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Validity of the quantum adiabatic theorem
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The consistency of the quantum adiabatic theorem has been doubted recently. It is shown in the present
paper that the difference between the adiabatic solution and the exact solution to the Schrodinger equation with
a slowly changing driving Hamiltonian is small; while the difference between their time derivatives is not
small. This explains why substituting the adiabatic solution back into the Schrodinger equation leads to
“inconsistency” of the adiabatic theorem. Physics is determined completely by the state vector, and not by its
time derivative. Therefore the quantum adiabatic theorem is physically correct.
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I. INTRODUCTION

Quantum adiabatic theorem (QAT) dates back to the early
years of quantum mechanics [1]. It has important applica-
tions within and beyond quantum physics. In 1984, Berry
found there is a geometrical phase in the adiabatically evolv-
ing wave function besides the dynamic phase [2]. Simon
pointed out Berry’s phase factor is the holonomy of a Her-
mitian line bundle [3]. This started a rush for geometrical
phases in quantum physics [4], which helped people to get
deeper insight into many physical phenomena, such as
Bohm-Aharanov effect, quantum Hall effect, etc. Recently,
the quantum adiabatic theorem has renewed its importance in
the context of quantum control and quantum computation
[5-9]. More recently, however, the consistency of the QAT
has been doubted [10]. In their paper entitled “Inconsistency
in the application of the adiabatic theorem,” Marzlin and
Sanders gave a proof of inconsistency implied by the QAT
(MS inconsistency), and declared that the standard statet-
ment of the QAT alone does not ensure that a formal appli-
cation of it results in correct results. This interesting sugges-
tion has attracted attention from the physics circle [11-13].
However, it has also caused confusion about the validity of
the QAT. In view of the importance of the QAT, the purpose
of this paper is to point out that the QAT does give approxi-
mate state vectors when there is no resonance in the
Schrodinger equation in the rotating axis representation, but
not necessarily the approximate time derivatives of state vec-
tors. While physics is completely determined by the state
vector, it has nothing to do with its time derivative. There-
fore the QAT is physically completely correct, provided there
is no resonance in the Schrodinger equation in the rotating
axis representation. What leads to MS inconsistency of the
QAT is neglect of the fact that the adiabatic approximate
state vector does not necessarily give the approximate time

derivative of state vector (||¢ur(1)— ()] < 155]dur(2)

—dex(1]|< 1, where ||¢]|= \(¢| @) denotes the norm of state
vector ).

II. STANDARD TREATMENT OF THE QAT

Suppose that the Hamiltonian depends on N real param-
eters R!, ... ,RV:
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H=HR',....RN)=H(R). (1)

When the representing point of the Hamiltonian describes
slowly a finite curve C on the N-dimensional parameter
manifold M

C:R°=R°(r), Vte[0,T], 1<o<N, 2)

where T is the evolution time, let us study the evolution of
the system. The instantaneous Hamiltonian’s eigenequation
is

H(R)u,(R) = E,(R)u,(R). 3)
Getting to the rotating axis representation
VOEDS cn(t)u,,(R(t))eXp{% f E,,(R(t’))dt’] 4)
n=0 0

we get the Schrodinger equation

) == 2, (R(0)]it,(R(2)))

n=0
X exp éf [E,(R(t")) = E,(R("))]dt" (c,(1).
0

(5)

To avoid confusion of infinitesimals of different orders and
to show what “rapidly oscillating” means, let us change to
the dimensionless time 7=t/T

d%ém(ﬂ = <um<1é<r>> d%un<zé(r>)>

n=0

Xexp éTJ [E(R(7)) = E,(R(7' )17 {&,(7),
0

(6)

where

&N =T =¢,(0), R(D=R(TD=R(®). (7)

The initial value problem of the above differential equations
is equivalent to the following integral equation:
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Em(T) = 5m(0) - E

n=0

<um<zé(n>> ‘ diun<é<rl>>>
0 T

Xexp{iT f "B R(Y)
ﬁ 0
—En(Ié(r'))]dr'}é,,(n)dn. (8)

Let us slow down evenly the changing speed of the Hamil-
tonian while keeping the finite curve C fixed. Mathemati-
cally, that is to let 7— o, while keeping the function form of
Ié( 7) unchanged. The oscillating factors in the integrand en-
sure vanishing of the corresponding integrals, provided there
is no resonance. For the practical physical problem, slowly
changing of the Hamiltonian means 7 is such a long time that

)

<um(R<r>>|un(R<t)>>ﬁ‘ -
Em(R(t)) - En(R(t))

The integral equation (8) can be approximately rewritten as

& (1) =E,(0) - f <um<é(n)> ‘ dium<é<rl)>>éz(rl>drl.
0 T
(10)

Solving this equation by using iteration gives

T . d .
&) = exp{— f <Mm(R(Tl)) ‘ d—um(R(Tl))>dTl}5m(0)~
0 T

(11)

This proves the QAT.

III. ANALYSIS OF “INCONSISTENCY” OF THE QAT

When we substitute the adiabatic approximate solution
(11) back into the integral equations (8), the equations ap-
proximately hold.

0~- > <I/lm(1é(7'l)) ‘ dirun(é(ﬁ))>

n(#m) J 0
i ™ v . A
X exp %T [E,(R(7")) = E,(R(7"))]d7" (& (m)dT.
0
(12)
However, when we substitute the adiabatic approximate so-
lution (11) back into the differential equations (6) whose

initial value problem is equivalent to the integral equations
(8), we obtain
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0~— 3 <u,,,(zé(7)) d%un(é(r>)>

n(#m)
Xexp{iT f LB, (B()
i),

- En(lé(T’))]dT’}cvn(T). (13)

Considering that ¢(0) [hence ¢(r)] can be an arbitrary state
vector, we have

. d .
0=~ <Mm(R(T)) d—un(R(T))>, Vm#n, (14)
T
which is false.

In order to understand the situation we are facing, let us
study the following basic mathematical fact. Let |i(7))
=|0)e" +e|1)e ), (0<e<1), |@())=|0)e"®, where
|0), |1) are eigenvectors of the one-dimensional harmonic
oscillator energy.

Al0) - o) =& < 1,
While

D) = le(@).  (15)

i) = el =17 > 1, - [4d0)) # [(0)).  (16)

The above example shows that two approximately equal
time-dependent state vectors do not necessarily have ap-
proximately equal time derivatives. Therefore the approxi-
mate solution to integral equations (8) does not ensure that
the equivalent differential equations (6) approximately hold.
It is neglect of this basic mathematical fact that leads to
“inconsistency” of the QAT in [10].

MS inconsistency in [10] is one of the many contradic-
tions obtained by combining the QAT with wrong reasoning
such as Eq. (14). Reference [11] gives a simpler way of
deriving MS inconsistency. We can derive MS inconsistency
from contradiction (14) easily.

0= <um(R(t)) d%u,,(R(t))>, Vm#n, (17)

‘ diun(ze(z>)> ~ |un<R(z)>><un(R(r>>‘ iun<R(f>>>~
¢ dt

(18)

Taking the inner product of |u,(R(¢,))) with both sides of
Eq. (17), we obtain

Rl (RO

~ <un(R(to))|Mn(R(t))><un(R(t)) ‘ %un(R(t))>.
(19)

Solving this differential equation, we obtain
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t

<un<R<z'>) ‘ ﬁunm(r'))d:'>,

(20)

(u,(R(10))u,(R(1))) =~ exp f

0

(uy(R(20)) |, (R(1))) = exp(= i3, (1)) (21)

That is the MS inconsistency.

When we say, “i4p(7) is an approximate solution to an
initial problem of a differential equation,” it only means
b4 p(7) = x(7)|| =0, where ifzx(7) is the exact solution and
A 7)|| denotes the norm of (7). It does not necessarily

mean ||i), p(7) — thx(7)|| = 0. Therefore the approximate solu-
tion does not ensure that the differential equations approxi-
mately hold. It is neglect of this basic mathematical fact that
leads to “Inconsistency” of AT. In fact, that the Schrodinger
equation (6) does not even approximately hold for ¢p(7)
means that

0 - .
ihé,_UAT(T’ 70)  TH(T)Uy(7, 7).
T
Therefore
2 9 = T 7 T
lﬁE_UAT(Ta 7'0) |E0(7'0)> * - TUAT(T, 7'0) H(7)

X Upg{(7,70) Upg(7, 70) | Eo(70)).

We see the minor premise of the proof of “inconsistency”
in [10] is invalid. Here we have used the variable 7=¢/T to
avoid infinitely large variable 7. The above reasoning is
equivalent to the one given in [14], which is for the case
when the infinitely large variable 7 is used.

As a matter of fact, the deviation of the adiabatic approxi-
mate solution i,,(¢) from the exact solution x(7) is a small
but rapidly oscillating (in terms of the scaled time) quantity,
hence px(1) = (1) does not imply ¢y(t) = i,7(t). Substi-
tuting ¢,,(f) back into the Schrédinger equation (in terms of
the scaled time) immediately leads to contradiction, no mat-
ter if the change in eigenstate is significant or not. “AT is
valid” means “Ypy(t) = thur(1).” While “goy(t) # thur(1)”
causes MS inconsistency. Since “ix(f) # 4;(1)” does not
imply “igx(1) # s1(2),” therefore MS inconsistency has
nothing to do with the validity of AT. The factor that breaks
the validity of AT is the resonance in Eq. (8). Whenever there
is no such resonance, it is needless to check the validity of
AT case by case just because of the MS inconsistency. All the
physical information of the system at time ¢ is contained in
(1), and has nothing to do with (7). In this context, we say
the AT is physically completely correct, provided there is no
resonance in Eq. (8).

IV. AN EXACTLY SOLVABLE EXAMPLE

Let us consider an exactly solvable example, the evolu-
tion of the spin wave function of an electron in a slowly
rotating magnetic field B(¢)=By(i cos 27t/ T+j sin 27t/ T).
The instantaneous Hamiltonian is
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.- P
H(t):—,u-B(t):is~B(t)=26—ma-B(t)

ehBy| 0 e 0 2T
= om | g2mr 0 =¢e 2T 0 .

(22)

Its eigenvalues are E.(f)=+¢. And the corresponding eigen-
vectors are

e—im/T
”t(t)=V_E Lol | (23)

The exact general solution to the Schrodinger equation

iﬁi‘ﬂ(t) = H(t) (1) (24)
dt
or
L d x(1) ~ 0 ™| x(r)

lﬁdl‘{y(t) :| = S[eiZm/T 0 :| |:y(t) ] (25)

is
(1) = {x(t) } B {—A_l[cl(B +C)e'“ + cy(B - C)e—iCt]e—iBz:|
RECI [c,€" + cre™CM]eB! )

(26)

where A=g/h B=m/T, C=\A>+B?, and ¢, c, are the inte-
gral constants. The specific solution determined by the initial

condition
x(0) 1|1
0)= =— 27
wo) [y(O)} \EL} @7
is
| (cos Ct—i—— sin Ct)e‘iB’
W) =—+= (28)
/ A+ B .
V2 (cos Ct—i sin Ct)e’B’

Let us get into the rotating axis representation.

(1) = c,(Du, (e + c_(Hu_(r)e. (29)

The exact Schrodinger equation becomes

¢, () =iBe™c_(1),

| (30)
¢_(1) = iBe A (1),
Its general solution is
L [C=-A . C+A :
C+(t) e:At( Creth _ cue—1Ct>
= B B (31)
c_(?)

e—zAl(C/ele + Cl/e—th)

The specific solution determined by the initial condition
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c.(0) !
[c_(OJ - u 52
anuch
cos Ct—i— sin Ct |e"
[C+(t) ] _ c o)
e ] (.B : ) |
lE sin Ct |e

The adiabatic approximation means neglecting the nondiago-
nal (n#m) terms, which contain oscillating factors, on the

is
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right-hand side of differential equations (30). The adiabatic
approximate solution determind by the initial condition (32)

is
| {1 }
Lﬂﬂ]_ 0] 59

Getting to the dimensionless time 7=t/T, we rewrite Egs.
(33) and (34) as

eT/h

(cos V(eT/h)? + 71— i———= sin \(eT/h)* + 7727'> eeTh

l - 5

|:E+(T) :| _ v
é(7) B ( T

V(eTIh)? +

A

¢ (7 1

(7 0
It is easy to see that

&u(n) &0
L:(r)} - {o}‘{c@(r)}' 57

The difference between Egs. (35) and (36) is small, but rap-
idly oscillates with dimensionless time 7. Therefore it is to be
expected that the derivative with 7 of the difference is no

longer small. (Let F=\(sT/#)*>+ 1),

d - .

E_Q(T) <_F sin FT)e’ETT/h

d B T/h .

d—é_(r) ( TE ™ sin Fr+ imcos FT) e~ieTh
;

d vA
{ 0 } ) H e
Teson iwe—iZsTf/ﬁ 0 - d

E_CVI:‘(T)

(38)

sin \(eT/h)? + ﬂ'zr)e_iswﬁ

(eTIH)* + 7

; (35)

V. CONCLUSION

The above discussion shows that the QAT is completely
correct physically, provided there is no resonance in Eq. (8).
This is ensured by ||¢yx(¢) — ¢h47(1)||<< 1. But it is not neces-

sarily true that ||zx(1) — 4 7(r)]| < 1. Taking (1) for dx(t)
will possibly lead to contradiction. MS inconsistency is only
a result from invalid reasoning; we need not test the validity
of the QAT case by case, provided there is no resonance in
Eq. (8).

Even though we do not agree with [10], we still think it is
an interesting work because it has raised an important ques-
tion: In all theoretical reasoning, one has to bear in mind that
approximately equal functions do not have to have approxi-
mately equal derivatives.
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