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Coherent-state superpositions in cavity quantum electrodynamics with trapped ions
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We investigate how superpositions of motional coherent states naturally arise in the dynamics of a two-level
trapped ion coupled to the quantized field inside a cavity. We extend our considerations, including a more
realistic setup where the cavity is not ideal and photons may leak through its mirrors. We found that a detection
of a photon outside the cavity would leave the ion in a pure state. The statistics of the ionic state still keeps
some interference effects that might be observed in the weak-coupling regime.
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There has been a great deal of interest in the coherent
manipulation of simple quantum systems [1-3], mainly in
the high degree of control necessary for the implementation
of quantum-information-processing tasks [4-6]. In particu-
lar, the study of trapped ions interacting with laser beams has
attracted much attention due to the significant experimental
advances in the generation of quantum states in such a sys-
tem [7,8]. The interaction of trapped ions with laser beams is
well understood in terms of a semiclassical model with the
electromagnetic field being treated as a ¢ number, but addi-
tional features might be revealed due to the field quantiza-
tion. The entanglement between photons and ions is a re-
markable consequence of that quantization and its potential
applications have been motivating the experimental work in
cavity quantum electrodynamics with trapped particles [9].
For instance, there have been reported schemes for the gen-
eration of specific entangled states such as Greenberger-
Horne-Zeilinger (GHZ) states [10] as well as Bell states [11].

One of the reasons for interest in studying and experimen-
tally coupling photons with material particles comes from
the fact that in order for the quantum-information processing
to be used in its full extent, one should be able to intercon-
vert stationary and flying qubits and also faithfully transmit
the flying qubits between given positions. Those two state-
ments are part of what are known as DiVincenzo’s require-
ments for the physical implementation of quantum computa-
tion and information [12]. The entanglement present in the
system consisting of cavities and trapped ions may be useful
in the propagation of information carried by photons be-
tween two distant locations [13].

It is not just entangled states involving either two-level
systems or Fock states of the electromagnetic field that find
applications in quantum information. Another interesting
class of nonclassical states with high potential applications is
the one formed by linear superpositions of coherent states.
This class of states has been considered for quantum telepor-
tation [14,15], logic gate implementation [16,17], and tests
of local realism [ 18], for instance. In this paper, we show that
superpositions of motional coherent states may be generated
in the framework of cavity electrodynamics with trapped
ions by letting the system evolve in the resonant carrier dy-
namics and by performing a measurement of the internal
state of the ion. We apply the formalism of quantum jumps to
study the nonideal case including damping in the cavity and
show that the detection of photons outside the cavity could
be used to generate nonclassical states of the motion of the
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trapped ion. More precisely, we show that the statistics of the
generated state keeps track of the coherence displayed in the
oscillatory behavior of the phonon number distribution and
the variation of its width from Poissonian to sub- or super-
Poissonian [19]. Although that is not a deterministic protocol
(it depends on the random event of the leaking of a photon
from the cavity), it might be of interest because it could be
implemented in current experimental systems. Experiments
involving trapped ions and optical cavity fields have been
performed only in the weak-coupling regime in which the
cavity damping is stronger than the ion-cavity coupling [9].
In this work we consider a single two-level ion trapped in
a Paul trap and placed inside an optical cavity. The cavity
mode couples to the ionic internal degrees of freedom
{le).|g)} and the system Hamiltonian is given by [20]

H=hva'a +hob'b + f(wy/2)3,
+1hg(6,+ 6. )(b' + b)cos p(a" +a), (1)

where d'(4) denotes the creation (annihilation) operator of
the center-of-mass vibrational motion of the ion (frequency

V), l;T(l;) is the creation (annihilation) operator of photons in
the field mode (frequency w), the & operators are the usual
Pauli matrices for the two internal levels of the ion, w, is the
atomic frequency transition, g is the ion-field coupling con-
stant, and n=2ma,/\ is the Lamb-Dicke parameter, a, being
the amplitude of the harmonic motion and A the wavelength
of the cavity field.

For our purposes here we may work in the Lamb-Dicke
regime (7<<1), i.e., the situation in which the spatial extent
of the motion of the trapped ion is much smaller than the
wavelengh of the cavity field. In this regime, we may per-
form an approximation that simplifies the original Hamil-
tonian (1) as follows:

cos (@™ +a) = 1 — (1 +24"a)2 - (@™ +a»2. (2)

If we tune the light field so that it exactly matches the atomic
transition, i.e., wy—w=0 (carrier transition), we obtain the
interaction Hamiltonian in the Lamb-Dicke regime, which,
after discarding rapidly oscillating terms, reads

H=1tg[1 - (1 +24%a)2)(6_b" + 6.,b). (3)

The resulting Hamiltonian in Eq. (3) is similar to the Jaynes-
Cummings Hamiltonian but having an effective coupling
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constant which in our case depends on the excitation number
of the ionic oscillator, m=a'd. Such a dependence on the
intensity has already been demonstrated [21] to be related to
the occurrence of super-revivals (revivals taking place at
long times) of the atomic inversion.

We now consider that the system is initially prepared in
such a way that the ion is in its excited state |e) (internal
level), the cavity in the vacuum state |0>C, and the vibrational
motion in the coherent state |a),, i.e., |(0))=|a),|0).|e). Un-
der the Hamiltonian (3), the state |/(0)) evolves to

|i(1)) = cos{gf[ 1 — 77*(1 +2a%a)/2]}| ), |0) Je)
—isin{g{1 - (1 +2a'@)2T} ) | D Jg). (4)

We still have to apply the functions of the operator 4d in the
coherent state |a),. This may be easily done by moving to
the Fock basis, and the result is given by

|ip(1)) = [cos(w,2)|D,), — i sin(w,2)|D_),]|0).]e)
+[cos(w,p)|P_), — i sin(w,1)|P,),]|1)[g), (5)

where w,=g(1-77/2) and |®,), are general superpositions
of coherent states given by

|D,), = (lae?), £]ae),)2, (6)

where we defined the time-dependent real phase ¢=77gt.
The state (5) is an entangled state involving superpositions of
motional coherent states of the trapped ion, its internal elec-
tronic states, and Fock states of the cavity field. It is note-
worthy that for interaction times given by f,=k, with k
being an integer number, the state of the system reduces to

|[f)) = [D,),[0)c|e) + D), [1).]g)- ()

One could then obtain a disentangled motional state by per-
forming a measurement on the internal state of the ion. The
experimental discrimination between the two electronic lev-
els may be done using the very efficient electron shelving
method [22]. Depending on the measurement outcome, the
collapsed motional state may be either |®,), or |®_),. One of
the main interesting characteristics of those superposition
states is that their statistics are strongly sensitive to the the
value of the phase ¢. The trivial case takes place when ¢
=0, what leads the distribution P,,=|(m|®.),|*> (phonon sta-
tistics) to be Poissonian. However, it is well known that there
are domains in which it can be either sub- or super-
Poissonian. As pointed out in [19], when the statistics is
super-Poissonian, the distribution P,, displays an oscillatory
behavior, this being a direct consequence of interference in
phase space. Such a behavior is analogous to the oscillatory
photon statistics of highly squeezed states [23]. Although
similar superposition states may also be generated using
classical fields [24], the possibility of entanglement with
light is a unique feature related to the quantum nature of the
electromagnetic field.

The scheme proposed here relies on a not very demanding
initial preparation of the system. It requires the initial field to
be in the vacuum state |0),, i.e., there is no need to prepare or
inject a coherent field state into the cavity. Additionally, the
vibrational motion of the ion has to be prepared in a coherent
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FIG. 1. Ratio between the exact coupling constant and the ap-
proximate one in the Lamb-Dicke regime. The approximation is
valid in the region R(7,m)=1 where 7 and m are small enough.

state |a),, whose experimental realization for a Be’ ion
trapped in a rf (Paul) trap has been already reported [7].
Regarding the internal ionic states, they need to be prepared
in the excited state, which can be achieved by the application
of laser pulses, for instance.

We would like to point out that the linear dependence of
the ion-field coupling constant on the operator a'd is crucial
for the generation of the states |®.,),. Therefore, it is very
important to be aware of the limits where the parameter »
and the initial magnitude o may be varied and the approxi-
mation (2) is still valid. This limit is set by keeping the
product 77a’d small enough, which allows us to neglect
higher-order terms in the cosine expansion. If the Lamb-
Dicke approximation was not performed, it would be neces-
sary to work with the full nonlinear coupling constant A
= (m|cos n(dT+é)@=e‘ﬂz’2L9n(n2). For convenient values
of the product 774%a this coupling constant reduces to \;p
=1-77(1+2m)/2, which is the coupling constant we have
used so far (Lamb-Dicke regime). In Fig. 1 we show the ratio
between the exact and the approximate coupling constants,
R(m,m)=N\/\;p. We see that there are ranges of values of 7
and m for which R=1. Under such circumstances, the
Lamb-Dicke approximation is valid and the generation pro-
tocol proposed here is applicable.

We are now interested in the more realistic setting where
the cavity is not ideal and one could detect photons leaking
through its mirrors. The setup we have in mind is depicted in
Fig. 2. We still have a two-level trapped ion interacting reso-
nantly with the cavity field but now we consider the cavity to

L | B

FIG. 2. Schematic experimental setup. The system consists of a
single trapped ion placed in a lossy cavity having a decay rate .
The detector D continuously monitors this decay channel.
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be lossy, decaying at a rate x. We assume that a detector D is
placed outside the cavity in such a way that it may monitor
the cavity decay.

The description of damping in quantum optical systems is
usually made using master equations and its solution gives
the time evolution of the system when the decay is not ob-
served. However, the time evolution under continuous obser-
vation of photon counts may be adequately described by a
pure state that evolves according to a non-Hermitian Hamil-
tonian. This approach is known as the quantum jumps or
quantum trajectories [25] formalism. The idea of continuous
observation of decaying channels in systems consisting of
atoms or ions and cavities has proved itself useful to perform
legitimate information-processing tasks such as teleportation
[26] and generation of maximally entangled states [27,28] or
quantum gates [29], for instance. We saw that the time evo-
lution of the system under Hamiltonian (3) and the realiza-
tion of a measurement on the electronic state may be used to
generate the states (6). Now, instead of measuring the atomic
state, we will show that a measurement of the photon outside
the cavity collapses the state of the system into a state that
keeps many of the characteristics of the state (6), namely,
oscillatory behavior of the distribution P,,, as well as its
narrowing and broadening [19]. For the sake of simplicity,
we assume that the detector D is perfect. Otherwise we
would just have to account for a finite probability that the
detector fails in detecting an event of leaking of a photon,
which would lead us to a description in terms of density
matrices rather than state vectors. The time evolution of the
system conditioned to no photon decay is given by

ihd|p)/dt = Hog| ), (8)
where
R bih 1+24fa . .
Hep=—ifh 2 ﬁg[ 1- M] (6_b"+36.b). (9)

It is worth noticing that once the Hamiltonian (9) is not
Hermitian, the norm of |¢(z)) is not constant in time. So it
must be normalized in order to allow one to correctly evalu-
ate any property of the system. It is clear that if the initial
state of the system is the same as before, namely, |¢(0))
=|a),|0) |e), the solution of Eq. (8) may be written as

s

WD) = 2 @, (1) m,0,) + b, (1) m, 1,8). (10)

Substituting Egs. (9) and (10) into Eq. (8) one obtains two
coupled differential equations that may be easily solved, and
the result is given by

a, (7 =c¢,(0)e T ™(C(7) + (T/NT? - 16)\%D)S(T)),

. —Tr/4 2 142
b(1)==4ic,(0)e™ (N p/N[7= 16N p)S(7), (11)
where c¢,,(0) are the coefficients of the expansion of the ini-
tial coherent state in the Fock basis, I'=«/g, 7=gt, and

C(7) = cosh(\T'2 = 16)7 ,7/4), (12)
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FIG. 3. Probability of detection of one photon outside the cavity.
The system parameters are ['=1, 7=0.05, and @=2. This probabil-
ity tends to 1 for higher values of 7.

S(7) = sinh(\T'2 = 16\7,7/4). (13)

Now, we suppose that one photon is detected outside the
cavity. This event would correspond to the destruction of one

photon, leading the system to state b|y(7)). Again, we re-
member that since the time evolution is not unitary the state
must be normalized after this jump. In our case, the resulting
state would be |¢(7)),=|®(7)),|0).|e), i.e., a disentangled
state having a normalized motional part given by

(D)), = 2 | bu(7) / \/ 2 B, (D [Im),.  (14)
m=0 p=0

Before investigating the statistical properties of that state, it
is important to calculate the probability for photon emission
because it is related to our probability of success in generat-
ing |®(7)),. The probability that at least one jump occurs
between the initial instant O and the subsequent instant 7 is
given by P(7)=1—((7)|¢{(7)), where |¢{7)) is the state in
Eq. (10) with the coefficients (11). In Fig. 3 we have a plot
showing the behavior of P(7) using parameters that are close
to the ones in a current experimental situation, i.e., the weak-
coupling regime.

Let us now start the analysis of the statistical properties of
the vibrational state |®(7)),. The ion started in a coherent
state which has a Poissonian distribution. We can describe its
narrowing (or widening) via the normalized variance (also
know as the Fano factor) defined as o?=(m?/m)—m where
im and m? are the first and second moments of the distribution
P,,=|(m|®(7)%),|*, respectively. Values of o<1 indicate
sub-Poissonian, 0> 1 super-Poissonian, and =1 Poissonian
statistics. The time evolution of o(7) is shown in Fig. 4. The
original Poissonian distribution naturally evolves to either
sub- or super-Poissonian values. These changes in the width
of the distribution could be observed even in a bad cavity
that has a decay rate k comparable to the coupling constant
g, as we can see in Fig. 4. We would like also to show that
strong signatures of nonclassical behavior, such as the oscil-
lations in the phonon distribution P,, at times when the sta-
tistics is Poissonian, still persist in the weak-coupling re-
gime. This may be seen in Fig. 5 where we show the
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FIG. 4. Time evolution of the normalized variance. The system
parameters are '=1, #=0.05, and a=2.

distribution at a time 7=3.29 and with #=0.05. Based on
those considerations we conclude that general properties of
coherent state superpositions, which arise in the lossless
case, would still persist in our more realistic setup. This
means that our proposal could be useful for the experimental
investigation of certain nonclassical features.

We have investigated several aspects of the dynamics of a
trapped ion inside a cavity. First we have considered a situ-
ation in which the unitary time evolution leads to a global
entangled state involving superposed motional coherent
states, Fock photon states, and the two internal electronic
states. After the measurement of the internal state of the ion
in a specific interaction time, the generation of quantum su-
perposition of coherent states of motion of the ion is accom-
plished. Two different states may be generated (either |®,) or
|®_)) depending on the result of the measurement of the
internal ionic state. The main requirement for such genera-
tion is the strong-coupling regime where the system may
perform Rabi oscillations in the lifetime of the cavity photon.
In the second part of our paper we consider the influence of
cavity decay in the ionic dynamics. In fact, that itself repre-
sents a generation method, since a nonclassical state results
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FIG. 5. Phonon distribution at 7=3.29 with system parameters
I'=1, #=0.05, and a=2.

from the dissipative evolution even with a photon decay rate
of the same order as the ion-cavity coupling (weak-coupling
regime). The cavity is continuously monitored by a detector,
which causes the state of the system to be pure at any time.
The measurement of the internal electronic state in the
former suggestion is replaced now by the counting of a pho-
ton leaking out of the cavity. This collapses the entangled
global state of the system onto a product state. Even though
the cavity is not ideal, the ionic motional state still retains
(after the photon decay) important nonclassical features that
characterize quantum superposition of coherent states, such
as, for instance, changes in the variance of the phonon dis-
tribuion (sub- or super-Poissonian statistics) as well as its
oscillatory behavior.
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