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Using the method of dynamical algebras, the solution of a homotriparticle linear spin clusterseach particle
with S=1/2d in a rotating magnetic field is obtained. We derive degeneracy energy levels and each level’s
Berry phase of this system. The Berry phase as a function ofv andu has been determined by using the relation
between the Berry phase and the angular velocityv of the rotating magnetic field as well as the angleu
between the magnetic field andZ axis. We obtain the changing diagram of the Berry phase of the basis state.
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Dynamical algebras is a theory which combines the
theory of dynamic symmetry with quantum mechanicsf1–9g.
It extends the theory of the dynamic symmetry of the station-
ary state of an autonomous system in nuclear physics to the
theory of the time-dependent dynamic symmetry of a nonau-
tonomous quantum systemf10g. Moreover, the dynamical
algebras method further emphasizes the kinetic algebraic
structure, the dynamic evolvement, and the rule of evolving
with time. So we can easily study the relation between con-
servation constant and symmetry in the system by using the
method of dynamical algebras. In recent years “quantum en-
gineering” has been used to control microscopic particles
f11–14g. The method of dynamical algebras has been applied
in several typical nonautonomous quantum systems, such as
the particle moving in a one-dimensional Paul trap forms a
SUs1,1d dynamic systemf15g, the polarization of spin par-
ticle in accelerator forms a SUs2d dynamic systemf16g, the
spin particle in a rotating magnetic field and the Berry phase
of a laser in helical optical fiber form a SUs2d dynamic sys-
tem, etc.f17–26g. In the present work, we will use the dy-
namical algebras method to study a homotriparticle linear
spin clusterseach particle withS=1/2d in a rotating mag-
netic field. When we input some quantum information in to
the system which is formed by the unit of the homotriparticle
linear spin clusterseach particle withS=1/2d, the output
information will change due to the Berry phase that is pro-
duced in the magnetic field. This system may be formed in
condensed matter and solving this system may be of practical
use for the understanding of the complicated energy structure
and Berry phase in condensed matter. The change of the
Berry phase is a very important physical question since a
number of interesting phenomena have been generated by it.
Up to now, a lot of studies of the Berry phase have been
reported in both theoretical and experimental physics. Berry
f27g, Simon f28g, and Aharonov and Anandanf29g have
studied it theoretically. Experiments have been observed on
photonsf30g, neutronsf31g, electronsf32g, nuclear quadru-
pole resonancesf33g, laser interferometryf17g, and molecu-
lar energy levelsf10g. When the Hamiltonian follows a
closed path in parameter space in the time intervalf0,Tg and

after a periodT, the initial stateucs0dl of this system will
evolve to a final stateucsTdl=e−ibne−ifnucs0dl, wherebn is
called the quantum adiabatic phase or Berry phase. It de-
pends on the path or the path’s certain geometric features:
fn="−1e0

TdtEnstd.
Herefn is called the dynamical phase. It depends on the

path and the rate at which the path is followedf21g. In this
paper, we will study the homotriparticleseach particle with
S=1/2d linear spin cluster in a rotating magnetic field and
give the solution for the energy levels and the form of the
Berry phase. The changing of the Berry phase relates to the
angular velocityv of the rotating magnetic field, as well as
the angleu between the magnetic field andZ axis. This ho-
motriparticle linear spin clusterseach particle withS=1/2d
system can be described by the Hamiltonian

Ĥstd = Jexo
i

Ŝi · Ŝi+1 + o
i

biŜi · L̂i + o
i

sgSŜi + gLL̂id ·Bstd.

s1d

Let

Ĥint = Jexo
i

Ŝi · Ŝi+1, s2d

ĤL−S= o
i

biŜi · L̂i , s3d

ĤZeeman= o
i

sgSŜi + gLL̂id ·Bstd, s4d

so

Ĥstd = Ĥint + ĤL−S+ ĤZeeman. s5d

Ĥint is the correlation interaction of adjacent particles, andJex

is its coupling strength.ĤL−S is the spin-orbit coupling inter-

action in a single center particle.ĤZeemanis the Zeeman split
of a single center particle.Bstd is the rotating magnetic field,
and its three components are not equal to zerosBxÞ0,By

Þ0,BzÞ0d.
The spin operatorŜ and the orbital operatorL̂ satisfy the

commutation rules

fŜi,Ŝjg = i«i jkŜk, fL̂i,L̂jg = i«i jkL̂k, fŜi,L̂jg = 0. s6d

Using the commutation ruless6d, we find that the opera-
tors of Eqs.s2d and s4d satisfy the relation
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fĤint,ĤZeemang = 0. s7d

The energy of the eigenwave functionuCstdl is

En = kCstduĤstduCstdl

= kCstduĤL−SuCstdl + kCstduĤint + ĤZeemanuCstdl. s8d

Let

EL−S= kCstduĤL−SuCstdl, E0 = kCstduĤint + ĤZeemanuCstdl,

so
En = EL−S+ E0. s9d

Let

ŜZ = o
i

Ŝi
Z, Ŝy = o

i

Ŝi
y, Ŝx = o

i

Ŝi
x s10d

It is easy to show that the operators of Eqs.s2d and s10d
satisfy

fĤint,ŜZg = 0, fĤint,Ŝyg = 0, fĤint,Ŝxg = 0. s11d

Using the commutation ruless6d and s11d and the SUs2d
f16,17,24,25g group algebraic structure ofĤZeeman, we can
transformE0 by the gauge transformation

Ug = eiv3stdsgSŜZ+gLL̂Zdeiv2stdsgSŜy+gLL̂yd, s12d

so that

E0 = kCstduĤint + ĤZeemanuCstdl

= kCstduUgUg
−1sĤint + ĤZeemandUgUg

−1uCstdl

= kC̄stduUg
−1sĤint + ĤZeemandUguC̄stdl, s13d

whereuC̄stdl=Ug
−1uCstdl. Using the identity

e−iviŜiŜje
−iviŜi = Ŝj cosvi + «i jkŜk sinvi , s14d

e−iviL̂iL̂ je
−iviL̂i = L̂j cosvi + «i jkL̂k sinvi , s15d

we find that, after the gauge transformationUg, sĤint

+ĤZeemand becomess"=1d

Ug
−1sĤint + ĤZeemandUg = H̄

ˆ std + iUg
−1s]/]tdUg, s16d

where

H̄
ˆ std = Ĥint + fstdÎs0d, s17d

Bstd = Vssinu cosvt,sinu sinvt,cosud,u P s0,p/2d,

s18d

v3 = − vt, s19d

v2 = const = −ū, s20d

sinv2 = − sinu/f1 − 2sv/Vdcosu + sv/Vd2g1/2, s21d

V̄ = Vf1 − 2sv/Vdcosu + sv/Vd2g1/2, s22d

fstd = V̄, s23d

Îs0d = gSŜZ + gLL̂Z = sgS− gLdŜZ + gLĴZ. s24d

The basis state of the single center particle can be de-
scribed asuJ2,M ,SZl, whereM is the Z component of the
total angular momentumJ. SZ is theZ component of the total
spin momentum. Because there is only a spin correlation
interaction among three particles, the total wave function of
the spin cluster is the product of every particle basis-state
wave function.

Let
wi

0sMid = uJ2,Mi,
1
2l, wi

1sMid = uJ2,Mi,−
1
2l. s25d

We can sort the basis-state wave function into eight
classes:

f1 = w1
0sM1dw2

1sM2dw3
1sM3d, f2 = w1

0sM1dw2
0sM2dw3

1sM3d,

f3 = w1
0sM1dw2

1sM2dw3
0sM3d, f4 = w1

0sM1dw2
0sM2dw3

0sM3d,

f5 = w1
1sM1dw2

1sM2dw3
1sM3d, f6 = w1

1sM1dw2
1sM2dw3

0sM3d,

f7 = w1
1sM1dw2

0sM2dw3
1sM3d, f8 = w1

1sM1dw2
0sM2dw3

0sM3d.

Using Eqs.s13d, s16d, and s17d, we can obtain the eigenen-

ergy levels and the eigenwave functions ofH̄
ˆ std as shown in

Table I:

H̄
ˆ stduC̄ml = EmuC̄ml, mP s1,2,3,4,5,6,7,8d. s26d

The solution of the time-dependent Schrödinger equation is

is]/]tduC̄mstdl = H̄
ˆ stduC̄mstdl, s27d

mP s1,2,3,4,5,6,7,8d.

The solution of Eq.s26d is

uC̄mstdl = e−iQmstduC̄ml. s28d

It is easy to computeQmstd,

Qmstd =E
0

t

Emdt8 = Eint
m t + EZeeman

m t, s29d

where

Eint
m = kC̄muĤintuC̄ml,

EZeeman
m = kC̄mufstdÎs0duC̄ml = V̄fsgS− gLdSZ + gLMg.

Thus the orthonormal nonadiabatic basis is

uCmstdl = UguC̄mstdl

= eiv3stdfsgs−gLdŜZ+gLĴZgeiv2stdfsgS−gLdSy
ˆ +gLĴyge−iQmstduC̄ml

s30d

and the nonadiabatic energy levels are

E0
m = kCmuHint + HZeemanuCml = kC̄muH̄ˆ + iUg

−1s]/]tdUguC̄ml

= Em − EZeeman
m sv̇3 cosv2/V̄d. s31d

The time-dependent Schrödinger equation is

is]/]tduCstdl = sĤint + ĤZeemanduCstdl. s32d

Its solution can be expanded by the nonadiabatic basis
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uCstdl = o
m

CmuCmstdl

= o
mM8MSZ8SZ

Cmeh−iQmstd+iv3fsgS−gLdSZ8+gLM8gj

3DM8M
j s0,−v2,0dDSZ8SZ

j8 s0,−v2,0duC̄m8l. s33d

Cm is an expansion coefficient that is not dependent on time.
All the dynamical information is included in the nonadia-

batic basis.DM8M
j andDSz8Sz

j8 are the Wigner functions ofj and

j8 order. The value ofj is the total angular momentumJ. The
value of j8 is the total spin momentum. The total angular
momentum and total spin momentum of the eigenwave func-

tion uC̄m8l areM8 andSZ8. So from Eqs.s12d, s29d, ands30d
we obtain the value ofE0:

E0 = kCstduĤint + ĤZeemanuCstdl = o
m

uCmu2E0
m. s34d

The eigenenergy level ofĤL−S is

EL−S= kCstduĤL−SuCstdl

= o
mM8MSZ8SZ

uCmu2DM8M
* j s0,−v2,0d

3DM8M
j s0,−v2,0dDSZ8SZ

* j8 s0,−v2,0d

3DSZ8SZ

j8 s0,−v2,0dkC̄m8uĤL−SuC̄m8l

= o
mM8MSZ8SZ

uCmu2DM8M
* j s0,−v2,0d

3DM8M
j s0,−v2,0dDSZ8SZ

* j8 s0,−v2,0d

3DSZ8SZ

j8 s0,−v2,0dEL−S
m8 , s35d

whereEL−S
m8 =kC̄m8uĤL−SuC̄m8l. Its value is determined by the

total spin of the spin cluster. We have

EL−S
m8 = sb/2dsL − 1d, m8 P s1,3,5d,

EL−S
m8 = − sb/2dsL + 2d, m8 P s2,4,6d,

EL−S
m8 = − s3b/2dsL + 1d, m8 = 7,

EL−S
m8 = s3b/2dL, m8 = 8.

Because the parameter space of the angular velocityv of
the rotating magnetic field and the angleu between the mag-
netic field andZ axis determines the value of geometric
phase, the Berry phase of the homotriparticle linear spin
cluster seach particle withS=1/2d system comes from the

ĤZeeman. After the parameter of the system goes through a
periodTs2p /vd, there is only a difference of the total phase
Ftotal

m between the initial state and the final state of the nona-

diabatic basis ofĤZeemanand the Berry phase is obtained for
this system. From Eq.s29d we can calculate the total phase

Ftotal
m of ĤZeeman:

Ftotal
m = − QmsTd − 2pfsgS− gLdSZ + gLMg

= − Eint
m T − V̄TfsgS− gLdSZ + gLMg

− 2pfsgS− gLdSZ + gLMg. s36d

The dynamical phase is

Fn =E
o

T

sEint
m + EZeeman

m ddt

= Eint
m T + fsgS− gLdSZ + gLMgsV̄T + 2p cosūd.

s37d

The Berry phase is

bn = Ftotal + Fn = − 2pfsgs − gLdSZ + gLMgs1 − cosūd.

s38d

The nonadiabatic geometric phase is of great practical
use. We can obtain different Berry phases by changing the

TABLE I. The eigenenergy levels and the eigenwave functions ofH̄

∧

std, whereSZ is theZ component of the total spin momentum andM
is theZ component of the total angular momentumJ.

SZ EigenenergyEm Eigenwave functionuC̄ml MsJZd value

1/2 −Jex+fsgS−gLd /2+gLMgV̄ C̄1=f2sMd−2f3sMd+f8sMd −s3L+1/2d,s3L+1/2d

−1/2 −Jex+f−sgS−gLd /2+gLMgV̄ C̄2=−1/2f1sMd−1/2f6sMd+f7sMd −s3L−1/2d,s3L−1/2d

1/2 fsgS−gLd /2+gLMgV̄ C̄3=−f2sMd+f8sMd −s3L+1/2d,s3L+1/2d

−1/2 f−sgS−gLd /2+gLMgV̄ C̄4=−f1sMd+f6sMd −s3L−1/2d,s3L−1/2d

1/2 1/2Jex+fsgS−gLd /2+gLMgV̄ C̄5=f2sMd+f3sMd+f8sMd −s3L+1/2d,s3L+1/2d

−1/2 1/2Jex+f−sgS−gLd /2+gLMgV̄ C̄6=f1sMd+f6sMd+f7sMd −s3L−1/2d,s3L−1/2d

−3/2 1/2Jex+f−3sgS−gLd /2+gLMgV̄ C̄7=f5sMd −s3L−3/2d,s3L−3/2d

3/2 1/2Jex+f3sgS−gLd /2+gLMgV̄ C̄8=f4sMd −s3L+3/2d,s3L+3/2d

BRIEF REPORTS PHYSICAL REVIEW A71, 064102s2005d

064102-3



parameters and find the changing of the Berry phase as a
function of parameters. It is seen from Eq.s37d that the Berry
phase is altered when the values ofv andu are different. In
the formulas38d, we find that the change of the Berry phase

will come from the factors1−cosūd, as shown in Figs. 1 and
2. From Fig. 1 we can see that in the range ofuvu suvu
,7.3d the Berry phase will decrease whenu reduces,
whereas in the range ofuvu suvu.7.3d the Berry phase will
increase whenu reduces. From Fig. 2 we can also note that
whenv changes from negative to positive values, the Berry
phase changes rapidly in a small range ofuvu suvu,20d,
whereas in the large range ofuvu suvu.20d the Berry phase
will change slowly.

By using the method of dynamical algebras, we have
studied the energy levels and phases of the homotriparticle
seach particle withS=1/2d linear spin cluster in a rotating
magnetic field and obtained the solution of this system. From

the solution, we have derived the change of the Berry phase
as a function ofv andu. We have found that the Berry phase
has a great change in a small range ofuvu and that the angle
u affects the changing speed of the phase. The results may be
of practical use in applications such as quantum computers,
the resonance absorption of condensed matter, and the appli-
cation of phase. This work demonstrates that the method of
dynamical algebras is a useful tool for the study of a nonlin-
ear system with a bilinear term in condensed matter physics.
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FIG. 1. The change of the Berry phase forV=5, vP s−10
,10d, uP s0,p /2d. sUnit of v is rad/sec; unit ofu is rad.d

FIG. 2. The change of the Berry phase forV=5, u=p /36, p /6,
p /4, p /3, and 15p /12. sUnit of v is rad/sec.d
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