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A general method for obtaining the decoherence time in self-induced decoherence is presented. In particular,
it is shown that such a time can be computed from the poles of the resolvent or of the initial conditions in the
complex extension of the Hamiltonian’s spectrum. Several decoherence times are estimated: 10−13–10−15 s for
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order of magnitude of our results agrees with that obtained by the einselection �environment-induced decoher-
ence� approach.
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I. INTRODUCTION

The phenomenon of decoherence is usually considered as
a relevant element for understanding how the classical world
emerges from an underlying quantum realm. In a first period,
decoherence was explained as the result of the destructive
interference of the off-diagonal elements of a density matrix
�see Refs. �1,2��; however, this line of research was aban-
doned due to technical difficulties derived from the formal-
ism used to describe the process. As a consequence, decoher-
ence began to be conceived as produced by the interaction
between a system and its environment. This approach gave
rise to the environment-induced decoherence �EID� program,
based on the works of Zeh �3–5� and later developed by
Zurek and co-workers �6–12�. Although many relevant re-
sults have been obtained by means of environment-induced
decoherence, this approach still involves certain unsolved
problems �see Refs. �13,14��:

�i� Einselection is based on the decomposition of the sys-
tem into a relevant part, the proper system, and an irrelevant
part, the environment. This decomposition is not always pos-
sible, as in the case of the universe. In fact, Zurek himself
considers the criticism: “… the Universe as a whole is still a
single entity with no ‘outside’ environment, and therefore
any resolution involving its division is unacceptable” �Ref.
�15�, p. 181�. The same problem appears in any closed sys-
tem �and therefore with no interaction with an environment�
that becomes classical. In fact, if “…the existence of emer-
gent classically will be always accompanied by other mani-
festations of openness such a dissipation of energy into the
environment” �Ref. �11�, p. 6�, the problem is to explain why
many systems behave classically maintaining their energy
constant.

�ii� The einselection approach does not provide a clear
definition of the “cut” between the proper system and its
environment. In fact, as Zurek himself admits, “In particular,

one issue which has been often taken for granted is looming
big, as a foundation of the whole decoherence problem. It is
the question of what the ‘system’ is which plays such a cru-
cial role in all the discussions of the emergent classicality.
This question was raised earlier but the progress to date has
been slow at best” �Ref. �16� p. 122�.

�iii� In the einselection approach, the definition of the ba-
sis where the system becomes classical, i.e., the pointer ba-
sis, relies on the “predictability sieve” which would produce
the set of the most stable states. But this definition seems
very difficult to implement, at least in a generic case. In fact,
the basis vectors are only good candidates for reasonable
stable states �17�.

As the result of these and other difficulties, a number of
alternative accounts of decoherence have been proposed
�18–24�.

In a series of papers �13,25–38� we have returned to the
initial idea of the destructive interference of the off-diagonal
terms of the density matrix, but now on the basis of the van
Hove formalism �39–43�. We have called this new approach
“self-induced decoherence” �SID� because, from this view-
point, decoherence is not produced by the interaction be-
tween a system and its environment, but results from the own
dynamics of the whole quantum system governed by a
Hamiltonian with continuous spectrum. The aim of this pa-
per is to present a general method for obtaining the decoher-
ence time in self-induced decoherence. In particular, we will
show that such a time can be computed from the poles of the
resolvent or of the initial conditions in the complex extension
of the Hamiltonian’s spectrum. The general formalism has
been developed in Refs. �44,45�, but in the context of a dis-
cussion about the nature and properties of Gamow vectors.
Here we will adopt that formalism for the computation of the
decoherence time.

Two comments are in order:
Comment 1. The time evolution of the decaying off-

diagonal terms of the density matrix has three periods. �i� A
short initial �nonexponential� Zeno period, where the time
derivative is zero for t=0 �46�. �ii� Then, a long exponential
decaying period with a factor e−t/tD. This is the only period*Email address: mariocastagnino@citynet.net.ar
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studied in this paper because it allows us to define an expo-
nential decoherence characteristic time tD by means of the
poles method. �iii� A final Khalfin period �47�, where the
evolution has a long powers series tail that essentially de-
pends on the interaction.

These three periods are studied in Refs. �27,48–50� with
the same methods used in the present paper �see also the
coincidence of our results with those of Ref. �51��. These
three periods are ubiquitous in decaying processes.1

Comment 2. The models studied by EID and SID are quite
different. In the typical models treated by EID, the proper
system interacts with an environment, the evolution spec-
trum is usually discrete, only decoherence in the proper sys-
tem is considered since the environment is traced away, and
normally there is dissipation of energy from the system to the
environment; this means that EID is a dissipative decoher-
ence theory. On the contrary, SID models are closed systems
and therefore there is no dissipation, the evolution spectrum
is continuous, and the decoherence of the whole system is
considered: SID is a nondissipative decoherence theory. Un-
fortunately, the comparative study between EID and SID is
only in a first stage in Ref. �53� and, in certain sense, in the
present paper. More generally, there is no comparative study
between dissipative theories �like Refs. �3–5�,� and nondissi-
pative ones �54–57�.2 Therefore the comparison between the
decoherence times obtained by EID and SID is a comparison
of data resulting from different models. As a consequence,
we will try to find obviously not an exact coincidence, but
only a certain similarity in orders of magnitude. Neverthe-
less, to the extent that EID is an accepted theory �albeit the
problems listed above�, this comparison is interesting and
necessary, and it is the best we can do while we wait for
more model research and more experimental data.

The paper is organized as follows. In Sec. II we briefly
review the formal basis of self-induced decoherence. In Sec.
III we show that the decoherence time can be computed as
the characteristic decaying time of the expectation value

equation, and that this time can be obtained in terms of the
poles of the involved functions. In Sec. IV we find the origin
of these poles in the resolvent of the Hamiltonian or in the
initial conditions. In Secs. V and VI we estimate the deco-
herence time in microscopic systems and in macroscopic
bodies, respectively. Section VII is devoted to study the case
of a thermal bath, where the decoherence time is estimated
and compared with the corresponding results obtained by the
einselection approach. After the conclusions, we include two
appendixes: in Appendix A we introduce a necessary math-
ematical remark, and in Appendix B we sketch a model with
two characteristic times: decoherence and relaxation.

II. SELF-INDUCED DECOHERENCE

In this section we will present the formalism of self-
induced decoherence by means of a very simple case. We
refer the reader to our previous papers; in particular, for more
complex cases, see Ref. �30�, and for a conceptual discussion
about the physical meaning of self-induced decoherence, see
Ref. �13�.

Let us consider a quantum system endowed with a Hamil-
tonian with continuous spectrum,

H = �
0

�

�������d� . �1�

A generic observable reads

O = �
0

� �
0

�

Õ��,����������d�d��, �2�

where O�� ,��� is any kernel or distribution. Since the alge-
bra of these observables is too large for our purposes, we
only consider the van Hove operators such that

Õ��,��� = O������ − ��� + O��,��� , �3�

where O�� ,��� is a regular function. Then,

O = �
0

�

O���������d� + �
0

� �
0

�

O��,����������d�d��,

�4�

where the first term of the right-hand side �rhs� is the singu-
lar term OS, and the second term is the regular term OR.

These observables belong to an algebra Â, that we will call

van Hove algebra: they are the self-adjoint operators of Â
and belong to a space of operators Ô. The basis of Â is
	��� , �� ,���
, where ���= ������ and �� ,���= �������.

Let us now consider the space O�ˆ , that is, the dual of

space Ô with basis 	��� , �� ,���
. A generic state belonging

to O�ˆ reads

� = �
0

�

�������d� + �
0

� �
0

�

���,�����,���d�d�� �5�

and must satisfy the usual constraints: ���� must be real and
positive and �0

�����d�=1. We also introduce the require-

1In some cases where an approximate analytical solution can be
obtained by means of the EID approach, these periods can be easily
identified. For instance, in Ref. �52�, when the distribution of the
interaction couplings is Lorentzian, the time evolution is exponen-
tial, but when these couplings are constant, an approximately
Gaussian evolution is obtained. In the Gaussian regime, the initial
period can be conceived as a Zeno period where the time derivative
is zero for t=0; after the first inflection point, the evolution can be
approximated by an exponential; and at infinity, the Gaussian evo-
lution and all its derivatives vanish, so we find a final Khalfin con-
stat zero tail �see also Fig. 29 of Ref. �48� as an illustration�.

2It is interesting to note that, since in SID the whole system
�proper system plus environment� reaches an equilibrium decohered
state, all the parts of the whole system �in particular, the proper
system� also reach a final equilibrium state. Therefore the proper
system has a final � of equilibrium whose eigenbasis can be ob-
tained: the proper system decoheres in that basis. This means that,
when the conditions for the application of SID are satisfied in the
whole system �see Ref. �30��, the SID approach should explain the
decoherence of the proper system as treated by the EID approach.
Of course, this is only a preliminar suggestion that we will develop
elsewhere.

M. CASTAGNINO AND O. LOMBARDI PHYSICAL REVIEW A 72, 012102 �2005�

012102-2



ment that ��� ,��� be a regular function. Again, the first term
of the rhs of Eq. �5� is the singular term �S, and the second
term is the regular term �R.

The expectation value of the observable O in the state �
results from the action of the functional � on the operator O,
�� �O�,

�O�� = �
0

�

����O���d� + �
0

� �
0

�

���,���O��,���d�d��,

�6�

where functions ���� and O��� are such that the first integral
is well defined. The time evolution of this last equation reads

�O���t� = �
0

�

����O���d�

+ �
0

� �
0

�

���,���O��,���ei���−���/��td�d��.

�7�

Since the first term of the rhs is time-constant and the second
is a function of time, we will call them constant term and
fluctuating term, respectively.

The Riemann-Lebesgue theorem, which mathematically
expresses the phenomenon of destructive interference, states
that, if f����L1,

lim
t→�

� d�f���ei�t = 0. �8�

Therefore, if the function ��� ,���O�� ,��� of Eq. �7� is L1

in variable �=�−��, we can apply the Riemann-Lebesgue
theorem,

lim
t→�

„�R�t��OR… = lim
t→�

�
0

� �
0

�

���,���O��,���ei���−���/��t

�d�d�� = 0. �9�

As a consequence,

lim
t→�

�O���t� = lim
t→�

„��t��O… = �
0

�

����O���d� . �10�

This last equation can be expressed as a weak limit,

W − lim
t→�

���t�� = ��*� = �
0

�

�������d� , �11�

where ��*� has only singular-diagonal terms.3

It is not difficult to see that this approach to decoherence
avoids the problems of the einselection program. In fact,

self-induced decoherence can be applied to closed systems as
the universe �34�, the problem of the “cut” between the
proper system and its environment is absent �13�, and the
pointer basis is perfectly defined �e.g., the energy eigenbasis
in the above example� �28�. Nevertheless, three points need
to be emphasized:

�i� In this approach, the coarse graining necessary to turn
the usual unitary time evolutions of quantum mechanics into
nonunitary time evolutions is not explicit in the formalism.

However, the choice of a particular algebra Â, the van Hove
algebra, among all possible algebras and the systematic use
of expectation values �O���t�= (��t� �O) play the role of a
coarse graining. In fact, we can define the projector �= �O�
��0�, with �O��Â and ��0 �O�=1, that projects ���t�� as
���t���= �O���t���̂0� and allows us to translate our results in
the language of projectors: in this case, from Eq. �10� we will
obtain limt→����t���= ��*��, where ��*� is diagonal. This
projection is what breaks the unitarity of the primitive evo-
lution. A detailed discussion on this point can be found in
Refs. �13,38�.

�ii� As a consequence of the Riemann-Lebesgue theorem,
full decoherence occurs at t→�. However, as in any expo-
nential decaying process, there is a characteristic decaying
time that can be considered as the time at which, in practice,
the decaying is approximately completed. In the next sec-
tions we will compute the decoherence time of a self-induced
decoherence process as the characteristic decaying time of
the fluctuating term in the expression of �O���t� of Eq. �7�.

�iii� In the model presented here, full decoherence is ob-
tained for t→�. However, as explained in Ref. �30�, if the
total Hamiltonian has more than one discrete eigenvalue
nonoverlapping with the continuous spectrum, there is no
decoherence in the cross terms of the discrete eigenvalues.

III. POLES IN THE EXPECTATION VALUE
EQUATION

In order to study and compute the decoherence time, we
will use the standard theory of analytical continuation in
scattering quantum theory �see, e.g., Refs. �58,59�� and its
extension to the Liouville–von Neumann space �see, e.g.,
Refs. �26,44��. By means of this theory, we can compute the
decoherence time in terms of the poles corresponding to the
functions involved in the fluctuating term of �O���t� �see Eq.
�7��:

„�R�t��OR… = �
0

� �
0

�

���,���O��,���ei���−���/��td�d��.

�12�

In this equation, we can introduce the following change of
variables �see Appendix A�:

	 =
1

2
�� + ���, � = � − ��, d�d�� = Jd	d� = d	d� .

�13�

Then,

3Here we are working in the Schrödinger picture. However, ana-
log results can be obtained in the Heisenberg picture:

lim
t→�

�O�t��� = lim
t→�

„��O�t�… =�
0

�

����O���d� = ���O*� .
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„�R�t��OR… = �
0

�

d	�
−2	

2	

d�����,	�O���,	�ei��/��t, �14�

where ���� ,	�=��� ,���, O��� ,	�=O�� ,��� and the new
limits of the integrals are due to the fact that �, ��
0. Now
we promote the real variable � to a complex variable Z; if the
function ���Z ,	�O��Z ,	� has no poles in the upper Z half
plane, we obtain

„�R�t��OR… = �
0

�

d	�
C�−2	,2	�

dz���Z,	�O��Z,	�ei�Z/��t,

�15�

where C�−2	 ,2	� is any curve that goes from −2	 to 2	 by
the upper complex half plane. If the function
���Z ,	�O��Z ,	� has, say, a pole at Z0= �̃+ i� in the upper
half plane, we can, as usual, decompose C�−2	 ,2	�
=��−2	 ,2	��CZ0

, where CZ0
is a residue circle around the

pole Z0 and ��−2	 ,2	� is the remaining “background”
curve. If, as usual, we neglect the background, only the fac-
tor ei�Z/��t becomes relevant at the pole Z0; this factor reads

ei�Z0/��t = ei���̃+i��/��t = ei��̃/��te−��/��t, �16�

where e−��/��t is a dumping factor appearing in the regular
fluctuating term of �O���t�= (��t� �O). Therefore the decoher-
ence time can be computed as the characteristic decaying
time of the process as

tD =
�

�
. �17�

Let us note that, up to this point, we have worked in the
eigenbasis of the complete Hamiltonian H, that we will call
	���+
.4

Once the decoherence time has been computed, a single
question remains: what is the origin of the pole in the prod-
uct ���Z ,	�O��Z ,	�? We will address this problem in the
next section.

IV. ORIGIN OF THE POLES

In the physical evolutions we are interested on, there are
“free” periods with no decoherence �e.g., very long ones like
the “in” and “out” periods used to modelize a scattering pro-
cess, or short periods but long enough to fix the initial con-
ditions for an “interaction” period� and interaction periods
where decoherence occurs. On this basis, we will first con-
sider in detail the free period governed by a free Hamiltonian
H0 �case 1�, and then the interaction period governed by a
“perturbed” Hamiltonian H=H0+V �case 2�.

Case 1. Let us consider the free case with a free Hamil-

tonian H0, and call 	�E�
 the eigenbasis of H0, where 0E
��. Decoherence is due to the vanishing of the fluctuating
term of �O���t� �see Eq. �12��,

lim
t→�

„�R�t��OR… = lim
t→�

�
0

� �
0

�

��E,E��O�E,E��ei��E−E��/��t

�dEdE� = 0, �18�

where ��E ,E��= �E���E�� are the coordinates of the state, and
O�E ,E��= �E�O�E�� are the coordinates of the considered ob-
servable, both in the basis 	�E�
. Calling, as above,

	0 =
1

2
�E + E��, �0 = E − E�

the limit reads

lim
t→�

„�R�t��OR… = �
0

�

d	0 lim
t→�

�
−2	0

2	0

d�0��	0 + �0/2,	0 − �0/2�

�O�	0 + �0/2,	0 − �0/2�ei��0/��t. �19�

Proceeding in the same way as in the previous section, we
arrive at an expression similar to Eq. �15�,

lim
t→�

„�R�t��OR… = �
0

�

d	0

�lim
t→�

�
C�−2	0,2	0�

dZ��	0 + Z/2,	0 − Z/2�

�O�	0 + Z/2,	0 − Z/2�ei�Z/��t, �20�

where some poles could be found �see details in Refs.
�26,44��. However, since this is a free period, there should be
no decoherence, i.e., the decoherence time should be infinite.
This means that we have to adjust our theory to this physical
fact by asking the following conditions for the complex con-
tinuation of the coordinates ��E ,E��= �E���E��, O�E ,E��
= �E�O�E��:

�i� Condition 1: In the free eigenbasis 	�E�
, the coordi-
nates of the observable O, O�	0+Z /2 ,	0−Z /2�, have no
poles in the upper half plane. This is a natural requirement
because, if not, the observable O would introduce by itself a
finite decoherence time for any state and any evolution
Hamiltonian, which is certainly not a physical situation.

�ii� Condition 2: In the free eigenbasis 	�E�
, the coordi-
nates of the state �, ��	0+Z /2 ,	0−Z /2�, have no poles in
the upper half plane.5

If these two conditions are satisfied, the function
��	0+Z /2 ,	0−Z /2�O�	0+Z /2 ,	0−Z /2� will have no poles
in the upper half plane. In this case, the decoherence time is
infinite and decoherence is only nominal, as one would have
expected in a free evolving situation.

Case 2. Once we have “calibrated” our theory in order to
satisfy the physical condition according to which a free

4Strictly speaking, we will find a double basis 	���±
 correspond-
ing to a decaying process and a growing process, respectively. But
since we are only interested in the former one, we will use only
	���+
 and work in the lower half plane, trying to find poles in the
second sheet. In Sec. II, we have simply called ��� the eigenvectors
���+ �see Eq. �1��.

5Nevertheless, in Sec. VII we will see that, in some cases, there
are poles in the free period, e.g., in the case of the evolution of a
system with a thermal bath.
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evolving system does not decohere, we will consider the pro-
cess in the interaction period. The total Hamiltonian now
reads

H = H0 + V = �
0

�

�������d� + �
0

� �
0

�

V��,�����

�����d�d��, �21�

where 	���
 is the eigenbasis of H0 �here we have replaced E
with � to emphasize that now this is an interaction period�.
Let us consider the resolvent, namely, the complex value op-
erator �see Ref. �60��

R�z� = �z − H�−1, �22�

i.e., the analytical continuation to the lower second sheet of

R��� = �� + i0 − H�−1. �23�

The poles of R�z� are known as the poles of the resolvent,
and they coincide with those of the S matrix. In fact, for the
Hamiltonian �21�, the S-matrix coefficients read �see Ref.
�61��

S��� = 1 − 2�i���V��� − 2�i���V
1

� + i0 − H
V��� .

�24�

Then, if V is well behaved, i.e., the analytical continuation of
V��� is a vector value analytical function �60�, functions
R��� and S��� have the same poles.6

As before, for the sake of simplicity we will assume that
R�z� has just one pole z0,7 and we will only consider pure
states. On this basis we will show that, if the continuation to
the lower second sheet of �� ��� has no poles, the continua-
tion to the lower second sheet of �� ���+ gets the pole z0 of
function R�z�. In fact, from the Lippmann-Schwinger equa-
tion we know that there are two eigenbases for H �see Ref.
�61��,

���± = ��� +
1

� ± i0 − H
V��� , �25�

where ±i0 symbolizes the analytical continuation to the
lower �upper� half plane in the second sheet. As explained,
we will consider only the decaying case and therefore we
will only use 	���+
. Then,

�����+ = ����� + ���
1

� + i0 − H
V��� �26�

and we can make the analytical continuation of this equation
to the lower second sheet,

���z�+ = ���z� + ���
1

z − H
V�z� . �27�

If we suppose, as before, that V is a well behaved vector
value function, then even if �� ��� has no poles �as required
in case 1�, �� ���+ has a pole at z0, coming from the resolvent
term. The same applies to +�z ���: even if �z ��� has no poles,
+�z ��� gets the poles of the resolvent. The argument can be
extended to states and observables: even if �z���z�� has no
poles, +�z���z��+ has poles, and even if �z�O�z�� has no poles,
+�z�O�z��+ has poles.

As a consequence, if the initial condition of the interac-
tion period is given by the states and operators of a previous
free period which, as shown in case 1, have no poles in the
eigenbasis of H0 �precisely, the continuations of ��E ,E��
= �E���E�� and O�E ,E��= �E�O�E�� have no poles�, then
��z ,z��= �z���z�� and O�z ,z��= �z�O�z�� have no poles but
+�z���z��+ and +�z�O�z��+ do have poles that produce the
dumping factor of Eq. �16�.8 These results are presented in
great detail in Ref. �45�, where the dumping factor appears in
Eq. �70�, precisely,

„��t��O… = �
0

�

d���0������̃��O� + ei�z̄0−z0�t��0��00���̃00�O�

+ �
�

dz�ei�z̄0−z��t��0��0z����̃0z��O�

+ �
�̄

dzei�z−z0�t��0��z0���̃z0�O�

+ �
�

dz��
�̄

dzei�z−z��t��0��zz����̃zz��O� . �28�

Independently of the precise meaning of each symbol �which
can be found in Ref. �45��, it is quite clear that the term

ei�z̄0−z0�t��0 ��00���̃00 �O�=eiZ0t��0 ��00���̃00 �O� represents
the main contribution to decoherence, that is, the pole con-
tribution. The first term is the “constant term” and the last
three terms are background terms.9 Furthermore, it can be
proved that a sufficient condition for the coefficient

��0 ��00���̃00 �O� be well defined is that ��z ,z��= �z���z�� and
O�z ,z��= �z�O�z�� have no poles.

6If V is not well behaved, some new poles may appear.
7z0 is the pole of the ���t�� evolution, Z0= z̄0−z0 is the pole of the

��t� evolution. The minus sign in the −z0 produces the change from
the lower half plane for the decaying processes in the ���t�� evolu-
tion to the upper half plane for these processes in the ��t� evolution.

8Moreover, if conditions 1 or 2 of case 1 are not satisfied,
��z ,z��= �z���z�� and O�z ,z��= �z�O�z�� may have poles, as it will be
shown in Sec. VII. Nevertheless, in a certain sense more poles are
welcomed because what we are essentially trying to prove is that
decoherence time is very small.

9All this computation can also be made by using the Laplace
transform �see Ref. �62��

exp�− iLt� =
1

2�i�
C

exp�− izt�
1

L − z
dz

with the same result. In this case, all the conditions required in this
section are also needed.

DECOHERENCE TIME IN SELF-INDUCED DECOHERENCE PHYSICAL REVIEW A 72, 012102 �2005�

012102-5



V. DECOHERENCE TIME FOR MICROSCOPIC SYSTEMS

In these three final sections we will present some esti-
mates of decoherence time, in order to show that self-
induced decoherence can account for already known results
and opens the way to more detailed models.

As already explained, if � is the imaginary part of the pole
�or of the pole closer to the real axis�, the decoherence time
is

tD =
�

�
�29�

because, as we have said, the characteristic decaying time of
the fluctuating term of �O���t�= (��t� �O) is the decoherence
time tD.

The decoherence time can be estimated in particular cases
like, e.g., the Friedrich model studied in Refs. �26,44�, where
we obtain

tD1
=

�

2��V��2
�30�

being V� the interaction function. It is clear that, if the inter-
action vanishes, tD→�. In turn, if the characteristic energy
2��V��2�V is, say, 1 eV �a natural energy scale for quantum
atomic interactions, see, e.g., Ref. �63��, the decoherence
time is �10−15 s.10

This means that, when the theory is calibrated in such a
way that the free period does not lead to decoherence, a
generic system does decohere �and, in general, very fast� in
the interaction period.

It is interesting to remark that the method of Ref. �45� was
compared with the usual methods of nuclear physics
��64–66�� in the case of a 208Pb�2d5/2� proton state in a
Woods-Saxon potential, including spin-orbit interaction with
parameters as in Ref. �67�, with an excellent agreement �see
Fig. 3 of Ref. �45��. In this case, �=10−1 MeV and tD
�10−20 s.

VI. DECOHERENCE TIME OF MACROSCOPIC BODIES

A pure state of a macroscopic object ��� can be consid-
ered as the tensor product of N states ��i� of microscopic
particles, belonging to Hilbert spaces Hi, respectively,

��� = �
i=1

N

��i� � �
i=1

N

Hi �31�

or, more generally, if the microscopic states are mixed, �i
�Li=Hi � Hi, then the state of the macroscopic object will
be

� = �
i=1

N

�i � �
i=1

N

Li. �32�

Therefore the generic total Hamiltonian reads

H = 
i=1

N

Hi + 
i=1

N

Vi + 
i,j=1

N

Vij + 
i,j,k=1

N

Vijk + ¯ , �33�

where the Hi are the free Hamiltonians of the microscopic
particles, the Vi are the averages of the interactions between
each particle and the remaining particles, the Vij are the two
particle interactions, and so forth. The eigenvectors of H are
�� ,x1 , . . . ,xN−1�, such that

H��,x1, . . . ,xN−1� = ���,x1, . . . ,xN−1� , �34�

where � is the total energy and x1 , . . . ,xN−1 are the remaining
labels necessary to define the eigenstate. Since decoherence
occurs in variable �, we can ignore the rest of the labels for
our argument. Disregarding for simplicity the Vij ,Vijk , . . .,
and considering all the Vi equal, we obtain

V = 
i=1

N

Vi = NVi. �35�

Then, the characteristic energy in Eq. �30� is now

tD =
�

NVi
=

tD1

N
. �36�

Let us suppose again that all the Vi are of the order of 1 eV.
If we consider a macroscopic object of 1 mol, where N
=1024, the decoherence time results,

tD = 10−39 s,

a very tiny time indeed. This decoherence time is so close to
Plank time 10−43 s that it should be considered more as an
illustration than as a physical result. Nevertheless, it shows
that decoherence is fantastically fast in macroscopic bodies.

Let us compare Eq. �36� with the low temperature tdec of
Ref. �11�, p. 51,

tdec = �0
−1� �x

2L0
�2

where we have also a interaction factor term �0
−1� tD1

and a
macroscopic coefficient ��x /2L0�2�1/N. We can see a co-
incidence between the orders of magnitude of our result and
of the standard theory’s result, in the spirit of the Comment 2
of the Introduction.

VII. INITIAL THERMAL BATH

Finally, we will consider the case of a system with a ther-
mal bath, following the formalism of Ref. �27�, Sec. IV.B.
For the model considered in that section, an oscillator in a
thermal bath, the fluctuating term of Eq. �7� is

� Opp��̄pp�e
i���p−�p��t/��dpdp�, �37�

where �̄pp�= �� �Ap
†Ap��, given in Eq. �37� of Ref. �27�, is the

initial condition of the oscillator and thermal bath,

10This is, of course, a general case: � is usually of the order of
magnitude of the characteristic interaction energy V.
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���Ap
†Ap�� = ��p��3�p − p�� +

�n�0VpVp�

�+��p��−��p��

+
VpVp���p�

�−��p����p� − �p − i0�

+
VpVp���p�

�+��p���p − �p� + i0�
+

VpVp�

�+��p��−��p��

�� dkVk
2��k�

�−��p����p� − �p − i0���p − �p� + i0�
,

�38�

where ��p� is given in Eq. �40� of that paper,

��p� =
1

e��p − 1
�39�

and where �=1/kT. Again, independently of the precise
meaning of each term �which can be found in Ref. �27��, it is
obvious that the ��p� factor has a pole in the �p complex
plane and therefore the initial condition is not pole free.
Then, defining as before

� = �p − �p�, 2	 = �p + �p�, �p = 	 +
�

2
, etc.,

�40�

the terms of Eq. �37� have the form

� ¯

1

e��	+��/2�� − 1
ei��t/��d	d� , �41�

where the dots symbolize other factors coming from the in-
teraction �which may have poles not considered here�. When
we introduce the complex variable z=�+ i�, the poles of the
factor ��p� turn out to be located where the following equa-
tion is satisfied:

e��	+�z/2�� = e��	+��/2���cos
�

2kt
+ i sin

�

2kt
� = 1. �42�

Then, the poles are located in the coordinates

� = − 2	, � = 4�nkT , �43�

where n is an integer number. For n=1 we obtain the deco-
herence time

tD =
�

4�kT
�44�

which, for room temperature, T�102 K, gives tD1
=10−13 s

for a single-particle system, and tD= tD1
/N=10−37 s for a

mol-particle system.
Moreover, if S1=� is the characteristic action for a par-

ticle system,11 and S=ML2 /� is the action of a macroscopic
system �where M, L, and � are the characteristic mass,
length, and time�, the particle number can be estimated as

N =
S

S1
=

ML2

��
�45�

and the decoherence time reads

tD � �
�2

ML2kT
. �46�

In the particular case that �=�0
−1, L=L0 and M =M are

the characteristic time, length, and mass of the model of Sec.
4.1 of Ref. �11�, when we introduce the de Broglie length
	DB=� /�3MkT�� /�MkT, we obtain

tD � �0
−1�	DB

L0
�2

, �47�

namely, Eq. �4.10� of Ref. �11� which represents the deco-
herence time for the model of Sec. 4.1. This shows, again in
the spirit of Comment 2 of the Introduction, the agreement
between the orders of magnitude of the decoherence times
obtained by the SID and the EID approaches.

VIII. CONCLUSION

In a series of previous papers we have developed an ap-
proach to decoherence that avoids the drawbacks of the ein-
selection approach. In the present paper we have shown that
our formalism supplies a precise method for computing the
decoherence time, and that the results obtained with such a
method are physically meaningful.

However, we are aware of the fact that a great number of
results have been obtained in the context of the einselection
program when compared with the cases treated by means of
the self-induced approach. Therefore our future work has to
be directed to enlarge the set of applications of our theory.
We consider that this task will be worth the effort to the
extent that decoherence is a key element in the explanation
of the emergence of classicality from the quantum world.

APPENDIX A: HARTOG THEOREM

A necessary mathematical remark is in order: from the
Hartog theorem, we know that the realm of analytical func-
tions of more than one complex variable is much more in-
volved than that of just one variable. In Refs. �26,44,45�, we
have considered the analytical continuation of two variables,
z and z�, in products like f1�z� f2�z��; this suggests that we
should have worked with the theory of analytical functions
of two complex variables. However, this is not the case be-
cause the only relevant variable for the problems considered
in the quoted papers is the difference Z=z−z� that appears in
the evolution factor ei�z−z��t; then, we can always introduce a
change of variables,

z + z� = 2	, z − z� = Z ,

11E.g., �i� In the harmonic oscillator, the unidimensional coordi-
nates are q= �M� /��1/2Q and p= �1/M���1/2P; then, by making

q= p=1 we obtain S1=QP=�. �ii� In a model with spherical sym-
metry we have LzY�� ,��=m�Y�� ,��; then, by making m=1 we
obtain S1=�Lz=�, and so forth.
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z = 	 +
Z

2
, z� = 	 −

Z

2
, �A1�

and functions f�z ,z��, like the product f1�z� f2�z��, have to be
considered as functions f�z ,z��= f�	+ �Z /2� ,	− �Z /2��
where Z�C; but since in all the cases we have taken 	�R,
f�z ,z�� is really a function of only one complex variable Z.

For instance, in Eq. �71� of Ref. �45�, the symbol
cont�→z̄0

cont��→z0
should be understood as

cont	+��/2�→�̃+i��/2�cont	−��/2�→�̃−i��/2� = cont	→�̃cont�→i�,

�A2�

where 	 is a real number. In this equation, only the second
continuation of the rhs is an analytical continuation in the
complex plane, being the first one a simple change of a real
variable, from 	 to �̃.

These considerations show that Refs. �26,44,45� and, in
general, the method presented in this paper, are free from
Hartog’s objection.

APPENDIX B: TWO-TIMES EVOLUTION

Let us now generalize Eq. �21� by adding two interac-
tions,

H = H0 + V = �
0

�

d�������� + �
0

� �
0

�

�V�1���,��� + V�2�

���,�����������d�d��, �B1�

where V�1� represents a macroscopic interaction and V�2� rep-
resents a microscopic interaction: V�1��� ,����V�2��� ,���.
As a consequence, in a first step we can neglect V�2��� ,���
and repeat what was said in Sec. IV. Then, we can begin with
considering a Hamiltonian

H�1� = H0 + V1 = �
0

�

�������d� + �
0

� �
0

�

V�1���,������

�����d�d��. �B2�

If we change the basis to 	����1�
+ 
, we obtain

����1�
+ = ��� +

1

� + i0 − H
V�1���� . �B3�

Since the interaction V�1� is macroscopic, the dumping of the
off-diagonal terms has a characteristic time of 10−37–10−39 s.
Therefore, after an initial period much larger than this mag-
nitude, the state can be considered nearly diagonal for all
practical purposes.

However, the state is not yet in complete equilibrium,
because the interaction V�2� is always present: now it be-
comes relevant. Then, after the initial period we can consider
the total Hamiltonian as

H = H�1� + V2 = �
0

�

�����1�
+ ����1�

+ d� + �
0

� �
0

�

V�2����,���

�����1�
+ �����1�

+ d�d��,

where V�2���� ,��� is V�2��� ,��� in the new basis 	����1�
+ 
.

When we make a final change of basis

���+ = ����1�
+ +

1

� + i0 − H
V�2�����1�

+

we can compute the characteristic time in this case. But now
this time may be of the order of 1 s, that is, the relaxation
time of a macroscopic body. In this way we can describe a
two-times process, with a extremely short decoherence time
and a long relaxation time.
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