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We show that it is possible to define a Lorentz-covariant reduced spin density matrix for massive particles.
Such a matrix allows one to calculate the mean values of observables connected with spin measurements
�average polarizations�. Moreover, it contains not only information about polarization of the particle but also
information about its average kinematical state. We also use our formalism to calculate the correlation function
in the Einstein-Podolsky-Rosen–Bohm type experiment with massive relativistic particles.
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I. INTRODUCTION

Relativistic aspects of quantum mechanics have recently
attracted much attention, especially in the context of the
theory of quantum information. One of the important ques-
tions in this context is how to define the reduced spin density
matrix. Such a matrix should enable one to make statistical
predictions for the outcomes of ideal spin measurements
which are not influenced by the particle momentum. We con-
sider this problem in detail in the case of massive particles.
The reduced spin density matrix is usually defined by the
following formula �1�:

��� =� d��k��k,m,s,���̂�k,m,s�� , �1�

where �̂ denotes the complete density matrix of a single par-
ticle with mass m, d��k�=d3k /2k0 is the Lorentz-invariant
measure on the mass shell and four-momentum eigenvectors
�k ,m ,s ,�� �i.e., P��k ,m ,s ,��=k��k ,m ,s ,��� span the space
of the irreducible representation of the Poincaré group. They
are normalized as follows

�p,m,s,��k,m,s,�� = 2k0�3�k − p����. �2�

The action of the Lorentz transformation � on the vector
�k ,m ,s ,�� is of the form

U����k,m,s,�� = D��
s
„R��,k�…��k,m,s,�� , �3�

where Ds is the matrix spin s representation of the SO�3�
group, R�� ,k�=L�k

−1�Lk is the Wigner rotation, and Lk des-
ignates the standard Lorentz boost defined by the relations

Lkk̃=k, Lk̃= I, k̃= �m ,0�.
The key question is whether the reduced density matrix is

covariant. In �1� it was stressed that the matrix �1� is not
covariant under Lorentz boosts. It means that when we cal-
culate the complete density matrix as seen by the boosted
observer

�̂� = U����̂U†��� �4�

and then the reduced spin density matrix ���� �using Eq. �1�
with �̂ replaced with �̂�� we find that we cannot express ��
only in terms of � and �. The reason is quite obvious—the
Wigner rotation in the transformation law �3� is momentum
dependent, except of the case ��O�3�. From the group the-
oretical point of view it is related to the fact that the Lorentz
group and the rotation group are not homomorphic. Notice
that in the nonrelativistic quantum mechanics it is possible to
define the Galilean-covariant reduced density matrix by the
formula analogous to Eq. �1� �2� because such a homomor-
phism exists.

II. COVARIANT REDUCED DENSITY MATRIX

As was pointed out in �3� matrix �1� is not always relevant
to the discussion of relativistic aspects of polarization experi-
ments �see, however �4��. For this reason we propose here
another definition of the reduced density matrix. This defini-
tion relies on the analogy with the polarization tensors for-
malism used in quantum field theory. As a result we obtain
the finite-dimensional matrix which contains not only the
information about the polarization of the particle but also the
information about average values of the kinematical degrees
of freedom. Moreover, such a matrix transforms covariantly
under the Lorentz group action.

To begin with we introduce vectors �� ,k� such that

��,k� = v���k��k,m,s,�� �5�

which are assumed to transform under Lorentz transforma-
tion � due to the following, manifestly covariant, rule:

U�����,k� = D��−1��	�	,�k� , �6�

where D��� is a given finite-dimensional Lorentz group rep-
resentation. Consistency of the rules �3�, �5�, and �6� leads to
the Weinberg-like condition �5,6� which has to be fulfilled:

D���v�k�DsT
„R��,k�… = v��k� , �7�

where v�k� denotes matrix �v���k��. Thus to calculate v�k� it

is enough to determine v�k̃� and use the formula v�k�
=D�Lk�k̃ which is a consequence of Eq. �7�.
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Assuming that the condition �7� can be solved we can
define the following �unnormalized� covariant reduced den-
sity matrix:


�	 =� d��k��	,k��̂��,k� . �8�

We can easily check that this matrix is manifestly covariant
under the transformation �4�, namely we have


� = D���
D†��� , �9�

where 
= �
�	�.
One can also easily verify that the matrix �8� is Hermitian

and positive semidefinite �similarly as Eq. �1��. Transforma-
tion �9� preserves Hermicity and positive semidefiniteness of

 but changes its trace.

It is clear that we can define also normalized density ma-
trix


̃ =



Tr 

. �10�

Such a matrix transforms according to the rule


̃� =
D���
̃D†���

Tr„
̃D†���D���…
. �11�

One can check immediately that Eq. �11� gives a nonlinear
realization of the Lorentz group connected with the quotient
space SO�1,3�0 /SO�3�. Therefore this realization is linear on
the rotation group. However, to extract information about
polarization of the particle it does not matter which matrix

we use, 
 or 
̃. Moreover, when we consider representations
of the full Lorentz group �i.e., including inversions� the most
convenient choice is to consider the matrix

� = 
� , �12�

where � fulfills the condition

D†� = �D−1, �13�

which means that in this representation � represents space
inversions. Thus the matrix � transforms under the Lorentz
group action in the following way:

�� = D����D−1��� . �14�

We see that transformation �14� does not change the trace of
�. Of course, having � we can easily determine 
 and nor-

malized density matrix 
̃.
Hereafter we restrict ourselves to the case of a spin-1 /2

particle; generalization to the higher spin is immediate. In
this case the Weinberg condition �7� can be easily solved. We
want to consider representations of the full Lorentz group
thus we choose as the representation D the bispinor repre-
sentation D�1/2,0� � D�0,1/2�, so �=
0 in this case. Explicitly, if
A�SL�2,C� and ��A� is an image of A in the canonical
homomorphism of the SL�2,C� group onto the Lorentz
group, we take the chiral form of D�1/2,0� � D�0,1/2�, namely

D„��A�… = 	A 0

0 �A†�−1 
 . �15�

The canonical homomorphism between the group SL�2,C�
�universal covering of the proper ortochronous Lorentz
group L+

↑� and the Lorentz group L+
↑ �SO�1,3�0 �7� is de-

fined as follows: With every four-vector k� we associate a
two-dimensional Hermitian matrix k such that

k = k���, �16�

where �i, i=1,2 ,3, are the standard Pauli matrices and �0
= I. In the space of two-dimensional Hermitian matrices �16�
the Lorentz group action is given by k�=AkA†, where A
denotes the element of the SL�2,C� group corresponding to
the Lorentz transformation ��A� which converts the four-
vector k to k� �i.e., k��=��

�k�� and k�=k����.
Now, the explicit solution of the Weinberg condition �7�

under our choice of D �Eq. �15�� is given by

v�k� =
1

2�1 +
k0

m

	I +

1

m
k
�2

	I +
1

m
kP
�2

� , �17�

where k is given by Eq. �16� and kP= �kP���� with kP

= �k0 ,−k�. As is well known, the intertwining matrix v�k�
fulfills the Dirac equation

�k
 − mI�v�k� = 0, �18�

where 
� are Dirac matrices, k
=k�
�. The explicit repre-
sentation of Dirac matrices used in the present paper is sum-
marized in Appendix A.

Now we discuss the general structure of the reduced den-
sity matrix �8� for s= 1

2 . We show that this matrix contains
information about both average polarization as well as kine-
matical degrees of freedom. Recall that the polarization of
the relativistic particle is determined by the Pauli-Lubanski
four-vector

W� =
1

2
�����P�J��, �19�

where P� is a four-momentum operator and J�� denotes gen-
erators of the Lorentz group, i.e., U���=exp i���J��. We
will also use the spin tensor S�� defined by the formula �8�

S�� = −
1

m2�����P
�W�. �20�

Now, the 4�4 reduced spin density matrix 
 can be written
as the following combination


 =
1

4
	a
0 + bi
5
0 + u�
�
0 +

2w�

m

5
�
0

+ 2s��

i

4
�
�,
��
0
 . �21�

Real coefficients a, b, u�, w�, and s�� can be determined by
calculating corresponding traces. Thus, after some algebra,
using Eqs. �8�, �12�, �17�–�20�, �B1�, and �B2� we get
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a = Tr��� = 1, �22�

b = Tr�i�
5� = 0 �23�

u� = Tr��
�� =
1

m
�P���̂, �24�

w� =
m

2
Tr��
�
5� = �W���̂, �25�

s�� = Tr	�
i

4
�
�,
��
 = �S����̂, �26�

where �A��̂ denotes the mean value of the observable A in the
state described by the complete density matrix �̂, �A��̂

=Tr��̂A�. Notice that the above relations are not accidental,
since 
0
� is a canonical four-velocity operator for the Dirac
particle and i /4�
� ,
�� are Lorentz group generators in the
bispinor representation. Thus, finally, the matrix �=

0 has
the following form:

� =
1

4
I +

1

4m
�P���̂
� +

1

2m
�W���̂
5
� +

1

2
�S����̂

i

4
�
�,
�� .

�27�

It can be also checked that in the nonrelativistic limit we
have

1

m
�P���̂ → �0

�, �28a�

�W0��̂ → 0, �28b�

�S0���̂ → 0, �28c�

�Sij��̂ → − �ijk
1

m
�Wk��̂. �28d�

The formalism we have introduced above can be straight-
forward generalized to the multiparticle case. As an example
we shall discuss briefly the reduced spin density matrix for
two massive particles. Two-particle Hilbert space is spanned
by vectors �� ,k� � �	 , p�, where �� ,k� is defined by Eq. �5�.
Therefore we define the two-particle unnormalized reduced
density matrix as follows:


��	�,�	 =� d��k�d��p���,k� � �	,p��̂���,k� � �	�,p� ,

�29�

where �̂ denotes the complete two-particle density matrix. It
is obvious that the matrix �29� is Hermitian, positive-
semidefinite, and can be easily normalized similarly like in
the one-particle case. Moreover, in the case of two spin 1/2
particles we define

� = 
�
0
� 
0� . �30�

III. PARTICLE WITH A SHARP MOMENTUM

Now let us discuss the case of the particle with a sharp
momentum, say q, and polarization determined by the Bloch
vector �, ����1, i.e., we assume that the complete density
matrix has the following matrix elements:

�k,m,s,���̂�p,m,s,�� =
2q0

�3�0�
�3�k − q��3�p − q�

1

2
�I − � · ����.

�31�

Of course the normalization factor 1 /�3�0� should be under-
stood as the result of the proper regularization procedure.
Now, using Eqs. �8� and �B2� we can find the corresponding
matrix �. We have

� =
1

4
	q


m
+ I
	I + 2
5w


m

 , �32�

where the four-vector w�= �W���̂ is given in this case by

w0 =
q · �

2
, w =

1

2
	m� +

q�q · ��
q0 + m


 , �33�

i.e., w is obtained from �0,m� /2� by applying the Lorentz
boost Lq. It should also be noted that w�q�=0. The matrix
�32� is known in the literature as the spin density matrix for
Dirac particle �9�.

Now, to connect the density matrix introduced above with
some macroscopic experiments like the Stern-Gerlach one let
us consider a charged particle with sharp momentum moving
in the external electromagnetic field. We assume that the gi-
romagnetic ratio g=2. The momentum and polarization of
such a particle vary in time, thus they can be regarded as
functions of its proper time �:

q = q���, � = ���� . �34�

The expectation value of the operators representing the spin
and the momentum will necessarily follow the same time
dependence as one would obtain from the classical equations
of motion �8,10–12�:

dq�

d�
=

e

m
F�

	q	 +
�

m2q	w���F̃�
	

+
�2

m
F̃�

	�F	
�w� +

1

m2q	�w�F��q��� , �35�

dw�

d�
= ��F�

�w� +
1

m2q��w�F��q��� , �36�

where e denotes the charge of the particle, m its mass, � is
the proportionality constant between the magnetic moment
of the particle �� and w�, i.e., ��=� /mw�,1 and F�� is the

tensor of the external electromagnetic field, F̃�	= 1
2��	

��F��.
Equation �36� describes Thomas precession of the spin vec-
tor in the electromagnetic field �10� while Eq. �35� allows
one to determine the trajectory of the spinning particle mov-

1For the particle with charge e and giromagnetic ratio g, �
=ge /2m �11�.
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ing in the electromagnetic field F��. The slow motion limit
of the above equations takes the well-known form �11�

dq

dt
=

e

m
q � B +

�

2
� · � B , �37�

d�

dt
= �� � B , �38�

where we assumed that the electric component of the elec-
tromagnetic field is equal to zero. Equations �37� and �38�
describe forces acting on the particle in the Stern-Gerlach
experiment, therefore we can really identify � with the po-
larization of the particle.

In this simple case of the monochromatic particle we can
also calculate explicitly the von Nuemann entropy of the
reduced density matrix. The matrix � in the rest frame of the
particle can be written as

�0 =
1

2
	1 1

1 1

 �

1

2
�I + � · �� . �39�

To calculate entropy we have to use the normalized density

matrix 
̃0, but in this particular case 
̃0=�0. Thus the von
Neumann entropy of the state �39� is equal to

S
̃0
= −

1

2
	�1 + ����ln

1 + ���
2

+ �1 − ����ln
1 − ���

2

 . �40�

Now, to find the entropy in the arbitrary Lorentz frame we

apply to the matrix 
̃0 the Lorentz transformation �11� with
D��� given by Eq. �15� and we find that entropy of the

corresponding reduced density matrix 
̃� is given by Eq. �40�
too, i.e., S
̃0

=S
̃�. Therefore for a particle with the sharp
momentum the entropy of the reduced density matrix does
not change under Lorentz transformations. However, in the
case of an arbitrary momentum distribution, the entropy of

the reduced density matrix 
̃ is not in general Lorentz-
invariant.

IV. SPIN OPERATOR

In the next section we will use our formalism to calculate
the Einstein-Podolsky-Rosen–Bohm �EPR–Bohm� correla-
tion function. Thus we have to introduce the spin operator
for a relativistic massive particle. The choice is not obvious
since in the discussion of relativistic EPR–Bohm experi-
ments various spin operators have been used �13–19�. How-
ever, our previous considerations �Eqs. �33�–�38�� as well as
the classical definition of the relativistic spin �8� suggest that
the best candidate for the spin operator is

Ŝ =
1

m	Ŵ − Ŵ0 P̂

P̂0 + m

 , �41�

which corresponds to the classical polarization vector � �pre-
cisely to � /2� in Eq. �33�. This operator is also used in quan-
tum field theory �20�. It fulfills the following standard com-
mutation relations:

�Ĵi, Ŝj� = i�ijkŜ
k, �42a�

�Ŝi, Ŝj� = i�ijkŜ
k, �42b�

�P̂�, Ŝj� = 0, �42c�

which should be satisfied for the spin operator. Here Ĵi

= 1
2�ijkĴ

jk and one can show that it is the only operator which

is a linear function of Ŵ� and fulfills relations �42� �20�.
Therefore the operator corresponding to the spin projec-

tion along arbitrary direction n �n2=1� in the representation
of gamma matrices �A1� reads explicitly

n · Ŝ =
1

2m� P̂0	n · � 0

0 n · �



− i	�n � P̂� · � 0

0 − �n � P̂� · �



−
n · P̂

P̂0 + m
	P̂ · � 0

0 P̂ · �

� , �43�

where we have used Eqs. �B6�.
Equation �42b� implies that eigenvalues of the operator

n · Ŝ are integers or half-integers. As one can easily check by
direct calculation the eigenvalues of the operator �43� are
equal to ± 1

2 . This observation supports our choice of the

operator Ŝ as the spin operator.
Now we want to express the average of the spin operator

�41� in terms of the reduced matrix �. One can check that in
an arbitrary state �̂

��P̂0 + m�Ŝ��̂ =
m

2
Tr„�

5�I + 
0�… . �44�

Thus a reasonable choice for the normalized average of the
spin component is

� =
��P̂0 + m�Ŝ��̂

��P̂0 + m���̂

=
Tr„�

5�I + 
0�…
2Tr„��I + 
0�…

. �45�

When �̂�k� describes a particle with a sharp momentum k the

normalized average is simply the average of Ŝ, i.e., inserting
reduced density matrix � �32� into Eq. �45� we get

� = �Ŝ��̂�k� =
�

2
. �46�

It should also be noted that in the nonrelativistic limit we
recover the result �46� for an arbitrary state �̂

� = �Ŝ�� =
�

2
. �47�

V. QUANTUM CORRELATIONS

Using the formalism introduced above, we now calculate
the correlation between measurements of spin components
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performed by two observers, A and B, along two arbitrary
directions, a and b, respectively. We consider the simplest
situation in which both observers are at rest with respect to a
certain inertial frame of reference O. We assume also that
both measurements are performed simultaneously in the
frame O.

We calculate the EPR-Bohm correlation function in the
pure state of two particles with sharp momenta

��� = �
�	

c�	��,k� � �	,p� . �48�

The corresponding reduced density matrix �30� has the fol-
lowing form:

��	,��	�
� =

4k0p0
„�3�0�…2

�����
�v�k�v̄�k�
0C*
0

„v�p�v̄�p�…T��	

��„v�k�v̄�k�…TCv�p�v̄�p����	�, �49�

where the matrix C= �c�	� determines the state �48� while
v�k�v̄�k� and v�p�v̄�p� are given by Eq. �B1b�.

Observers A and B use observables 2a · Ŝ � I and I

� 2b · Ŝ, respectively �a2=b2=1�. Thus the correlation func-
tion has the form �see Eqs. �44� and �B8��

C�a,b� = 4
��P̂0 + m�a · Ŝ � �P̂0 + m�b · Ŝ��

��P̂0 + m� � �P̂0 + m���

=
Tr����„a · �
5�I + 
0�… � „b · �
5�I + 
0�…��

Tr�����
0 + I� � �
0 + I���

= 4
���a · Ŝ � b · Ŝ���

�����
. �50�

After some algebra we find that

C�a,b� =
Tr�„b · S�p�v�p�v̄�p�
0

…C†
„a · S�k�v�k�v̄�k�
0

…

TC�
Tr�„v�p�v̄�p�
0

…C†
„v�k�v̄�k�
0

…

TC�
,

�51�

where matrices a ·S�k� and b ·S�p� have the same form as

Eq. �43� with n, P̂ equal to a, k and b, p, respectively. Now,
for the sake of simplicity, we specify the state ���. We choose

C = a	�2 0

0 �2

 , �52�

where a is a normalization constant. This choice is rather
natural because the state described by Eqs. �48� and �52� has
the same form for all inertial observers, namely

U��� � U������ = �
�	

c�	��,�k� � �	,�p� , �53�

where we used Eq. �15�. Moreover, in the center of mass
frame it is an ordinary singlet state.

Now, provided that C is given by Eq. �52�, after straight-
forward calculation we arrive at

C�a,b� = − a · b +
�k � p�
m2 + kp

	�a � b�

+
�a · k��b � p� − �b · p��a � k�

�k0 + m��p0 + m� 
 . �54�

We see that the correction to the nonrelativistic correlation
function �C=C�a ,b�−Cnonrel=C�a ,b�+ab is of order 	2,
where 	=v /c, v denotes the velocity of the particle, and c
the velocity of light. Let us note first that when momenta of
both particles are parallel or antiparallel the correlation func-
tion has the same form as in the nonrelativistic case. This
result differs from Czachor’s results2 �14�. The reason is that
we use a different, and in our opinion more adequate, spin
operator.

Now let us consider the configuration in which the non-
relativistic correlation vanishes �a�b�. For simplicity let us
assume also that �k�= �p� and a �k, b �p or a�k, b�p. In
such fixed configurations the correlation function has the
very simple form

C�a,b� = �C =
p0

2 − m2

p0
2 + m2 =

	2

2 − 	2 . �55�

Dependence of the above correlation on 	 is depicted in Fig.
1. Notice that Eq. �55� was also obtained by Czachor �14� but
for a different configuration.

VI. CONCLUSIONS

To conclude, we have constructed a Lorentz-covariant re-
duced spin density matrix for a single massive particle. It
contains not only information about average polarization of
the particle but also information about its average kinemati-
cal state. We have also showed that this matrix has the proper
nonrelativistic limit.

2The Czachor’s result can be obtained in our framework by cal-

culating the appriopriately normalized average of a ·Ŵ � b ·Ŵ.

FIG. 1. Correlation function in the case when a�b, �k�= �p� and
a �k, b �p or a�k, b�p �Eq. �55��.
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Our results shows that we can define a Lorentz-covariant
finite-dimensional matrix describing polarization of a mas-
sive particle. However, in the relativistic case �contrary to the
nonrelativistic one� we cannot completely separate kinemati-
cal degrees of freedom if we want to construct a finite-
dimensional covariant description of the polarization degrees
of freedom.

With help of our covariant formalism we have also calcu-
lated the correlation function in the EPR-Bohm type experi-
ment with massive relativistic particles. We have showed that
relativistic correction �C to the nonrelativistic correlation
function Cnonrel=−a ·b vanishes when momenta of both par-
ticles are parallel or antiparallel, i.e., in the standard configu-
ration of EPR-Bohm type experiments. We have found also
the configurations in which the nonrelativistic correlation
vanishes while the relativistic correction �C survives and is
of order 	2 �Eq. �55��.
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APPENDIX A: DIRAC MATRICES

In this paper we use the following conventions. Dirac
matrices fulfill the condition 
�
�+
�
�=2g�� where g��

=diag�1,−1,−1,−1� denotes the Minkowski metric tensor
the moreover, we adopt the convention �0123=1. We use the
following explicit representation of gamma matrices:


0 = 	0 I

I 0

, 
 = 	 0 − �

� 0

, 
5 = 	 I 0

0 − I

 , �A1�

where �= ��1 ,�2 ,�3� and �i are standard Pauli matrices.

APPENDIX B: USEFUL FORMULAS

The matrix �17� is normalized as follows

v̄�k�v�k� = I , �B1a�

v�k�v̄�k� =
1

2m
�k
 + mI� , �B1b�

where v̄�k�=v†�k�
0. Moreover, it can be verified that it ful-
fills the following relation:

v̄�k�
�v�k� =
k�

m
I . �B2�

Vectors �� ,k� fulfill the orthogonality relation:

��,k�	,p� = 2k0�3�k − p�„v�k�v†�k�…	�, �B3�

and one can check that

I = �
�	
� d��k�
	�

0 ��,k��	,k� , �B4�

„v�k�v̄�k�…�	�	,k� = ��,k� . �B5�

In the representation of gamma matrices �A1� we have

Ŵ0 =
1

2	P̂ · � 0

0 P̂ · �

 , �B6a�

Ŵ =
1

2
P̂0	� 0

0 �

 −

i

2	P̂ � � 0

0 − P̂ � �

 . �B6b�

It can be also checked that when

�F̂�� = Tr��f� , �B7a�

�Ĝ�� = Tr��g� , �B7b�

we have

�F̂ � Ĝ�� = Tr„��f � g�… , �B8�

where in Eqs. �B7� and �B8� � and � are complete and
reduced density matrices for one and two particles, respec-
tively.
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