24� by a
simple integration:

�EPP�L� = − �
L




�FPP�L��dL�.

In order to simplify the notation, we consider two mirrors
made of the same metal and, hence, with the same optical
properties �otherwise the correction is given by a trivial ex-
tension�. Then, after transforming k−k� into k by a trivial
change of integration variable and taking Eq. �3� into ac-
count, we find

�EPP =� d2k

�2��2G�k���k� , �25�

with ��k�=�11�k�+�22�k�. As discussed in connection with
Eq. �21�, the k in G�k� represents the field momentum trans-
fer induced by a given Fourier component of the surface
profile. The second-order roughness response function G�k�
is given by the general expression

G�k� = − �A�
0


 d�

2�
� d2k�

4�2 bk�,k�−k, �26�

bk�,k� = bk�,k�
�i� ��� + bk�,k�

�ii� ��� . �27�

The contribution of the first-order reflection operator is cal-
culated from Eq. �23� �from now on we drop the index j
indicating one of the two mirrors�,

bk�,k�
�i� ��� =

1

2 �
p�p�

e−2���+���Lrp��k�,��rp��k�,��Rp�p�
�1� ��;k�,k��Rp�p�

�1� ��;k�,k��

�1 − rp��k�,��2e−2��L��1 − rp��k�,��2e−2��L�
, �28�

whereas Eq. �19� leads to the following contribution from the
second-order operator:

bk�,k�
�ii� ��� = �

p

e−2��Lrp�k�,��Rp
�2���;k�,k��

1 − rp�k�,��2e−2��L
. �29�

The response function G�k� is entirely determined by the
mirrors’ nonspecular coefficients R

pp�
�1� and Rp

�2�, together with
the specular reflection coefficients and the exponential fac-
tors describing round-trip propagation inside the cavity. For
isotropic material media, symmetry requires the response
function to depend only on the modulus k= �k�. According to
Eq. �25�, this k dependence describes the spectral sensitivity
of the Casimir energy to roughness. Hence, in general the
Casimir energy depends on the details of the roughness spec-
trum ��k�, and not only on the roughness variance

�h1
2 + h2

2� =� d2k

�2��2��k� .

When G�k� is known and the roughness spectrum measured
experimentally, Eq. �25� allows for a precise and straightfor-
ward calculation of the roughness correction to the Casimir

force without using the proximity force approximation.
The PFA is recovered only when the surface is very

smooth, corresponding to a roughness spectrum ��k� sharply
peaked around k=0. In this case, we may replace G�k� by
G�0� in Eq. �25� to find

�EPP 	 G�0��h1
2 + h2

2� �PFA� , �30�

in agreement with Eq. �6�, provided that the response func-
tion satisfies the limit

G�k → 0� =
EPP� �L�

2
, �31�

with the Casimir energy in the ideal case given by �7�

EPP�L� = �A�
0


 d�

2�
� d2k

�2��2�
p

ln�1 − rp�k,��2e−2�L� .

�32�

As a consequence of general properties of the rough reflec-
tion coefficients at zero momentum transfer �specular limit�,
we show in Appendix B that this limit is satisfied by any
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response function derived from Eq. �26� regardless of the
model considered for the material medium.

IV. ROUGHNESS RESPONSE FUNCTION FOR THE
PLASMA MODEL

In this section, we present an explicit computation of the
response function G�k�, starting from the general result given
by Eqs. �26�–�29� and taking the plasma model to describe
the optical properties of the metallic mirrors. The dielectric
function is given by

� = 1 +

P

2

�2 .

The plasma wave number, wavelength, and frequency are
related by

kP =
2�

�P
=


P

c
.

We also define

�t�k,�� =
k2 + �
�2

c2 = 
�2 + kP
2 ,

representing the imaginary part of the z component of the
wave vector inside the metallic medium. The specular reflec-
tion coefficients are given by

rTE�k,�� = −
�t − �

�t + �
, �33�

rTM�k,�� =
�1 +


P
2

�2 �� − �t

�1 +

P

2

�2 �� + �t

. �34�

In order to compute the roughness reflection coefficients,
we follow the perturbation approach of Ref. �19�, which is
based on the extinction theorem �20� and the Rayleigh hy-
pothesis. The incident, reflected, and transmitted fields are
related by two integral equations, which are solved up to
second order of Hj�k� for the reflected field in terms of the
incident field. This allows us to derive the nonspecular coef-
ficients R

pp�
�1� �k ,k� ;�� and Rp

�2��k ,k ;�� defining the relevant
matrix elements of the first- and second-order reflection op-
erators.

However, it turns out to be simpler to first calculate the
coefficients �

pp�
�1� �� ;k ,k�� defined as follows:

Rpp�
�1� �k,k�;�� =

rp�k,��tp��k�,��
tp�k,��

�pp�
�1� ��;k,k�� , �35�

where tp�k ,�� are the transmission coefficients for the plane
interface �see Appendix A�.

For given values of k and k�, we cast the four coefficients
�

pp�
�1� �� ;k ,k�� into the 2�2 matrix ��1��k ,k�� �with the as-

sociation TE=1, TM=2�, whose nondiagonal elements rep-

resent the coupling between TE and TM polarizations. We
find

��1��k,k�� = �−
�1��k,k�� − �+

�1��k,k�� ,

�±
�1��k,k�� = ��t ± ��Bt

−1� C S

−
S

1 ± ��t

C ± ��t�

1 ± ��t
�Bt�,

�36�

C=k ·k� / �kk��, and S=
1−C2. We have also defined

� =
k

�
, �t =

k

�t
,

Bt = �1 0

0
c�t


��
� .

Primed quantities are likewise defined in terms of k�.
The second-order coefficients are written in a similar way,

with

Rp
�2��k,k�;�� = rp�k,���p

�2���;k,k�� . �37�

�TE
�2��� ;k ,k�� and �TM

�2� �� ;k ,k�� are the diagonal elements of
the matrix

��2��k,k�� = 2��tI − ��1��k,k���−
�1��k,k�� , �38�

with I denoting the 2�2 identity matrix.
By replacing these results into Eqs. �28� and �29�, we

find the explicit expressions for the functions bk,k�
�i� ��� and

bk,k�
�ii� ���:

bk,k�
�i� ��� =

1

2 �
�,��=+,−

�����
� �fTE�k,��fTE�k�,��C2�1 + ���t�

��1 + �����t�� + fTE�k,��fTM�k�,��S2�1 + ���t�

+ fTM�k,��fTE�k�,��S2�1 + �����t��

+ fTM�k,��fTM�k�,���C + ���t���C + �����t�� ,

�39�

bk,k�
�ii� ��� = 2�t��fTE�k,�� + fTM�k,��� + �

�=+,−
���−��fTE�k,��

��1 − C2���t���1 + ���t� + fTM�k,��S2�1 − ���t��

+ fTM�k,���C + ���t���C − ���t�� , �40�

with

�± =
� ± �t

1 ± ��t
.

These expressions can now be applied to the numerical
computation of the response function for arbitrary values of
L and �P. In Fig. 3, we plot G /EPP as a function of k for
several different values of the distance L and for �P
=136 nm, which corresponds to gold-covered mirrors.
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According to Eq. �25�, this ratio provides the relative cor-
rection of the Casimir energy in the plane-plane configura-
tion when integrated over the roughness spectrum ��k�.
Moreover, from Eq. �5� it also provides the relative force
correction 	 for the plane-sphere geometry when the sphere
radius is sufficiently large. Figure 3 indicates that the relative
correction is larger for shorter distances.

The behavior of G�k� as k→0 is related to the PFA and
was already discussed in connection with Eq. �31�. In addi-
tion to the verification of the general G�k� given by Eqs.
�26�–�29� �see Appendix B�, we have also verified indepen-
dently that the explicit result derived from Eqs. �39� and �40�
also agrees with Eq. �31�.

The fact that G increases as k grows from zero, as dis-
played in Fig. 3, implies that the PFA underestimates the
roughness correction. In order to quantify the departure from
the PFA description, we define the sensitivity function

��k� =
G�k�
G�0�

. �41�

In Fig. 4, we plot � as function of k for the same values of
distance and �P employed in Fig. 3. The PFA amounts to
replacing ��k� by unity for all values of k contained in the
roughness spectrum ��k�. Clearly, this approximation is bet-
ter for shorter distances and smaller values of k �correspond-
ing to longer roughness wavelengths�, as expected. For in-
stance, the inset shows that the PFA is a good approximation

for L=50 nm and k�0.04 nm−1. On the other hand, for L
=200 nm and k=0.02 nm−1 �roughness wavelength 2� /k
�300 nm� we find ��1.6, corresponding to a roughness
correction 60% larger than the PFA result.

Figure 4 also indicates that ��k� grows linearly for large
values of k. In the next section, we show that this is a general
result, valid for arbitrary values of L and �P.

V. HIGH-k LIMIT

When the momentum transfer k is much larger than 1/L,
the function bk�,k�−k

�i� ���, representing the contribution of the
first-order reflection operator, is negligible, because it is pro-
portional to the exponentially small propagation factor
exp�−
�k�−k�2+�2L�	exp�−kL� appearing in Eq. �28�.
This general property can be understood from the discussion
of Sec. III: the loop function �fp

�2i��k� ,�� contains two rough
reflections separated by a intracavity round-trip propagation
with the modified momentum k�−k.

On the other hand, the loop function �fp
�2ii��k ,�� involves

a single second-order rough reflection, which must conserve
momentum so as to allow for a closed loop. Thus, bk�,k�−k

�ii�

does not involve propagation with the modified momentum
k�−k and is the dominant term in the high-k limit. We cal-
culate bk�,k�−k

�ii� from Eq. �40� by taking k�−k	−k. We also
assume that k�kP; the opposite case will be discussed in
Sec. VI. We find

��k� = �k for k−1 � �P,L . �42�

The dimensionless parameter � /L depends on KP=kPL
=2�L /�P only and is given by

� =
�cA

�2��2L4G�0��0




d���
0

�

d�
KP

2

2�2 + KP
2��fTE�k,��

+
2��2 − �2�2 − �t

2�2�2 − 3�2�
���t�2 − ��2 − �2�2 �fTM�k,��� . �43�

We have introduced the dimensionless integration variables
�=�L, �t=�tL, and �=�L /c. fTE�k ,�� and fTM�k ,�� are cal-
culated from Eq. �16� as functions of � and �.

We plot the coefficient � as a function of L in Fig. 5, with
the plasma wavelength of gold �P=136 nm as in the previ-
ous numerical examples. At the limit of short distances, we
recover from Eq. �43� our previous result �11�

� = 0.4492L for k−1 � L � �P. �44�

This corresponds to the high-k limit of the plasmon �nonre-
tarded� regime, which we shall discuss further in Sec. VII.
This limit is indicated by the dotted line in Fig. 5.

As shown by Fig. 5, the angular coefficient � saturates at
the limit of large distances. This corresponds to the limit
k−1��P�L, which may be obtained analytically from Eq.
�43� by expanding its RHS in powers of �P. The integrand
vanishes to order �P

−1, whereas the the zeroth-order term
yields

FIG. 3. Variation of G /EPP versus k for the distances L
=50 nm �solid line�, L=100 nm �dash-dotted line�, L=200 nm �dot-
ted line�, and L=400 nm �dashed line�. We take �P=136 nm.

FIG. 4. Variation of � versus k for several values of L �same
conventions as in Fig. 3�.
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��0� = −
�cA

�2��2L4G�0��0




d�
1

e2� − 1
�

0

�

d���2 − 3�2� = 0,

�45�

so that the dominant term is of the order of �P. We also need
to calculate G�0� in the limit L��P. As expected, we find
G�0�=EPP

pr��L� /2=−�2�cA / �120L5�, where EPP
pr is the Ca-

simir energy for perfectly reflecting mirrors. We then find

� =
60

�5�P�
0




d�
e2�

��e2� − 1�2�
0

�

d���4 − 2�2�2 + 3�4� ,

�46�

giving

� =
7

15�
�P for k−1 � �P � L , �47�

which is in agreement with the saturation value shown in
Fig. 5. This result remarkably differs from the long-distance
behavior reported in Ref. �11�, which corresponds to the per-
fectly reflecting limit. Note that the high-k expression �43�
holds when the roughness length scale 1 /k is much smaller
than both �P and L. In this regime and as a consequence of
the momentum transfer induced by the roughness effect, the
modified field momentum has a magnitude �k�−k� much
larger than kP. Therefore, it is poorly reflected by the mirrors,
even though the initial momentum satisfies k��1/L�kP. In
order to obtain the perfectly reflecting limit, one must as-
sume that �P rather than 1/k is the shortest length scale, as
discussed in the next section.

VI. PERFECTLY REFLECTING LIMIT

In this section we assume that �P is much smaller than
both the separation L and the roughness wavelength 1/k.
Then, we expand bk�,k� in powers of �P. For bk�,k�

�ii� , represent-
ing the contribution of the second-order reflection operator
and given by Eq. �40�, the dominant term is of the order of
1 /�P:

bk�,k�−k
�ii� = 4�

fpr�k��
���P

k� · k + O��P
0� , �48�

where fpr�k�� represents the loop function for perfect reflec-
tors �it is the same for both polarizations, with rTE=−rTM

=−1, according to Eqs. �33� and �34��. On the other hand,
bk�,k�−k

�i� vanishes up to order 1 /�P. It follows that G�k� van-
ishes at this order, because when taking the integral of the
expression in the RHS of Eq. �48� over all values of momen-
tum k� in Eq. �26�, opposite values of k� compensate each
other.

Both bk�,k�
�i� and bk�,k�

�ii� contribute up to order �P
0 It is useful

to replace bk�,k� by the symmetrized form

b̂k�,k� = �bk�,k� + bk�,k��/2.

This procedure does not change the response function be-
cause G�k�=G�−k�=G�k�. Taking d2k�=dk�k�d�� in Eq.
�26�, we derive

G�k� = −
�A

8�3�
0




d��
0




dk�k��
0

2�

d��b̂k�,k�−k. �49�

b̂k�,k� is obtained from the term of order �P
0 in Eqs. �39� and

�40�:

b̂k�,k� =
e−2��L + e−2��L

�1 − e−2��L��1 − e−2��L�

�
������2 + ��2/c2 + k� · k��2

����
. �50�

We change the variables of integration from �� ,k�� to
��� ,��� The integral over �� yields

�
0

�m

�J�k���,��,���d�� =
�

2

����

k
, �51�

where �m=arcsin����2−��2+k2� / �2��k�� and �J� is the Jaco-
bian corresponding to the transformation.

From Eqs. �49�–�51� we derive

G�k� = −
�cA

8�2

1

L5q
�

0


 d�e−2�

1 − e−2��
��−q�

�+q

d��

�

�����2 +
1

4
��2 + ��2 − q2�2

1 − e−2��
for �P → 0. �52�

� has the same meaning already discussed in connection with
Eq. �43� while �� corresponds to the diffracted wave. From
Eq. �52� we verify that G�0�=EPP

pr� /2 as expected. For arbi-
trary values of q=kL, numerical integration of Eq. �52�
agrees with the results of Emig et al. �21� for a perfectly
reflecting mirror corrugated along a fixed direction in the xy
plane. By taking the assumption of perfect reflectivity from
the start, we may derive this result for a general deformation
directly from our general expressions �26�–�29�, as discussed
in Appendix C.

FIG. 5. Variation of the angular coefficient � versus L for �P

=136 nm. The analytical result for k−1�L��P is shown as the
dotted line and for k−1��P�L as the dashed line. A comparison
between this second result �dashed straight line� and the exact ��k�
�solid line� is shown in the inset for L=2 �m. The analytical result
�=Lk /3 predicted by the model of perfect reflectors �dotted line� is
valid only in the intermediate range �P�k−1�L.
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In order to discuss the regime �P�1/k�L, we now take
the high-k limit on the right-hand side of Eq. �52�. Due to the
presence of the exponential factor exp�−2��, the dominant
contribution comes from the corner ��1, ���q of the rect-
angle associated with the integration region. We may thus
neglect exp�−2��� and recover the long-distance limit of
�11�:

G�k� = −
2

3�2

�cAq

L5 �
0




d�
�3e−2�

1 − e−2� = −
�2

360
�A

q

L4 ,

� =
1

3
Lk for �P � k−1 � L . �53�

In summary, the long-distance behavior is given by Eq.
�47� when 1/k��P�L and by Eq. �53� when �P�1/k�L.
The crossover between these two regimes is shown in the
inset of Fig. 5, where we plot � as a function of k for L
=2�m. The finite conductivity of the metals clearly reduces
the roughness correction for very large values of kL due to
the saturation effect discussed in Sec. V. In Fig. 6, we plot �
as function of the plasma wavelength �P for k=0.02 nm−1

�roughness wavelength 2� /k	300 nm�, with L=2 �m
�solid line� and L=600 nm �dashed line�, in order to analyze
in detail the effect of finite conductivity. The value �P
=136 nm corresponding to gold-covered mirrors is high-
lighted by a vertical line. The perfectly reflecting limit cor-
responds to the small values of �P shown in the left-hand
side of the figure. The correction decreases as �P approaches
2� /k because of the saturation effect, and then it increases
again as �P approaches and goes beyond the separation dis-
tance L. For �P�L, we find the limit predicted by the plas-
mon model, to be discussed in the next section, which is
larger than the perfectly reflecting limit �11�. When kL�1,
the correction is always larger than the perfectly reflecting
limit, as illustrated in the inset of Fig. 6, where we take k
=0.02 nm−1 and L=100 nm. In this case, the perfectly re-
flecting limit is 11% larger than the PFA result, whereas at
�P=136 nm we find a correction 19% larger than the PFA.

VII. PLASMON LIMIT

In the short-distance regime L��P, the Casimir energy is
associated with surface plasmons. As discussed in the previ-
ous sections, when integrating bk�,k�−k in Eq. �26�, the domi-
nant contributions come from values of k� and � such that
���1/L. Then, the short-distance limit of Eq. �33� yields
rTE=O�L /�P�2, so that the contribution of TE polarization is
negligible. From Eq. �34�, rTM is also negligible except for
the values

� � 
P � c/L , �54�

for which ��	k�, and

rTM 	

P

2

2�2 + 
P
2 . �55�

In other words, the dominant contribution is associated with
low-frequency surface waves, the reflection coefficient hav-
ing poles at the surface plasmon resonance �=−i
P /
2.
From Eq. �54�, we also conclude that the retardation time
L /c for propagation between the mirrors is negligible in the
time scale associated to the relevant field frequencies.

We calculate the roughness correction by taking the ap-
propriate limits in Eqs. �39� and �40�. Since rTM only de-
pends on �, the diffracted wave sees the same reflection co-
efficient, which we denote as r for simplicity. We find

bk�,k��
�i� =

k�k�r4e−2k�Le−2k�L

2�1 − r2e−2k�L��1 − r2e−2k�L�
��C + 1�2 + 2r�1 − C2�

+ r2�1 − C�2� , �56�

bk�,k��
�ii� =

2k�2r2e−2k�L

1 − r2e−2k�L
+

k�k�r3e−2k�L

1 − r2e−2k�L
�r�1 − C�2 + 1 − C2� .

�57�

These equations do not agree with the results of Ref. �10�,
which in their turn are not consistent with the PFA. There-
fore, it is important to check our results against the PFA by
taking k�=k�=k and C=1 in Eqs. �56� and �57�:

bk,k =
2k2r2e−2kL

�1 − r2e−2kL�2 . �58�

When replacing this result into Eq. �26� and taking Eq. �55�
into account �with �=� /
P, and �=�L=kL�, we obtain

G�0� = −
�A

2�2


P

L4�
0




d��
0




d�
�3�2�2 + 1�e2�

��2�2 + 1�2e2� − 1�2 .

Integrating this expression by parts, one shows that G�0�
satisfies Eq. �31�, with EPP representing the short-distance
limit of the Casimir energy as given by �22�

EPP�L� = −
�A

4�2


P

L2�
0




d��
0




d�
�2

�2�2 + 1�2e2� − 1
.

This confirms consistency with the PFA, which is in line
with the more general discussion presented in Appendix B.

FIG. 6. Variation of � versus �P for k=0.02 nm and the dis-
tances L=2 �m �solid line�, L=600 nm �dashed line�, and L
=100 nm �inset, solid line�. The values at �P=136 nm are indicated
by vertical lines.
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In addition to the limit k→0, it is also interesting to ana-
lyze the case k�1/L from Eqs. �56� and �57�, allowing for
the evaluation of the limit 1 /k�L��P. This provides an
additional check, by comparison with the results of Sec. V. In
this limit, bk�,k�−k

�i� is exponentially small and the dominant

contribution for bk�,k�−k
�ii� comes from the second term in Eq.

�57�, which is proportional to k:

bk�,k�−k 	 bk�,−k 	
k�r3e−2k�L

1 − r2e−2k�L
�r�1 − C�2 + 1 − C2�k .

�59�

We also take C	−k� ·k / �kk��=−cos � and integrate over �
to derive from Eq. �26�

G�k� = −
�A

8�2


P

L3 k�
0




d��
0




d�

�
�2�2�2 + 4�

�2�2 + 1�2��2�2 + 1�2e2� − 1�
, �60�

yielding ��k�=0.4492Lk, in agreement with Eq. �44� and
Ref. �11�.

VIII. CONCLUDING REMARKS

We have calculated the second-order response function
G�k� for arbitrary values of the plasma wavelength �P and
distance L. This allows for a reliable computation of the
roughness correction, once the roughness spectrum ��k�
characterizing the metallic surfaces is experimentally deter-
mined. In order to gain further insight into the roughness
correction itself, we consider the particularly simple example
of a Gaussian spectrum �10�:

��k� = �a2�C
2 exp�−

k2�C
2

4
� . �61�

The roughness variance is equal to a2, and �C represents the
correlation length.

According to Eq. �25�, the relative force correction 	 is
obtained by integrating the normalized response function
G�k� /EPP �see Fig. 3 for some numerical examples� over the
Gaussian spectrum given by Eq. �61�. In Ref. �14�, we have
discussed some simple analytical expressions in the limiting
cases �P��C and �P��C, which can be easily derived from
the results of Secs. V–VII. However, the experimental pa-
rameters are likely to be such that neither of the two limits
holds. Hence, we must rely on the numerical calculation of
G�k� to compute the correction. In Fig. 7, we compare the
exact results for 	 /a2 �for two different values of �C� with
the PFA formula 	 /a2=EPP� �L� / �2EPP�L��, taking as before
�P=136 nm. At L=100 nm, the exact value is 57% and 7%
larger than the PFA result for �C=50 nm and �C=150 nm,
respectively. In agreement with the discussion of Sec. IV, the
PFA is better for shorter distances and longer correlation
lengths. For instance, as suggested by Fig. 7, it provides
accurate results if L�100 nm and �C�150 nm. Note, how-
ever, that the validity of the PFA can be addressed in a reli-

able way only from the analysis of the experimentally mea-
sured roughness spectrum. In the Gaussian model discussed
in this section, the contribution of high values of k is expo-
nentially small, but in the real case the decay of ��k� might
be smoother. Thus, this approximation might be worse than
discussed here.

For large values of L, no simple analytical result is avail-
able when �P��C. In the inset of Fig. 7, we show that the
perfectly reflecting result 	 /a2=2
� / ��CL� valid for �P
��C�L overestimates the correction for �C=50 nm by
more than 50%. This is a consequence of the saturation effect
discussed in Sec. V: diffraction by roughness Fourier com-
ponents at k��P

−1 gives rise to waves which are poorly re-
flected by the mirrors. Thus, when the roughness spectrum
contains very high values of k, the correction is reduced with
respect to the result of the perfectly reflecting model. The
reduction factor decreases as k�P→
 down to the limit
�7/5���P /L�1.

In conclusion, we presented a perturbative method for the
calculation of the Casimir energy between rough mirrors, up
to second order in the amplitude of the deformation. It relies
on the manipulation of reflection operators, taking into ac-
count diffraction and the coupling between different field
polarizations. We applied the method to compute the rough-
ness correction in the framework of the plasma model, for
arbitrary values of the plasma and roughness wavelengths
and the mirror separation L. Analytical results for different
limiting cases were discussed. In particular, the PFA regime
follows from our formalism in the limit of very smooth sur-
face profiles. By comparison with our numerical results, we
were able to analyze the accuracy of the PFA in the problem
of roughness. For a given roughness spectrum, our theory
provides reliable numerical results for the roughness correc-
tion and allows us to check the validity of the PFA approach
in a given experiment. More realistic models for the metallic
mirrors �7� can also be considered by applying the formal
results presented here.
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APPENDIX A: OPTICAL NETWORK THEORY
AND THE CASIMIR FORCE

In this appendix, we compute the spectral density in the
intracavity region by generalizing the optical network for-
malism of Ref. �13� to the case of rough surfaces. This al-
lows us to compute the Casimir force with the help of the
Maxwell stress tensor.

The basic idea is to derive the relation between the intra-
cavity field and the incoming outside field, whose fluctua-
tions are known. The outside field propagating from the re-
gion z�0 �see Fig. 1� is written as �with r= �x ,y�, 


=c
k2+kz
2, and �0 denoting the vacuum permittivity�

EL
in�r,z,t� = �

p=TE,TM
� d2k

4�2�
0


 dkz

2�

�


2�0
eL

in p�K�

� exp�i�k · r + kzz − 
t���̂p + H.c. �A1�

The Fourier components eL
inp�K� satisfy the commutation re-

lations of freely propagating fields:

�eL
in p�K�,eL

in p��K��†� = �2��3��2��k − k����kz − kz���p,p�.

�A2�

The free-space fields propagating along the negative z direc-
tion are written in a similar way, except for the replacement
exp�ikzz�→exp�−ikzz�. We use the same K=k+kzẑ to label
them as well, and our notation is such that kz�0 in all cases.

We define scattering and transfer operators for the two
rough mirrors and for the empty-space propagation between
them. The cavity is taken as a composed network, and the
corresponding transfer operator is simply the product of the
transfer operators for the elementary components.

The scattering operator characterizing a given element of
the network is defined in the following way. As shown in
Fig. 8, the input field contains components propagating from
the left- and right-hand sides and with polarizations TE and
TM. We arrange these components into a column vector

ein�K� � �
eL

in TE

eR
in TE

eL
in TM

eR
in TM

�
K

.

We employ a similar notation for the output field:

eout�K� =�
eR

out TE

eL
out TE

eR
out TM

eL
out TM

�
K

.

The scattering operator provides the input-output relation

eout�K� = �
�kz��0�

d3K�

�2��3S�K,K��ein�K�� , �A3�

where the integral over kz� runs from 0 to 
.
Whereas Ref. �13� allows for lossy mirrors, here we as-

sume that there is no dissipation in our network. Hence we
only consider unitary scattering operators: S ·S†=1, where 1
is the identity operator. In terms of the corresponding matrix
multiplication, this condition reads �I is the 4�4 identity
matrix�

�
�kz��0�

d3K�

�2��3S�K1,K��S�K2,K��† = �2��3��3��K1 − K2�I .

�A4�

We analyze in detail the scattering operator S1 corresponding
to mirror M1 in Fig. 1. We expand S1 up to second order of
the deformation amplitudes of the two lateral mirror’s rough
surfaces:

S1 = S1
�0� + �S1

�1� + �S1
�2�. �A5�

The scattering by ideal plane surfaces conserves 
, k, and
polarization:

S1
�0��K,K�� = �2��3��3��K − K���

t̃ 1
TE�k,
� r1

TE�k,
� 0 0

r̃1
TE�k,
� t1

TE�k,
� 0 0

0 0 t̃ 1
TM�k,
� r1

TM�k,
�

0 0 r̃1
TM�k,
� t1

TM�k,
�
� .

r1
p�k ,
� are the specular reflection coefficients as seen by the intracavity field presented in Sec. III. The coefficients r̃2

p�k ,
�
play the same role for mirror M2. Together they turn out to be the only relevant ones for the calculation of the Casimir effect,

FIG. 8. Input and output fields.
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in both the ideal and rough cases. For simplicity, we have denoted r̃2
p�k ,
� simply as r2

p�k ,
� everywhere in this paper, except
in the present appendix.

The first-order ��=1� and second-order ��=2� corrections mix up different polarizations and values of k, but conserve the
frequency:

�S1
����K,K�� = 2���kz� − 
k2 − k�2 + kz

2��
�t̃ 1

����TE;TE� �r1
����TE;TE� �t̃ 1

����TE;TM� �r1
����TE;TM�

�r̃ 1
����TE;TE� �t1

����TE;TE� �r̃ 1
����TE;TM� �t1

����TE;TM�

�t̃ 1
����TM;TE� �r1

����TM;TE� �t̃1
����TM;TM� �r1

����TM;TM�

�r̃ 1
����TM;TE� �t1

����TM;TE� �r̃ 1
����TM;TM� �t1

����TM;TM�
� . �A6�

All matrix elements above are functions of frequency and of
the initial and final momenta k� and k. The four elements
�r1

����p ; p�� are the matrix elements �k , p��R1
����k� , p�� intro-

duced in Sec. III.
The transfer operators T provide the fields on the left-

hand side of the mirror in terms of the fields on the right-
hand side. They can be obtained from the scattering opera-
tors as follows �13�:

T = − �P− − S · P+�−1 · �P+ − S · P−� . �A7�

The operators P+ and P− are defined by

P+�K,K�� = �2��3�3�K − K���
1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0
� ,

P− = 1 − P+.

The intracavity field �see Fig. 1�

eC�K� =�
e�C

TE

e�C
TE

e�C
TM

e�C
TM
�

K

is computed from

eC�K� = �
�kz��0�

d3K�

�2��3R�K,K��ein�K�� , �A8�

with

R = T2 · P+ · Scav + T2 · P− �A9�

and where Scav is the scattering matrix for the cavity as a
composed network.

The Casimir force on mirror M1 is computed from the
energy-momentum tensor component Tzz, evaluated at the
intracavity region and at the outer side of the mirror, and
averaged over the vacuum state:

FPP =� d2r��Tzz
L �r��vac − �Tzz

C �r��vac� . �A10�

We calculate Tzz
L �r� using Eq. �A1� and similar expansions

for the magnetic field BL
in and for the outgoing fields:

� d2r�Tzz
L �r��vac =

1

2
�

�kz�0�

d3K

�2��3�
0


 dkz�

2�
�
 cos2 �

��
p

��eL
in p�k,kz�eL

in p�k,kz��
†

+ eL
out p�k,kz�eL

out p�k,kz��
†��vac, �A11�

with cos �=kz /K. A similar expression is found for the inner
region in terms of the intracavity fields.

When taking the average over the vacuum state we use
the commutation relation �A2� to find

�eL
inp�k,kz�eL

in p��k,kz��
†�vac = 2�A��kz − kz�� . �A12�

The outgoing field eL
out satisfies the same commutation rela-

tion and provides an identical contribution in Eq. �A11�.
On the other hand, the commutation relation of the intra-

cavity field is modified by the joint effect of the two mirrors.
We derive the corresponding spectral density from Eqs. �A8�,
�A9�, and �A12�:

�e�C
p �k,kz�e�C

p �k,kz��
†�vac = 2�Agp�k,
���kz − kz�� .

�A13�

We obtain the explicit expressions for �fp
�2ii��k ,
� and

�fp
�2i��k ,
� given by Eqs. �19� and �23� with the help of a

computer algebra system. Remarkably, they only contain the
rough reflection coefficients associated with internal reflec-
tions �only 4 out of 16 elements in Eq. �A6�, for instance�.

The spectral density for e�C is modified, with respect to the
free-space case, by the same generalized Airy function
gp�k ,
�, as far as second-order terms containing rough re-
flections at the same mirror are concerned. After replacing
Eq. �A12� into Eq. �A11� and using Eqs. �A10� and �A13�,
we derive the result given by Eq. �14� for the Casimir force.

APPENDIX B: PROXIMITY FORCE APPROXIMATION AS
A LIMITING CASE

In this appendix, we derive the PFA result for the energy
correction as a limiting case of the general results of Sec. III.
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This will bring a deeper understanding of the PFA by show-
ing its connection with some specific properties of the reflec-
tion operators. These properties must be satisfied regardless
of the particular model considered for the material medium
and are related to the specular reflection by displaced plane
mirrors �specular limit�.

In the PFA regime, the Fourier profile functions Hj�	k�
are sharply peaked around 	k=0. Thus, we may replace k�
by k in the argument of the nonspecular coefficients appear-
ing on the RHS of Eqs. �20� and �21�. The resulting expres-
sions correspond to the case of ideal plane mirrors which are
displaced from the associated reference planes at z=0 and
z=L. In this case, the reflection is modified with respect to
the nonperturbed case just by the effect of the propagation
from the reference plane to the mirror and back. Up to sec-
ond order, this amounts to taking the series expansion of the
exponential factor

e−2�hj 	 1 − 2�hj + 2�2hj
2,

yielding

Rj;pp�
�1� �k,k;�� = − 2�rj

p�k,���p,p� �B1�

and

Rj;p
�2��k,k;�� = 2�2rj

p�k,�� . �B2�

Equations �B1� and �B2� are general properties of the reflec-
tion coefficients and are useful for checking explicit calcula-
tions, regardless of the specific model considered for the ma-
terial medium. When using these results to compute G�0�
from Eqs. �26�–�29�, we obtain Eq. �31�, with the Casimir
energy in the ideal case given by Eq. �32�. This verifies the
PFA limit as discussed in the end of Sec. III.

APPENDIX C: PERFECT MIRRORS

In Sec. V, the perfectly reflecting limit was derived from
the plasma model results by taking �P�k−1 ,L. This appen-
dix presents an alternative, simpler derivation, in which the
usual model of perfect reflectors is taken from the start. The
case of corrugation along a fixed direction in the xy plane
�say, the direction along the x axis, with h1�x ,y�=h1�x�� was
considered by Ref. �21�. In this case, the calculation can be
considerably simplified by taking a convenient definition for

the field polarizations, which then turn out to be not coupled
by the scattering from the surface. On the other hand, in this
paper we consider arbitrary small-amplitude deformations,
so that the coupling between different polarizations has to be
taken into account.

For the mirror near z=0, we take the boundary condition

n̂1�x,y� � E„x,y,h1�x,y�… = 0 , �C1�

where n̂1�x ,y� is the unitary vector normal to the tangent
plane at the point �x ,y�:

n̂1�x,y� =
ẑ − � h1


1 + ��h1�2
.

As explained in Sec. II, positive values of h1�x ,y� are defined
along the positive z axis and the �intracavity� incident field,
as given by Eq. �7�, propagates along the negative z axis with
a phase factor e−ikzz.

Solving Eq. �C1� up to first order of h1�x ,y�, we deter-
mine the complete first-order reflection operator. Using the
matrix notation introduced in Sec. IV, the first-order non-
specular coefficients defined by Eq. �21� are written as

R�1��k,k�;
� = 2i� kz�C 
S/c


kz�

ckz
S

kk�

kz
−


2

ckz
C� , �C2�

where C and S are the cosine and sine of the angle between
k and k�.

We only need the diagonal elements of the second-order
reflection operator, which we collect from the solution of Eq.
�C1� up to second order. The corresponding nonspecular co-
efficients �see Eq. �20�� are

RTE
�2��k,k�;
� = 2kzkz�C

2 + 2

2kz

c2kz�
S2, �C3�

RTM
�2� �k,k�;
� = −

2

kzkz�
�kk� − 
2C/c2�2 − 2


2kz�

c2kz
S2.

�C4�

These results satisfy the specular limit discussed in Ap-
pendix B. When replaced into the general expressions of Sec.
III, they reproduce the results for the perfectly reflecting
limit of Sec. V.
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