RAPID COMMUNICATIONS

PHYSICAL REVIEW A 72, 011602(R) (2005)

Radio-frequency spectroscopy and the pairing gap in trapped Fermi gases
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We present a theoretical interpretation of radio frequency (RF) pairing gap experiments in trapped atomic
Fermi gases, over the entire range of the BCS-Bose-Einstein condensation (BEC) crossover, for temperatures
above and below T.. Our calculated RF excitation spectra, as well as the density profiles on which they are
based, are in semiquantitative agreement with experiment. We provide a detailed analysis of the physical origin
of the two different peak features seen in RF spectra, one associated with nearly free atoms at the edge of the

trap, and the other with (quasi-)bound fermion pairs.
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A substantial body of experimental evidence for superflu-
idity in trapped fermionic gases [1-4] has focused attention
on an important generalization of BCS theory associated
with arbitrarily tunable interaction strengths; this is called
“BCS-Bose-Einstein condensation (BEC) crossover theory”
[5]. This tunability is accomplished via magnetic-field-
sensitive Feshbach resonances. At weak-interaction strength
conventional BCS theory applies so that pairs form and con-
dense at the same temperature, 7,, whereas as the attraction
becomes strong, pairs form at one temperature (7*) and Bose
condense at another (T,<T7"). The intermediate or unitary
scattering regime (where the fermionic two-body s-wave
scattering length « is large) is of greatest interest because it
represents an unusual form of fermionic superfluidity. In
contrast to the BEC case, there is an underlying Fermi sur-
face (in the sense that the fermions have positive chemical
potential w), but “preformed pairs” are already present at the
onset of their condensation.

The difficulty of obtaining phase-sensitive probes and the
general interest in this unusual superfluidity make experi-
ments which probe the fermionic excitation gap extremely
important. While in the weak-coupling BCS limit the gap
onset appears at 7., in the unitary regime this gap (or
“pseudogap”) appears at a high temperature 7" and directly
reflects the formation of (quasi-)bound fermion pairs [5-8].
For the trapped Fermi gases, one has to devise an entire new
class of experiments to measure this pairing gap; traditional
experiments, such as superconductor-normal-metal (SN)
tunneling are neither feasible nor appropriate. The first such
experiment was based on radio frequency (RF) spectroscopy
[7]; this followed an earlier proposal by Kinnunen er al.
[9,10], who also presented an interpretation of recent data in
®Li [11] in the unitary regime. However, some issues have
been raised about their interpretation in the literature [12].
Moreover, the spectra in the BEC and BCS regimes also
need to be addressed.

It is the purpose of the present paper to present a more
systematic analysis of RF pairing gap experiments for the
entire experimentally accessible crossover regime from BCS
to BEC, as well as address recent concerns [12]. Our studies
address the two peaks in the spectra observed experimentally
at all temperatures, and clarify in detail their physical origin.
Essential to the present approach is that our calculations are
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based on trap profiles [13] and related thermodynamics [14],
which are in quantitative agreement with experiment at uni-
tarity [14,15] where there is a good calibration.

In the RF experiments [7], one focuses on three different
atomic hyperfine states of the °Li atom. The two lowest
states, |1) and |2), participate in the superfluid pairing. The
higher state, |3), is effectively a free-atom excitation level; it
is unoccupied initially. An RF laser field, at sufficiently large
frequency, will drive atoms from state |2) to |3).

As in Refs. [13,16] we base our analysis on the conven-
tional BCS-Leggett ground state [17], extended [5,6] to ad-
dress finite temperature effects and to include the trap poten-
tial. In this approach, pseudogap effects are naturally
incorporated. We begin with the usual two-channel grand
canonical Hamiltonian H—uN [18], which describes states
|1) and [2), as in Ref. [16], and solve for the spatial profiles
of relevant physical quantities. As a result of the relatively
wide Feshbach resonance in 6Li, the fraction of closed-
channel molecules is very small for currently accessible
fields. Therefore, we may neglect their contribution to the RF
current, as was done in Ref. [9].

The Hamiltonian describing state |3) is given by Hj
— usN3=Z, (g + w23—,ud3)c;kc3,k, where €, is the atomic ki-
netic energy, c; is the annihilation operator for state 13), wy3
is the energy splitting between |3) and [2), and s is the
chemical potential of [3). In addition, there is a transfer-
matrix element Ty, from |2) to [3) given by Hjy

:Ek,p(Tk,pc;pcz,k+h.c.). For plane wave states, Tk,p=7_"5(qL
+k—p)8(wyg,—w,). Here g, ~0 and o, are the momentum
and energy of the RF laser field, and wy, is the energy dif-
ference between the initial and final state. It should be
stressed that unlike conventional SN tunneling, here one re-
quires not only conservation of energy but also conservation
of momentum.

The RF current is defined as I=(N3)=i[H,N;]).
Using standard linear-response theory one finds [

=272 Im[X,,(—w;+us—u)]. Here the retarded response
function X,,(w)=X(iw,— w+i0"), and the linear-response
kernel X can be expressed in terms of single-particle Green’s
functions as X(iw,)=T%,, xG3(K,iv,)G(k+q,,iv,+iw,),
where w, and v,, are even and odd Matsubara frequencies,
respectively. (We use the convention i=Kkgz=1). After Mat-
subara summation we obtain
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T2
1=21Jdv2 As(k, v)A(p,v")dlq, + k- p)Lf(v') - f(V)],
o k,p

(1)

where V' =v—w;+u3—u, and f(x) is the Fermi distribution
function. A;(k,v)=278(v—(+wy3—u3)) and A(Kk,v)
=-2Im G(k, v+i0*) are the spectral functions for states |3)
and |2), respectively. Finally, one obtains

7—«2
(o) = 2—2 AK+qp,6—o— )
T x

X[ flex— 0 — w) = fleg + 0y — u3)], (2)

where w= w; — w3 is defined to be the RF detuning.

We have introduced a 7T-matrix formalism for addressing
the effects of finite temperature based on the standard mean-
field ground state [5,6]. Here the Green’s function G(k,v)
contains two self-energy effects deriving from condensed
Cooper pairs as well as from finite momentum pairs (which
are related to pseudogap effects). These finite lifetime pairs
have self-energy 2 ,.(k,v)~ A;g/(v+ €x—M+i7y), where 7y
# 0. By contrast, the condensate which depends on the su-
perfluid order parameter (OP), A, enters with 3.(k,v)
=A? /(v+€—u). The resulting spectral function, which can
readily be computed from =3 ,,+3, is given by

_ 2A,27g7(1/+ &)’

(v+ &P~ ED* + P(# - § - A2)%
Here &= e6—u. Ex=+\&+A%(T) is the quasiparticle disper-
sion, where AZ(T)=A5L.(T)+AZ5,(T). The precise value of 7,
and even its T dependence, is not particularly important, as
long as it is nonzero at finite 7. As is consistent with the
standard ground-state constraints, Apg vanishes at T=0,
where all pairs are condensed. It is reasonable to assume that
v is a monotonically decreasing function from above 7. to
T=0. Above T,, Eq. (3) can be used with A,.=0. Because the
energy-level difference w,3 (=80 MHz) is so large compared
to other energy scales in the problem, the state |3) is initially
empty. It is reasonable to set f(€,+ wy3—u3)=0 in Eq. (2).

For the atomic gas in a trap, we assume in our calcula-
tions a spherically symmetrical harmonic-oscillator potential
V(r)=ma?r*/2, into which the elongated trap used in experi-
ment can be mapped, via the prescription that the mean trap
frequency @=(w,»>)"?. The density, excitation gap, and
chemical potential will vary along the radius. These quanti-
ties can be self-consistently determined using the local-
density approximation (LDA). Here one replaces u by a spa-
tially varying chemical potential w(r)= u—V(r). The same
substitution must be made for w3 as well. At each point, one
calculates the superfluid order parameter A,.(r), the
pseudogap A,,.(r), and particle density n(r) just as for a lo-
cally homogeneous system; an integration over r is per-
formed to enforce the total particle number constraint. Equa-
tions (2) and (3) can then be used to compute the local
current density /(r, w) and then to obtain the total net current
Hw)=[dr(r, w).

A(K,v) (3)
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FIG. 1. RF spectra I(w) for the near-BEC (720 G, left column),
unitary (837 G, kpa=o0, middle column), and near-BCS (875 G,
right column) cases as a function of RF detuning w. The values of
T (except in the first row) and kpa were chosen to match the ex-
perimental values in Ref. [7].

Figure 1 shows the calculated RF excitation spectra in a
harmonic trap for the near-BEC (720 G), unitary (837 G,a
=), and near-BCS (875 G) cases, from left to right, for a
range of T from above to below 7. Here, for definiteness, we
take y/Ep=0.1+0.3T/T,, which monotonically increases
with T as one may expect [19]. The values of T used in all
rows but the first (which involved the less interesting ex-
treme Boltzmann regime) were chosen to be consistent with
the corresponding values of 7”7 used in Ref. [7], on the basis
of a theoretical thermometry [16]. Here T” refers to the initial
temperature of an isentropic sweep starting from the BEC
side of resonance. The values of kra were calculated from
the known values of T and a. Just as in experiment [7], two
distinct maxima are seen. A very sharp peak at w=0 appears
only for 7'# 0; this peak is, thus, related to thermally excited
fermion states. A second and broader maximum is present at
sufficiently low 7 and is connected to the breaking of fer-
mion pairs between states |1) and |2), with subsequent trans-
fer of state |2) to |3). The broadening of zero w peak, as T
decreases, reflects the increasing values of the gap A. The
general features of the spectra are in reasonable agreement
with experiment for all three cases shown.

The near-BEC plot is still far from the true BEC limit
where kpa is arbitrarily small. Nevertheless, one can see
from the lowest T figure that the absorption onset is only
slightly larger (~5E as compared to ~4.6E) than the esti-
mated two-body binding energy #%/ma?, as expected. This
near-BEC figure makes it clear that pairing effects are absent
at the highest T=1.0T; (=T"), where the free-atom peak is
symmetric and there is no sign of a shoulder; this case is
close to unitarity largely because of the size of kg. It is also
clear from the middle figure that the “pairing gap” forms
above T, as is expected. Although not shown here, we find
that for the unitary case, there is an analogous pseudogap
effect which appears above T via a shoulder in the spectra to
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FIG. 2. (Color online) Comparison of calculated RF spectra
(solid curve, T,~0.29) with experiment (symbols) in a harmonic
trap calculated at 822 G for the two lower temperatures. The tem-
peratures were chosen based on Ref. [7]. The particle numbers were
reduced by a factor of 2. The dashed lines are a guide to the eye.

the right of the w=0 peak. Only when 7> T" will this shoul-
der entirely disappear. At unitarity, we find 7" ~2T,. Addi-
tionally, it should be stressed that the near-BCS case is still
very far from the weak-coupling BCS limit.

Experimentally [20], one defines the (averaged) “pairing
gap,” Agp, as the energy splitting between the maximum in
the broad RF feature and the w=0 point. For the near-unitary
case in SLi (at 822 G), Agp/Er=~0.25 at the intermediate
T'=0.5Tg, whereas at the lowest T this ratio is around 0.35.
The ratios found theoretically are roughly 0.35 and 0.38 for
these two cases. However, when the field is increased to
precise unitarity (837 G) the numbers appear to be consider-
ably smaller with a ratio of =0.2. On general grounds one
can argue that very little change is expected with these small
changes in field near unitarity. Anharmonicity associated
with a shallow Gaussian trap may explain this small discrep-
ancy, along with possible uncertainties in the particle number
[21,22]. There may also be some interference with the
Feshbach resonances between states |1) and |3) and between
[2) and |3) [23], which overlap with the resonance between
[1) and |2) but are not included in the theory.

In Fig. 2, we compare our calculated spectra near unitarity
(solid curve) with experiment (symbols) at 822 G for the two
lower temperatures. The dashed curve is a fit to the data,
serving as a guide to the eye. As in Fig. 1, we calculated ka
using the experimental values of T and a [20]. After reduc-
ing the particle numbers by a factor of 2, as in Ref. [22], this
brings the theory into very good agreement with experiment.

To fully understand the RF excitation spectra, it is impor-
tant to determine where, within the trap, the two frequency
peak features originate. Figure 3(a) shows a plot of the den-
sity profile n(r) and excitation gap A(r) at unitarity and T
~(0.23T;=0.83T, as a function of radius. Figures 3(b) and
3(c) indicate the radial dependence of the local current
I(r,w) for (b) frequency near zero, where there is a sharp
peak, and for (c) frequency near the pairing gap energy scale,
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FIG. 3. (Color online) Origin of the two RF spectral peaks.
Spatial distribution of (a) A and density n(r), contributions to (b)
the low-frequency peak at w/Er=-0.01 and (c) the high-frequency
peak at w/Ep=0.33 at unitarity in a harmonic trap, calculated at
T=0.23T. (d) Schematic transitions from state [2) to |3), showing
the extended k-space contributions to the low-energy peak, at the
trap edge where A <T. Here Ry is the Thomas-Fermi radius for a
noninteracting Fermi gas.

where there is a broad peak. Just as conjectured in previous
papers [7,11], it can be seen that the low-frequency peak is
associated with atoms at the edge of the trap. These are es-
sentially “free” atoms which have very small excitation gap
values, so that they are most readily excited thermally. By
contrast, the pairing gap peak is associated with atoms some-
where in the middle of the trap.

One might expect a rather broad free-atom peak, reflect-
ing a range of values of A(r) at trap edge, but this peak is, in
fact, quite sharp, as is its experimental counterpart. The
sharpness of the free-atom peak is addressed via the sche-
matic diagram of Fig. 3(d). When A<T (as in the trap edge
region), the dispersion of state |2) reduces to a simple pa-
rabola as for free fermions; it is thus similar to that of state
I3), as seen in Fig. 3(d). Momentum conservation leads to
vertical transitions shown by the arrows in the figure. It is
important to contrast this picture with the situation for SN
tunneling; here Pauli blocking effects are absent since the
final state is empty for all k. As a result there is an extended
volume of k space contributing to the transition at w;=w,;
(which corresponds to detuning w=0), thereby leading to the
sharp spectral peak. At the very high 7 which were probed
experimentally in Ref. [7], the sharp w=0 peak results in a
similar fashion, although in this Boltzmann regime, the gap
A is completely irrelevant.

A plot analogous to Figs. 3(b) and 3(c) can be made for
the near-BEC case as well, to determine where in the trap the
RF gap Ay arises. It is easy to see that the threshold region
is associated with the trap edge where A(r) is small. Indeed,
when <0, the excitation gap is given by yu?+AZ2 This
implies that the two-body binding energy E,=~-2u
+amnh?/m sets the scale for this threshold, in much the
same way as found for the deep BEC where ¢ — 0. As long
as u <0, the values of Agy and E,, are very close, becoming
equal when A— 0 at the trap edge. This supports the more
detailed two-body analysis of these threshold effects in the
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BEC presented in Ref. [24]. However, it should be stressed
that there is an intrinsic rounding around the threshold, as
seen in the bottom left panel of Fig. 1.

At T=0 these LDA-based RF calculations can be com-
pared with the results [12] of Bogoliubov-de Gennes (BdG)
theory. It should be noted that BdG theory is appropriate for
the particular mean- field ground state under consideration,
but it cannot be applied at T# 0, since it does not take into
account the noncondensed bosonic degrees of freedom. A
comparison presented in Ref. [12] between a BdG calcula-
tion and its LDA approximation showed a difference in the
low-frequency tunneling current at 7=0 in the fermionic re-
gime (u>0). The finite spectral weight at precisely =0 in
the BAG result was interpreted to arise from Andreev bound
states [25].

It was also speculated that at finite 7, Andreev effects may
be playing a role so that the free-atom peak is possibly of a
different origin from that considered here and elsewhere
[7,11]. It was noted in Ref. [12] that the BdG equations show
that the entire trapped gas is in the superfluid state below 7.,
with A,.(r) being finite everywhere n(r) is finite. Therefore,
it was presumed that the free-atom peak found in Ref. [11]
was an artifact of the LDA at T # 0, since in this approxima-
tion, there is a region of the trap where A, .=0.

In support of the present viewpoint it is important to note
that the free-atom peak derives from states where A(r)<T.
The gap A is the important energy scale, not the order pa-
rameter A, for characterizing fermionic single-particle ex-
citations. This can be seen from the fact that the spectral
function of Eq. (3), which enters into the RF calculations,
depends on A through E,, and is not particularly sensitive to
A,.. From Fig. 3(a) it follows that A is finite wherever n(r)
# 0. It behaves similarly to the nonvanishing order parameter

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 72, 011602(R) (2005)

in BdG-based calculations. Furthermore, both the OP in
Ref. [12] and A (for the present case) behave as A
~ exp(—/2kg|al), becoming exponentially small at the trap
edge. Thus, as a result of pseudogap effects (which serve to
distinguish A and A,. at any finite 7) we believe that the
concerns raised earlier [12] about the applicability of LDA
for addressing RF experiments are not warranted.

The results of this paper support a previous theoretical
interpretation [11] of RF experiments [7] in the unitary re-
gime, which applied the pseudogap-based formalism of the
present paper, albeit with approximated spatial density and
gap profiles. The present calculations avoid these approxima-
tions, and lead to spatial density profiles [13] and related
thermodynamics [14] which are in good quantitative agree-
ment with experiment [13]. Our work clarifies the origin of
the two generic peak structures seen in RF experiments, and
addresses the entire magnetic-field range that has been stud-
ied experimentally. The zero-frequency peak is associated
with finite temperature effects; atoms at the edge of the trap
have sufficiently small A<<T so that their gap can be viewed
as destroyed by thermal effects. These atoms behave as if
they were “free.” We have shown that the sharpness of this
peak is associated with an extended momentum space avail-
able for the w=0 excitations. The broader peak derives from
the breaking of pairs and, except in the extreme BCS limit,
this peak is present above T, reflecting pseudogap effects.
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