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The Jaynes-Cummings model �JCM� is the simplest fully quantum model that describes the interaction
between light and matter. We extend a previous analysis by Phoenix and Knight �Ann. Phys. 186, 381 �1988��
of the JCM by considering mixed states of both the light and matter. We present examples of qualitatively
different entropic correlations. In particular, we explore the regime of entropy exchange between light and
matter, i.e., where the rate of change of the two are anticorrelated. This behavior contrasts with the case of pure
light-matter states in which the rate of change of the two entropies are positively correlated and in fact
identical. We give an analytical derivation of the anticorrelation phenomenon and discuss the regime of its
validity. Finally, we show a strong correlation between the region of the Bloch sphere characterized by entropy
exchange and that characterized by minimal entanglement as measured by the negative eigenvalues of the
partially transposed density matrix.
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I. INTRODUCTION

Quantum entropy was first formulated by von Neumann
�1� as an extension of the Gibbs entropy in classical statisti-
cal mechanics. The foundations of modern information
theory were established by Shannon �2� using a definition of
entropy which is essentially identical to the Gibbs entropy.
Similarly, quantum entropy plays a central role in the theory
of quantum information �3–5�. Modern definitions of quan-
tum entropy include those of Rényi �6� and Tsallis �7�.

In recent years, entropy of quantum systems has been
discussed in the context of entanglement. The Horodecki’s
�8� derived Rényi entropy inequalities and discussed their
implications for nonlocality. They showed that the entropic
inequalities are violated by any pure entangled state. They
also argued that by considering Rényi entropy inequalities
one can limit teleportation �9� of several states. Cerf et al.
�10� gave an interesting interpretation to independent, corre-
lated, and entangled two qubit systems by considering con-
ditional and mutual entropies. For example, a maximally en-
tangled �nonseparable� two qubit system possesses negative
conditional entropies and excessive mutual entropy �which is
related to unaccessible information�, while a maximally cor-
related �separable� two qubit system possesses zero condi-
tional entropies and maximal classical mutual entropy. Phoe-
nix and Knight �11� explored the dynamics of a single cavity
mode in resonance with a single atom by comparing von
Neumann entropy, Shannon entropy, and photon number
variances.

In this paper we focus not on the entropy of the individual
subsystems, but on the entropy correlations between sub-
systems in a bipartite system. This question has been almost
completely overlooked in the literature, and for a good rea-
son: for a bipartite system that starts in a pure state, the
partial entropies of the two subsystems are equal at all times.
This result is a consequence of the equality between the ei-
genvalues of the partial density matrices in a pure bipartite
system, which in turn is a consequence of the Schmidt de-
composition. In this case the correlations are trivial. How-
ever, there are two qualifications in obtaining these trivial

correlations. First, that the system is indeed bipartite. Sec-
ond, that the joint state of the two subsystems is pure. If
either of these conditions is not met the correlation between
the entropies of the subsystems is nontrivial. In particular, in
this paper we focus on the question of whether and under
what conditions it is possible to get anticorrelated behavior
of the entropy of the subsystems. This is interesting because
it implies that there is an entropy transfer process going on,
consistent with classical thermodynamic concepts but op-
posed to the default result obtained for entangled bipartite
systems. In this paper, for definiteness, we focus on entropy
correlations between an atom and a single quantized cavity
mode in the framework of the Jaynes-Cummings model
�JCM�. We present qualitatively different entropy correla-
tions between the atom and the field, and we demonstrate a
regime of entropy exchange between them, both numerically
and analytically.

This paper is arranged in the following manner. Section I
is a brief introduction. It is devoted to a description of the
density matrix of bipartite systems, the definition of quantum
entropy, and the issue of separability and entanglement of
bipartite systems. In this section we also review the JCM
Hamiltonian in the context of quantum entropy. Section II is
devoted to calculating entropy correlations for mixed states
of light and matter with qualitatively different behaviors. We
give examples of entropy exchange between light and matter,
and explore the parameter range of this regime. In Sec. III
we give analytical proof of the entropy exchange effect and
an analysis of the regime of its validity. In Sec. IV we apply
two different entanglement tests to determine whether the
atomic-field system is entangled for all types of entropy cor-
relations. Section V concludes.

A bipartite system is described by a density matrix of a
Cm � Cn Hilbert space. The partial density matrix of one part
is obtained by tracing over the other:

�A�B� = TrB�A���AB� . �1�

The entropy of a quantum system is given by the von Neu-
mann entropy �1�
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S = − kBTr�� ln �� . �2�

The purity of a quantum system is given by Tr��2�, and it is
bounded: 0�Tr��2��1. Purity is related to the q=2 Tsallis
entropy �7�

S2 = 1 − Tr��2� . �3�

Qualitatively, purity oppositely tracks the von Neumann en-
tropy: an increase in the von Neumann entropy is parallel to
a decrease in purity �or an increase in the Tsallis entropy�.

A bipartite quantum system is considered separable if it
can be written as �12�

�AB = � Pi�A
i

� �B
i , �4�

where Pi�0, �Pi=1, and �A�B�
i are individual partial density

matrices. A system that cannot be factored into the form
above is said to be entangled. In practice, determining
whether a general Cm � Cn bipartite system can be factored
into the form above is very hard. Thus, several tests have
been introduced in order to determine whether a system is
entangled. One test originates from quantum information
theory, and it relies on calculating conditional entropies.
Conditional entropy indicates the entropy of one subsystem
after measuring the other, and it is given by

S�A�B� = SAB − SB. �5�

A bipartite system with at least one degree of freedom hav-
ing negative conditional entropy is entangled. Therefore a
necessary condition for separability is that the conditional
entropies are positive. Alternatively, one can calculate the
mutual entropy. Mutual entropy indicates the entropy shared
between the two subsystems, and it is given by

S�A:B� = SA + SB − SAB. �6�

Mutual entropy is bounded:

0 � S�A:B� � 2 min�SA,SB� . �7�

A bipartite system whose mutual entropy is excessive:
min�SA ,SB��S�A :B��2 min�SA ,SB� is entangled. Therefore
a necessary condition for separability is 0�S�A :B�
�min�SA ,SB�.

A second powerful test introduced, originally by Peres
�13�, relies on partial transposition. Partial transposition is a
blockwise transposition of a matrix and it is given by

�i�,j�
T2 � �i�,j�. �8�

A system whose partially transposed density matrix is nega-
tive is entangled. Therefore a necessary condition for sepa-
rability is the positivity of the partially transposed density
matrix �the Horodecki’s �14� showed that it is also a suffi-
cient condition for separability of Cm � Cn systems with mn
�6�. Kraus and co-workers �15� analyzed systems supported
on C2 � CN. They gave necessary and sufficient conditions
for separability of systems with positive partially transposed
�PPT� density matrices. They showed that if the rank of den-
sity matrix is equal to N, the density matrix is separable.
However, other criteria they devised are very complicated to
implement for a generic density matrix.

The JCM is the simplest fully quantum model that de-
scribes the interaction between light and matter. The model
consists of a single quantized two level atom interacting with
a single quantized electromagnetic cavity mode under the
rotating wave approximation �RWA� and the dipole approxi-
mation. The resonant JCM Hamiltonian �16� in the interac-
tion representation is given by

H = �	�
+a + 
−a†� . �9�

For a system that starts in a pure state partial entropies of the
field and the atom are equal at all times for a system that
starts in a pure state �11�. As already indicated above, this
result is a consequence of the equality between the eigenval-
ues of the partial density matrices in a bipartite system,
which in turn is a consequence of the Schmidt decomposi-
tion. Since the partial entropies fluctuate together in time,
their sum does not conserve the total entropy

Sa + Sf � Saf . �10�

Thus, in this case partial entropies are not an additive �ex-
tensive� quantity. Nevertheless, knowledge of partial entro-
pies gives information about the dynamics of the total sys-
tem. The question that we address here is whether we can
find states of light and matter for which the partial entropies
are quasiadditive. Mixed states of light and matter can be
natural candidates in this respect.

II. RESULTS

We consider various combinations of initial pure and
mixed states of light and matter. The mixed state for the
electromagnetic field is chosen to be a Planck distribution for
a single cavity mode � f�0�=�n=0

� Pn�n�	n�, Pn= �n̄n / �n̄
+1�n+1�, where n̄ is the average number of photons in the
cavity. The mixed state for the atom has the following gen-
eral form �a�0�= Pe�e�	e�+ �1− Pe��g�	g�, 0� Pe�1. When
the cavity mode is in exact resonance with the atomic tran-
sition, one can derive an analytic expression for the propa-
gator and obtain analytic expressions for the full and partial
density matrices at any time. The general solution for the full
density matrix has the following form:

�af�t� = e−iHt�af�0�eiHt, �11�

where H is the interaction Hamiltonian mentioned above. By
expanding U�t�=e−iHt in a Taylor series one obtains the ana-
lytic form of the propagator

U�t� = 
 cos�	t�aa†� − i
sin�	t�aa†�

�aa†
a

− i
sin�	t�a†a�

�a†a
a† cos�	t�a†a� � .

To simulate the evolution of the entropic quantities, we trun-
cated the set of Fock states that compose the Planck distri-
bution at some nf, where �n=0

nf Pn1. The accuracy of the
results we obtained was tested by adding more Fock states to
the Planck distribution to see if the simulated values
changed.
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In Fig. 1 the changes in atomic and field partial entropies
�S�t�−S�0�� vs the dimensionless quantity 	t are plotted. In
Fig. 1�a� the atom is initially excited and the field is in a
weakly excited thermal state �n̄=1�. This case is similar to a
situation where both the field and atom are initially in a pure
state, because both partial entropies rise and lower together
�although they are not equal�. In Fig. 1�b� the atom is ini-
tially in the ground state and the field is in a weakly excited
thermal state. It is clear that there is entropy exchange be-
tween the atom and field �although the exchange is not com-
plete�. The sum of the field and atomic entropy changes
�dash-dot curve� is quasiconserved as seen by its amplitude
of fluctuations, which is significantly smaller than each of
the partial entropy changes.

When the field is excited more, i.e., n̄=1, or n̄=10, no
substantial entropy exchange between the atom and field oc-
curs. In particular, when the field is highly excited �n̄�10�
and the atom is close to a pure state, there is a sharp and
rapid collapse of the atomic purity �sharp and rapid rise in
the von Neumann entropy� with no substantial revival.

In order to determine which initial atomic states can ex-
change entropy with a weakly excited thermal field we con-
sidered different initial atomic states by discretizing the
Bloch sphere with a longitudinal angle �−� /2��� /2, for
positive  the atom is more excited� and a Bloch vector
length �0�r�1�, disregarding the azimuthal angle ���. We
introduce a time averaged entropy exchange parameter de-
fined by

P = ��Sa�f�

�Sf�a�
� , �12�

where �Sa�f�=Sa�f��tj�−Sa�f��tj−1�, and in the numerator the
smaller of the two instantaneous partial entropy changes was

substituted. The time averaged entropy exchange parameter
is suitable for quantifying the extent of entropy flow between
a weakly excited thermal field and an atom due to the oscil-
latory nature of the partial entropies. Furthermore, the en-
tropy exchange parameter is bounded: −1� P�1; when it
tends to −1 there is high degree of entropy exchange, and
when it tends to +1 the two partial entropies rise and lower
together.

In Fig. 2 the entropy exchange parameter is plotted for a
weakly excited thermal field and various initial atomic states.
The dark region in parameter space is characterized by
significant entropy exchange �P�−0.8�; and in this region
the atom is mostly in the ground state �ground state probabil-
ity is more than 80%�. Thus entropy exchange occurs most
effectively when the atom is initially close to the ground
state. An example for an almost complete entropy exchange
is given in Fig. 3, where the changes in atomic and field
partial entropies are shown for an atom initially in the state
�a�r=� 7

10 ,=−� /2� �P�0.99�. In this case the sum of the
two partial entropies is almost completely conserved as seen
by the amplitude of fluctuation of the sum of the partial
entropy changes, which is two orders of magnitude smaller
than each of the partial entropy changes.

III. ANALYTICAL DERIVATION OF THE ENTROPY
EXCHANGE EFFECT

We now provide an analytical derivation for the entropy
exchange effect. We first note that contours of significant
entropy exchange �P�−0.8, Fig. 2� center around a point on
the central vertical axis of the Bloch sphere. This is a “fixed”
point where the partial density matrices are stationary, and it
corresponds to a situation where the field temperature is
identical to the atomic Boltzman temperature as we shall
now show. Consider a situation where

FIG. 1. Partial entropy change plots �S=S−S�0� �field dotted
line, atomic solid line�. �a� Atom initially in the excited state and a
weakly excited thermal field, ��0�= ��e�	e��a � ��n=0

� Pn�n�	n� ; n̄
=0.1� f. �b� Atom initially in the ground state and a weakly excited
thermal field ��0�= ��g�	g��a � ���n=0

� Pn�n�	n�� f ; n̄=0.1� f. The dash-
dot curve represents the sum of atomic and field partial entropy
changes, and it is quasiconserved.

FIG. 2. Entropy exchange parameter for a weakly excited ther-
mal field and various initial atomic density matrices, characterized
by the longitudinal angle  and the Bloch vector length r. The dark
region in parameter space is characterized by significant entropy
exchange �P�−0.8�. Note that this region is centered around a
‘‘fixed’’ point where the partial density matrices are stationary
�black arrow; see text�.
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Pe

Pg
=

Pn+1

Pn
=

n̄

n̄ + 1
= e−��/kBT, �13�

where � is the transition frequency. The full density matrix
where both the atom and field are in mixed states �with no
initial coherence� is given by

�af�t� = U�Pe � Pn 0

0 Pg � Pn
�U†,

where �Pn�mn=�mnPn. The partial density matrices are in di-
agonal form:

�a�t� = �A�t� 0

0 B�t�
� ,

� f
nn�t� = C�t� + D�t� , �14�

where

A�t� = Pe � Pn cos2��nt� + Pg � Pn+1 sin2��n+1t� ,

B�t� = Pe � Pn−1 sin2��n−1t� + Pg � Pn cos2��nt� ,

C�t� = Pe�Pn cos2��nt� + Pn−1 sin2��n−1t�� ,

D�t� = Pg�Pn+1 sin2��n+1t� + Pn cos2��nt�� ,

�n−1 = �n = 	�n . �15�

By substituting Eq. �13� into Eq. �14� one obtains

�a�t� = �a�0� = �Pe 0

0 Pg
� ,

� f
nn�t� = � f

nn�0� = Pn. �16�

For example, for a weakly excited thermal field with 	n̄�
=0.1, this point is located at r= 5

6 ;=− �
2 �as indicated by the

black arrow in Fig. 2�.
We now proceed to analyze the vicinity around the fixed

point, where substantial entropy exchange occurs. For a
weakly excited thermal field the atomic fixed point is close
to the ground state �see Fig. 2�. Therefore, we consider an
initial state where an atom in the ground state interacts with
a thermal cavity mode: �af�0�= ��g�	g��a � ��n=0

� Pn�n�	n�� f. In
this case the full density matrix is given by

�af�t� = �S1� f�0�S1
† − iS1� f�0�C1

†

iC1� fS1
† C1� f�0�C1

† � ,

where C1=cos�	t�a†a�, and S1= �sin�	t�aa†� /�aa†�a. The
partial density matrices are in diagonal form

�a�t� = �� Pn+1 sin2��n+1t� 0

0 � Pn cos2��nt�
� ,

� f
nn�t� = Pn cos2��nt� + Pn+1 sin2��n+1t� . �17�

Since the purity is qualitatively similar to the von Neumann
entropy we can analyze the time dependence of the partial
purities. The time derivatives of the partial purities are given
by:

d„Tr��a
2�…

dt
= 2 � Pn+1 sin2��n+1t� � Pn+1�n+1 sin�2�n+1t�

− 2 � Pn cos2��nt� � Pn�n sin�2�nt�

d„Tr�� f
2�…

dt
= 2 � �Pn+1�n+1 sin�2�n+1t� − Pn�n sin�2�nt��

� �Pn cos2��nt� + Pn+1 sin2��n+1t�� . �18�

One can rearrange the time derivatives in Eq. �18� in terms of
PiPj multiplying sums of oscillatory functions. For a weakly
excited thermal cavity �n̄=0.1� the PiPj decrease by approxi-
mately an order of magnitude for every increment in either i
or j. Approximating the derivatives of the partial purities by
the first nonvanishing term �P0P1=0.0751� one obtains

d„Tr��a
2�…

dt
� − 2P0P1�1 sin�2�1t� ,

d„Tr�� f
2�…

dt
� 2P0P1�1 sin�2�1t� . �19�

The above approximation shows explicitly that there is en-
tropy exchange between a weakly excited thermal cavity
mode and an atom initially in the ground state. The leading
terms in the time derivatives of the partial purities have the

FIG. 3. Partial entropy change �field dotted line, atomic solid
line, atomic+field dash dot curve� for a weakly excited thermal
field �n̄=0.1� and atom initially in the state �a�r=�7/10;=
−� /2�. Entropy exchange between the atom and field is almost
complete �P�0.99�.
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same functional dependence on time but with opposite signs.
Consider now an initial state of an excited atom interact-

ing with a thermal cavity mode �af�0�= ��e�	e��a

� ��n=0
� Pn�n�	n�� f. In this case the full density matrix is given

by

�af�t� = �C2� f�0�C2
† iC2� f�0�S2

†

− iS2� fC2
† S2� f�0�S2

† � ,

where C2=cos�	t�aa†�, and S2= �sin�	t�a†a� /�a†a�a†.
Again the partial density matrices are in diagonal form

�a�t� = �� Pn cos2��nt� 0

0 � Pn−1 sin2��n−1t�
� ,

� f
nn�t� = Pn cos2��nt� + Pn−1 sin2��n−1t� . �20�

The time derivatives of the partial purities are given by

d„Tr��a
2�…

dt
= − 2 � Pn�n sin�2�nt� � Pn cos2��nt�

+ 2 � Pn−1 sin2��n−1t� � Pn−1�n−1 sin�2�n−1t� ,

d„Tr�� f
2�…

dt
= 2 � �Pn−1�n−1 sin�2�n−1t� − Pn�n sin�2�nt��

� �Pn cos2��nt� + Pn−1 sin2��n−1t�� . �21�

Rearranging the time derivatives in Eq. �21� in terms of PiPj,
as in the case when the atom was initially in the ground state,
and approximating them by the first nonvanishing term �P0

2

=0.8264� one obtains

d„Tr��a
2�…

dt
� − P0

2�0 sin�4�0t� ,

d„Tr�� f
2�…

dt
� − P0

2�0 sin�4�0t� . �22�

The above approximation shows that in this case the partial
purities oscillate together in time. The leading terms in the
time derivatives of the partial purities are identical.

When the cavity mode is excited thermally with more
photons, i.e., n̄�1, the terms in the time derivatives of the
partial purities rearranged according to PiPj no longer de-
crease by an order of magnitude as i , j increase. Now many
terms contribute substantially to the partial entropy behavior;
since these terms are not identical in both degrees of free-
dom, observing entropy exchange becomes increasingly less
probable as n̄ increases.

IV. ENTROPY CORRELATIONS AND ENTANGLEMENT

We consider now the relationship between entropy corre-
lations developed between the atom and field discussed in
previous sections, and entanglement of the various atomic-
field states. One would expect that as SA+SB→SAB the sys-
tem becomes separable. This is motivated by the following
formula from statistical mechanics �17�:

SAB = SA + SB + kB�
i,j

ln
PA

i PB
j

PAB
ij . �23�

If SAB=SA+SB, then PAB
ij = PA

i PB
j �since the sum over the natu-

ral logarithm terms has to be zero�. This means that the two
subsystems are independent �if SA+SBSAB then the two
subsystems are weakly classically correlated�. In regions of
the Bloch sphere where the entropy exchange is almost com-
plete ��Sa= �−�Sf�:

Sa + Sf � Sa�0� + Sf�0� = Saf�0� = Saf . �24�

The last two equalities hold since the combined atomic-field
system begins to evolve from a separable state, and since the
evolution is unitary, respectively. Therefore, we would ex-
pect that in regions of the Bloch sphere where the entropy
exchange is almost complete, there should be minimal en-
tanglement. We now proceed with comparing our measure
for entropy exchange with various entanglement measures.

As discussed in the Introduction, bipartite systems with
excessive mutual entropy are entangled. We introduce an en-
tanglement parameter R based on the ratio between mutual
entropy and partial entropies

R =
S�a:f�

min�Sa,Sf�
. �25�

It follows from Eq. �7� that 0�R�2, with 1�R�2 being a
sufficient condition for entanglement and conversely 0�R
�1 being a necessary condition for separability. In Fig. 4 the

time averaged entanglement parameter, R̄, is plotted for dif-
ferent initial atomic states coupled to a weakly excited ther-

mal field. The region in parameter space with R̄�1
�bounded by a dashed line� indicates that the necessary con-
dition for separability is fulfilled for most of the evolution

FIG. 4. Time averaged entanglement parameter based on the
ratio between mutual entropy and partial entropies for different ini-
tial atomic states coupled to a weakly excited thermal field �n̄
=0.1�. The region in parameter space where R̄�1 �dotted line�
encompasses the entire region of entropy exchange �P�−0.8�, but
in addition includes significant area where there is no entropy ex-
change �even regions with P�0; compare with Fig. 2�.
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time. This region is large, occupying about 75% of the inte-
rior of the Bloch sphere. It encompasses the entire region of
entropy exchange �P�−0.8�, but in addition includes sig-
nificant area where there is no entropy exchange �even re-
gions with P�0�. This is consistent with the observation that

0� R̄�1 is a necessary but not a sufficient condition for
separability. Although the region defined by this necessary
condition is too broad to be informative, note that in cases
where there is substantial entropy exchange as seen in Fig. 2,

R̄ approaches zero in Fig. 4.
We consider now the PPT test, where the existence of

even a single negative eigenvalue of the partially transposed
density matrix is a sufficient criterion for entanglement.
Since the PPT test can only be applied for finite dimensional
density matrices, in order to apply it to the Jaynes-
Cummings model we need to truncate the infinite set of Fock
states. We do this according to the following procedure:

� f�0� = �
n=0

�

Pn�n�	n� �26�

→�
n=0

nf

Pn�n�	n� + �1 − �
n=0

nf

Pn��nf+1�	nf+1�; �27�

in words, all residual probability from the truncation is
placed in the �nf +1�st state. The criterion for truncating the
infinite set of Fock states is that the partial entropies do not
change by more than 10−14. We find that no matter what the
initial state of the atom is, there is always at least one nega-
tive eigenvalue of the partially transposed density matrix.
However, further investigation shows that this result is in
essence due to the truncation of the infinite Fock basis to a
finite size. Specifically, we find that in all regions of the
Bloch sphere there is always one negative eigenvalue of ex-
tremely small magnitude whose size is on the order of the
probabilities tail of the infinite Fock basis that gets truncated.
Since our primary interest here is in the original and not in
the truncated Jaynes-Cummings model, we are inclined to
ignore this negative eigenvalue of extremely small magni-
tude and to interpret the test of partial transposition in terms
of the remaining negative eigenvalues. The remaining nega-
tive eigenvalues are all of sizable magnitude and robust with
respect to the size of the Fock basis.

With that introduction, we define 	m
T2 as the largest �in

absolute value� negative eigenvalue of the partially trans-
posed density matrix, �T2. We then introduce as an entangle-
ment measure

E = ln��	̄m
T2�� , �28�

where the overbar signifies the time average. In Fig. 5
we plot the entanglement parameter E for different initial
states for nf =13. Clearly, there are two well-defined regions
in atomic parameter space. The dark region corresponds
to a single negative eigenvalue of �T2 on the order of
10−16−10−18. This region is characterized by marginal en-
tanglement, corresponding in all likelihood to completely
separable evolution in the untruncated Jaynes-Cummings

model. Notice that the region of atomic parameter space with
substantial entropy exchange �P�−0.8 in Fig. 2, shown as a
solid white line in Fig. 5� falls precisely within the region
with minimal entanglement parameter E. The lighter shade
region in Fig. 5 is characterized by two or more negative
eigenvalues of �T2. We believe that this region corresponds to
significant entanglement in the original, untruncated Jaynes-
Cummings model. This region is clearly orthogonal to that of
the region of entropy exchange.

V. CONCLUSION

We have explored entropy correlations between a quan-
tized cavity mode and a single atom in the framework of the
JCM by considering both pure and mixed atomic and field
states. In particular, we explored the regime of entropy ex-
change between light and matter. We presented two qualita-
tively different entropy correlations. The first type of corre-
lation is a case where both the atomic and field partial
entropies fluctuate together in time. This is reminiscent of the
case where both the atom and field start out in a pure state,
and consequently their partial entropies are identical at all
times. The second type of correlation is a case where the
atomic and field partial entropies are anticorrelated. This im-
plies that there is entropy exchange between the atom and
the field. Since substantial entropy exchange occurs when the
field is in a weakly excited thermal state �n̄=0.1� we intro-
duced an entropy exchange parameter in order to determine
which initial atomic states can efficiently exchange entropy
with the field. Substantial entropy exchange occurs when the
atom is initially close to the ground state. We showed that
contours of substantial entropy exchange center around a sta-
tionary point in the Bloch sphere. This point corresponds to a
situation where the initial field and atomic �Boltzman� tem-
perature exactly match. By analyzing the partial purities we

FIG. 5. Entanglement parameter based on the negativity of the
eigenvalues of the partially transposed density matrix for a weakly
excited thermal field �n̄�0.1� and various atomic states. The region
of atomic parameter space with substantial entropy exchange �P
�−0.8, bounded by a solid white line� falls within the region with
minimal entanglement parameter �dark�, which is dominated by an-
ticorrelated partial entropies.
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derived an analytic approximation for the entropy exchange
phenomenon. The change in the atomic and field partial pu-
rities have the same functional dependence on time but with
opposite signs.

It is natural to ask if there is any connection between the
entropy exchange that we observe in this paper and a ther-
modynamic heat exchange process. Although we cannot rule
out this possibility, we believe that the connection is un-
likely. In classical thermodynamics, heat exchange is related
to the transfer of energy that is in some sense degraded. In
our case, because the entropy exchange is periodic and the
system is small, there is no reason to believe a priori that the
energy that is exchanged is unrecoverable for pure work.
Nevertheless, if one examines the ratio ��dE /dt� / �dS /dt��,
where dE /dt and dS /dt are the instantaneous rates of energy
and entropy change of each subsystem respectively, there is
some overall correlation with the initial temperature T of the
field, in agreement with the classical result dE /dS=T.

A well-established measure of entanglement is the test of
negative eigenvalues of the partial transpose of the density
matrix �PPT test�. Unfortunately, the PPT test cannot be ap-
plied directly to the Jaynes-Cummings model with its for-

mally infinite Hilbert space for the field. We therefore ap-
plied the PPT test to a model in which the infinite Fock basis
was truncated. We found that there is always at least one
negative eigenvalue for the partially transposed density ma-
trix. However, further investigation showed that this result is
due to the truncation of the Fock basis. Since our primary
interest here is in the original and not in the truncated
Jaynes-Cummings model, we essentially discard this nega-
tive eigenvalue of extremely small magnitude and interpret
the test of partial transposition in terms of only the remaining
negative eigenvalues. We find that the region of the Bloch
sphere in which there are no additional negative eigenvalues
maps very closely onto the region where there is substantial
entropy exchange between atom and field. This result is in-
tuitively appealing, showing a strong negative correlation be-
tween entropy exchange and entanglement.
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