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Algebraic dynamics study for homotrinuclear linear spin cluster in a rotating magnetic field
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Using the method of dynamical algebras, the solution of a homotriparticle linear spin ¢kestbrparticle
with S=1/2) in a rotating magnetic field is obtained. We derive degeneracy energy levels and each level's
Berry phase of this system. The Berry phase as a functienafd 6 has been determined by using the relation
between the Berry phase and the angular velogitgf the rotating magnetic field as well as the angle
between the magnetic field adaxis. We obtain the changing diagram of the Berry phase of the basis state.
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Dynamical algebras is a theory which combines theafter a periodT, the initial state|y(0)) of this system will
theory of dynamic symmetry with quantum mechanits9]. evolve to a final statéy(T))=e'Ane7%n|y(0)), where B, is
It extends the theory of the dynamic symmetry of the stationcalled the quantum adiabatic phase or Berry phase. It de-
ary state of an autonomous system in nuclear physics to thgends on the path or the path’s certain geometric features:
theory of the time-dependent dynamic symmetry of a nonaug, =#-1[7dtE,(t).
tonomous quantum systef10]. Moreover, the dynamical Here ¢, is called the dynamical phase. It depends on the
algebras method further emphasizes the kinetic algebraigath and the rate at which the path is followied]. In this
structure, the dynamic evolvement, and the rule of evolvingyaper, we will study the homotriparticieach particle with
with time. So we can easily study the relation between cons=1/2) Jinear spin cluster in a rotating magnetic field and
servation constant and symmetry in the system by using thgjye the solution for the energy levels and the form of the
method of dynamical algebras. In recent years “quantum ererry phase. The changing of the Berry phase relates to the
gineering” has been used to control microscopic particlegngular velocityw of the rotating magnetic field, as well as
[11-14. The method of dynamical algebras has been applieghe angleg between the magnetic field addaxis. This ho-
in several typical nonautonomous quantum systems, such @gotriparticle linear spin clustefeach particle withs=1/2)
the particle moving in a one-dimensional Paul trap forms asystem can be described by the Hamiltonian
SU(1,2) dynamic system15], the polarization of spin par- "~ . a2 A 2 ~
ticle in accelerator forms a SB) dynamic systeni16], the H(®) _‘]exzi“ S-St 2 S - Li+ §|: (765 +nLi) -BO.
spin particle in a rotating magnetic field and the Berry phase
of a laser in helical optical fiber form a $2) dynamic sys- D)
tem, etc.[17-26. In the present work, we will use the dy- |
namical algebras method to study a homotriparticle linear

spin cluster(each particle withS=1/2) in a rotating mag- Hint = Jex S - Sen, (2

netic field. When we input some quantum information in to '

the system which is formed by the unit of the homotriparticle A o= 2 bS - L, (3)
1

linear spin cluster(each particle withS=1/2), the output

information will change due to the Berry phase that is pro- R R R

duced in the magnetic field. This system may be formed in Hyeema 2 (vsS + L) - B(t), (4)
condensed matter and solving this system may be of practical [

use for the understanding of the complicated energy structure

and Berry phase in condensed matter. The change of th . . . .

Berry phase is a very important physical question since a H(t) = Hin + Hi-s+ Hzeeman 5
number of interesting phenomena have been generated by it.

Up to now, a lot of studies of the Berry phase have beertintiS the correlation interaction of adjacent particles, agd
reported in both theoretical and experimental physics. Berrys its coupling strengthH, _g is the spin-orbit coupling inter-
[27], Simon [28], and Aharonov and Ananda29] have  action in a single center particllyeemanis the Zeeman split
studied it theoretically. Experiments have been observed 0ps 5 single center particlé(t) is the rotating magnetic field,
photons[30], neutrong[31], electrong32], nuclear quadru- 444 its three components are not equal to 28p#0,B
pole resonancegs3], laser interferometry17], and molecu- +0,B,%0). y

lar energy levels[10]. When the Hamiltonian follows a The spin operatofS and the orbital operatd} satisfy the
closed path in parameter space in the time intef®al] and .o mmutation rules

[S.S]=ienSe [LL]=iegle [S.L1=0. ()

* Author to whom correspondence should be addressed. Electronic Using the commutation rule), we find that the opera-
address: scu_kxy@163.com tors of Egs.(2) and(4) satisfy the relation
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[ﬁinta |:IZet-:‘mr:u;I = 0- (7)
The energy of the eigenwave functi¢#(t)) is
En = (W(O)[H®)|[ WD)
= (W) HL_d W (1) + (W (1) Hin+ Hzeemah P (). (8)
Let
Es= (POIH_dY®), Eo=(Y(®)|Hin+ Hzeemal¥ (1)),

SO
E,=E-s*Eo. 9)

Let

=25 §=29, §=2§ (0

It is easy to show that the operators of E¢@) and (10)
satisfy

[FineS1=0, [Hin§1=0, [Fin,SI=0.  (11)
Using the commutation rule) and (11)Aand the SW(2)

[16,17,24,2% group algebraic structure dflyeeman WE can
transformE, by the gauge transformation

U,= jug(t) (76577 L2) ool (rsSytm Ly) (12)
so that
Eo= (W(O|Hing + Hzeemah¥ (1))

= <“I'(t)|UgU51(Hint + HZeemaaUgUéth(t»

= <\I’(t)|ual(|:|int+ ﬁZeemaaUgN’(t))v (13)
Where|\1_f(t)>=U§1|\If(t)>. Using the identity

e“”igﬁse““fS = § cosv; + &3 S, sinv;, (14)

e—ivil:il:je—ivil:i = |:] cosv; + Sijkl:k sin Vi, (15)

we find that, after the gauge transformatids, (I:|int
+Hzeemal) becomed A =1)

U5 P+ FlzeomalUg = HO +iUZX @0, (16)
where A
H(t) = Hy + F(D1(0), (17)

B(t) = Q(sin 6 coswt,sin 8 sin wt,cosh), 8 € (0,7/2),

(18)

v3=— o, (19

vy, =const= —5, (20

sinv, = - sinA/[1 - 2Aw/Q)cosd + (w/Q)?M2,  (21)
Q=0Q[1 - 2Aw/Q)cosd+ (/)2 (22)
f(t)=Q, (23)

10278+ 1= (e~ WS+ 1l (29
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The basis state of the single center particle can be de-
scribed agJ?,M,S;), whereM is the Z component of the
total angular momenturd. S; is theZ component of the total
spin momentum. Because there is only a spin correlation
interaction among three particles, the total wave function of
the spin cluster is the product of every particle basis-state
wave function.

Let

G(M) =M, 3, efM) =[P M -3). (25

We can sort the basis-state wave function into eight
classes:

1= M) @3 (M) @3(M3), by = ¢3(M1)@3(M2) @3(Ms),
b3= #AMDE3(M2)@3(Ma), s = ¢I(M1)@3(M2) @3(Ma),
b5= @1 (M) @3(Mo)@3(Ma), s = @1(M1) @3(M2) @3(Ma),

$7= 01(MD)@3(M2)@3(Mg), s = ¢1(M)@I(M,) p3(M).
Using Egs.(13), (16), and(17), we can obtain the eigenen-

ergy levels and the eigenwave functionsk_iit) as shown in
Table I

g(t)|‘§m>:Em|\I_}m>1 me (112!314151617aB (26)
The solution of the time-dependent Schrédinger equation is
i(0l ) [W(1) = HO[W (1)), (27
me (1,2,3,4,5,6,7,8
The solution of Eq(26) is
[Wa(t) = OO0, (28)
It is easy to comput@® (1),
t
m(t) = f Emdt, = EInI:I]tt + Eg‘eema;’ (29)
0
where o -
Einr;lt = <\Pm|Hint|\Pm>,
E?eemanz <am|f(t)i(o)|\§m> = (—2[(75_ WS+ nMl.
Thus the orthonormal nonadiabatic basis is
[Wn(0)) = Ug[W (D)
= @vatlO5 S 1 IOl TS Ml On(O]
(30

and the nonadiabatic energy levels are

E(r)n = <\I’m|Hint + HZeemaL\Pn‘) = <\Ifm|H + iU;l(&/ﬁ[)Ugmfm}

= Em =~ EJeemafiva COSV2/Q). (31)
The time-dependent Schrédinger equation is
((A[P(V) = (Hi+ Hzeemad PO).  (32)

Its solution can be expanded by the nonadiabatic basis
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o
TABLE I. The eigenenergy levels and the eigenwave functiontd(of, whereS; is theZ component of the total spin momentum avid
is theZ component of the total angular momentudm

S, Eigenenergyg,, Eigenwave functiod\?np M(Jz) value
172 ~Jext[(ys= W) /2+ W MIQ W= o M) = 2655(M) + (M) ~(8L+1/2)~(3L+1/2)
-1/2 ~Jext[-(ys= )12+ MIQ W,==1/2¢; (M)~ 1/ 2¢p6(M) + (M) ~(8L-1/2~(3L-1/2)
1/2 [(ys=y)/2+ M1 Ws==ho(M) + (M) ~(8L+1/2)~(3L+1/2)
-1/2 [~(rs~ )/ 2+nMIQ V4= =ha(M) + (M) -(L-1/2~(@EL-1/2)
1/2 11230 [ (ys= )12+ 1 M1 Ws= (M) +5(M) + g(M) ~(8L+1/2~(3L+1/2)
-1/2 1/ 23et [(ys= v 12+ 1 MIQ We=h1(M)+ ds(M) + (M) -(8L-1/2~(3L-1/2)
~3/2 1/ 2000+ [-3(ys~ W)/ 2+ MM V7= gs(M) ~(8L-3/2)~(3L-3/2)
3/2 11230+ [3(vs= y) 12+ 1 M]Q Vg=da(M) -(3L+3/2)~(3L+3/2)
[W(1) = X Col W) El's=(bi2)(L-1), m e(1,3,5,
m
— 2 Cme{—ié)m(t)ﬂU3[(75—7|_)52+7|_M']} ’L“_’S: -(/2)(L+2), m €(2,4,6,
mM’'MS,S;

) . _ m _ r—
XD{\A,M(O,—vz,O)DJSéSZ(O,—vz,O)PIfm,}. (33 Bls=-(02)(L+D, m=7,

C,, is an expansion coefficient that is not dependent on time. E's=(3b/2)L, m'=8.

All the dynamical inqumation is included in the nonadia-  Because the parameter space of the angular velaci
batic basisD‘M,M andD'S,SZ are the Wigner functions gfand  the rotating magnetic field and the angl®etween the mag-

i’ order. The value of is the total angular momentud The netic field andZ axis determines the v_alue_ of g_eometric_
value ofj’ is the total spin momentum. The total angular phase, the Berry. phas.e of the homotriparticle linear spin
momentum and total spin momentum of the eigenwave funcSlUSter (each particle withS=1/2) system comes from the

PR ey / / H After the parameter of the system goes through a
tion |¥,,) areM’ andS,. So from Eqgs(12), (29), and(30 Zeeman i X
we clbtgi% the value 0%0: as(12), (29 (30 period T(27/ w), there is only a difference of the total phase

O, between the initial state and the final state of the nona-
Eg= <qf(t)||3|im+ ﬁZeemaL\P(t» => |C2E]. (34) diabatic basis 0Hzeemanand the Berry phase is obtained for
m

this system. From Eq29) we can calculate the total phase
m

[ A of H ;
The eigenenergy level dfl, g is total Zeeman

ot =~ Om(T) = 27 (ys= WS + nM]
_— et =-EnT- ET[('YS_ WS+ nM]
i [ColD(0:~02:0) ~ 2l(ys- Y)S,+ %M1, (36

mM’MS,S;
j . The dynamical phase is
XDM,M(O,—vz,O)DSéSZ(O,—vz,O)

EL_s= (W(1)|H ¥ (1)

i

T
(I)n = J (Eirr?t + Eaneema)dt

XDsész(oa_U2!0)<\I_,m’|F|L—S|\Fm'> o]
= > [Cy/Dy(0,-1,,0) =EnT +[(vs= WS+ 1 M](QT + 27 cos6).

MM’ MS})S; (37

><DiM,M(o,_vz,o)[);j,z/sz(o,_vz,o) The Berry phase is

XDj,, (0,-v, O)Em, (35) Bn=DProta+ P = = 27 (75— n)S + v.M](1 - coso).

S5 ’ L=S (39)

WhereEE"_'S:O?m/II:lL_SI‘I_’mr). Its value is determined by the ~ The nonadiabatic geometric phase is of great practical
total spin of the spin cluster. We have use. We can obtain different Berry phases by changing the
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FIG. 1. The change of the Berry phase far=5, we (-10
~10), 8 (0~ w/2). (Unit of w is rad/sec; unit o is rad)
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parameters and find the changing of the Berry phase as a F!G: 2. The change of the Berry phase {05, §=/36, 7/6,

function of parameters. It is seen from E§7) that the Berry
phase is altered when the valuessofind 6 are different. In

the formula(38), we find that the change of the Berry phase

wl4, w3, and 15r/12. (Unit of w is rad/seq.

the solution, we have derived the change of the Berry phase

will come from the facto(1-cosé), as shown in Figs. 1 and a5 g function of» and 6. We have found that the Berry phase

2. From Fig. 1 we can see that in the range|ef (|o|
<7.3 the Berry phase will decrease wheh reduces,
whereas in the range ¢&| (|o|>7.3) the Berry phase will

has a great change in a small range«ifand that the angle
0 affects the changing speed of the phase. The results may be
of practical use in applications such as quantum computers,

increase wherd reduces. From Fig. 2 we can also note thatthe resonance absorption of condensed matter, and the appli-
when w changes from negative to positive values, the Berrycation of phase. This work demonstrates that the method of

phase changes rapidly in a small range|ef (Jw|<20),

dynamical algebras is a useful tool for the study of a nonlin-

whereas in the large range @f| (|w|>20) the Berry phase ear system with a bilinear term in condensed matter physics.

will change slowly.
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