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A “dipole” laser is proposed consisting of a nanoparticle and a two-level system with population inversion.
If the threshold conditions are fulfilled, the dipole interaction between the two-level system and the nanopar-
ticle leads to coherent oscillations in the polarization of the particles, even in the absence of an external
electromagnetic field. The emitted radiation has a dipolar distribution. It does not need an optical cavity, and
has a very small volume,,0.1 mm3, which can be important for applications in microelectronics. Estimates of
the threshold conditions are carried out for a dipole laser composed of a quantum dot and a silver nanoparticle.
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I. INTRODUCTION

It is well known that an admixture of nanoparticles may
significantly change the optical properties of a medium. For
example, the enhancement of the spontaneous emission from
an atom next to a metallic nanoparticle has been studied both
theoretically and experimentallyf1g. Similarly, enhanced
fluorescence intensities have been observed and studied in
fluorophores near metallic nanostructures and surfaces, in-
cluding enhanced rates of multi-photon excitation, and
clearly modified rates of energy transferf2g. Spectral hole-
burning and fluorescence enhancement were observed in
MgS:Eu nanoparticlesf3g. Subwavelength patterning of the
optical near field has been observed in a regular array of
resonant gold nanoparticlesf4g, whereas modification of the
optical properties of photonic crystals by metallic nanopar-
ticles have been studied and observed inf5g. The change in
the optical properties of a medium caused by metallic nano-
particles of various shapes because of dipole-dipole interac-
tions between the particles was studied inf6g, and features in
the light absorption of silica nanoparticles were reported in
f7g.

There is also high interest in the construction and study of
miniature nanolasers based on photonic crystalsf8g or nano-
wires f9g with very small optical cavities. Nanolasers are
considered to be one of the critical building blocks for
nanoscale optoelectronicsf10g.

Despite their small volumes, the nanolasers proposed thus
far all work in the same way as conventional lasers. In par-
ticular, to provide feedback between the lasing field and the
active medium they must have an optical cavity whose size,
at least along one dimension, is comparable to or greater than
the laser wavelength in the medium. Here we show that
nanoparticles may bring a different way of lasing. We pro-
pose a nanolaser incorporating a metallic nanoparticle and a
two-level systemsTLSd: this laser does not need an optical
cavity f11g. The proposed nanolaser utilizes coupling
through the nearslocald field between a resonant transition of

the active particle and the plasmon resonance of the metallic
nanoparticle. Such coupled interactions are known to
strongly modify optical emission. They are, for instance, re-
sponsible for surface-enhanced Raman scattering, where the
plasmon resonance due to a regular array of metallic nano-
particles can lead to strong resonant emission, as reported,
for example, inf12g.

A physical understanding of the proposed lasing mecha-
nism can be obtained by noting that, under certain condi-
tions, metallic nanoparticles can act as high-quality “anten-
nas” for active atoms, leading to an increase in the
amplification coefficient of an active mediumf13g. How can
this lead to lasing? Consider first the usual lasing mecha-
nism. This involves stimulated emission into a modesmodesd
of a cavity from a medium in which there is a population
inversionf14g. When the threshold conditions are satisfied so
that the stimulated emission exceeds the stimulated absorp-
tion and the losses, then energy is transferred from the inco-
herent pump into coherent laser radiation. Because of the
Bosonic nature of the electromagnetic field, all emitted pho-
tons have almost the same wave vector, close to the wave
vector of the cavity mode, leading to a narrow lasing spec-
trum with high power.

Besides the electromagnetic field, Bose operators can de-
scribe any harmonic oscillations, including, for example, lin-
ear oscillations of the charge and polarization of a medium.
By exciting the medium in such a way that the total energy
flux into the polarization exceeds the losses, one can obtain,
in principle, polarization oscillations with a narrow spectrum
which lead, in turn, to lasing. We propose here adipole
nanolasersDNLd, where coherent polarization oscillations of
a nanoparticle can be excited through its dipole interaction
with an inverted TLS based, for example, on a quantum dot
or an atom.

The minimum volume of conventional miniature lasers,
such as VCSELsf15g, micro-sphere lasersf16g, or the nano-
lasers mentioned above, is restricted by the volume of a cav-
ity mode, which is, typically, greater than the cube of the
lasing wavelengthl. Because the DNL uses near-field inter-
actions, the DNL does not need an optical cavity and may
have a volume!l3, which could be of benefit for a wide
range of applications, including microelectronics.*Electronic address: protsenk@stk.mmtel.ru
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Surface-plasmon amplification by stimulated emission of
radiationsspaserd has been proposed inf17g. The spaser ap-
proach has some features in common with the DNL. In par-
ticular, the spaser does not need an optical cavity. The spaser,
however, operates in a regime that generates near-field
modes, while the DNL generates polarization. The DNL ap-
proach could be referred to as “polarization amplification by
stimulated emission of radiation”sPASERd. However, the
name DNL emphasizes that we are interested, above all, in
the emission of strong and coherent radiation by a nano-
object, and it avoids any confusion between the polarization
of the medium and the polarization due to the electromag-
netic field. A comparison between the DNL and the spaser
will be carried out in Sec. III.

Let us now consider a rather simple model of the DNL, to
explain its operation, and to estimate the working conditions
and parameters for a DNL.

II. EQUATIONS OF MOTION

Suppose that a two-level systemsTLSd of sizer2 is placed
at a distancer from a nanoparticle of sizer0 in a solid di-
electric or semiconductor as shown in Fig. 1. An incoherent
pump provides a population inversion in the TLS. The pump
may be, for example, a broadband optical pump to a higher
level of the TLS, as in a three-level laser pump scheme, or
may be provided by carrier injection from the bands of a
semiconductor material surrounding an embedded quantum
dot.

We use a quantum-mechanical derivation of the equations
of motion for the system shown in Fig. 1, but neglecting
quantum correlations and fluctuations in the analysis. The
Hamiltonian of the nanoparticle and TLS is given by

H = H0 + H2 + V̂ + Ĝ,

whereH0 andH2 describe, respectively, the nanoparticle and

TLS, ignoring their interaction. The operatorV̂ gives the

interaction between the TLS and the nanoparticle, whileĜ
includes the terms describing dissipation and pump effects.

Free electrons in the nanoparticle can oscillate with a fre-
quencyv0 near to the plasmon resonance, leading to har-
monic oscillations of the nanoparticle dipole moment
m0fastd+a+stdg. Herem0 is the matrix element of the dipole
moment operator of the nanoparticle, andastd is a Bose op-
erator. Suppose that an electron in the TLS makes transitions
between the high and the low TLS states, so that the dipole
moment of the TLS oscillates with a frequencyv<v2,

wherev2 is the transition frequency of the TLS. Because of

the interactionV̂, the electrons in the nanoparticle will also
oscillate with the same frequencyv. Supposing thatv<v0
<v2, we can write equations of motion for the slowly vary-
ing amplitude operatorsa0std;astdeivt and sstd;%stdeivt,
where%std is the operator describing transitions between the
low and high states of the TLS.Dstd=nastd−nbstd is the
population inversion operator, withna snbd operators for the
population of the highslowd state of the TLS. Neglecting the
fast oscillating terms,e±2ivt, we can write

H0 = "v0a
†a, H2 = "v2na,

V̂ = "Vintsa0
†s + s†a0d. s1d

In order to simplify the analysis we assume that

r0,r2 ! r ! k−1, s2d

wherek=v2/c is the wave number associated with photons
emitted and/or absorbed by an isolated TLS. If the conditions
in Eq. s2d are satisfied, then

Vint = fmW 0 . mW 2 − 3smW 0 . eWrdsmW 2 . eWrdg/s"r3d, s3d

which is the matrix element of the static dipole-dipole inter-
action operatorf18g, where the components ofmW 2 are matrix
elements of the dipole moment operator of the TLS resonant
transition, andeWr is a unit vector directed from the nanopar-
ticle to the TLS. The sumna+nb=n0, where 0,n0ø1 is a
constant. If the TLS is a quantum dot, thenn0 is determined
from the equilibrium conditions associated with the carrier
distribution in the TLS and the semiconductor medium
around the TLS.

By using the well-known commutation relations for the
operatorsa0, s, andna,b f19g we can derive the equations of
motion

Ḋ = 2iVintsa0
†s − s†a0d −

D − D0

t
s4d

ṡ = sid − Gds + iVinta0D s5d

ȧ0 = siD − G0da0 − iVints, s6d

where d=v−v2, D=v−v0. We have included in Eqs.
s4d–s6d terms involving 1/t, G andG0 to describe the relax-
ation and pump processes.D0 is the stationary value ofD
whens=a0=0, with

1

t
=

1

td
+

1

tp
, D0 = n0

td − tp

td + tp
, s7d

where 1/td and 1/tp are, respectively, the damping and the
pumping rates. We supposetp,td and thereforeD0.0, so
that the pump provides a population inversion in the TLS.
We neglect quantum fluctuations and correlations, so thatD,
s, anda0 can be treated as complex variables withs+ anda0

+

then replaced bys* anda0
* , respectively.

FIG. 1. Scheme of dipole nanolaser. Parameters of the nanopar-
ticle have index 0, parameters of the two-level system have index 2.
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III. THRESHOLD CONDITIONS AND THE LASING RATE

Equations s4d–s6d are identical to the Maxwell-Bloch
equations for a TLS in the electromagnetic field of a cavity
mode with Rabi frequencyVint. It is well-known that these
equations have not only the trivial stationary solutiona0=0,
s=0, D=D0, but also the nontrivial stationary solution

D = Dth ;
GG0

Vint
2 S1 +

D2

G0
2D , s8d

d/G = − D/G0 s9d

a0 =
eiw

2
FD0 − Dth

G0t
G1/2

, s = a0

ÎG0
2 + D2

Vint
eiDw, s10d

eiDw =
D + iG0

ÎG0
2 + D2

,

wherew is an arbitrary constant phase. BecauseDøD0ø1,
the nontrivial stationary solution has physical sense ifD
,1, which requires, according to Eq.s8d, that

Vint
2

GG0
. S1 +

D2

G0
2D . s11d

When conditions11d is true andD0.Dth, the stationary so-
lution s8d–s10d can exist, giving a nonzero dipole moment
for the nanoparticle and for the TLS. Note that these nonzero
dipole momentssor polarizationd appear even in the absence
of an external electromagnetic field. By direct analogy with
the results of laser theoryf14g, we can therefore predict that
the spectral width of the polarization oscillations will de-
crease and become smaller thanG and G0 with increasing
ua0u.

Because of the coherent oscillations of the polarization,
the nanoparticle and TLS will emit coherent dipole radiation
of frequencyv. When the conditions of Eq.s2d are true, the
spatial pattern of the radiation from the particles is the same
as that due to a single dipole. The spectrum of that dipole
radiation will tend to narrow with increasingua0u. We note
that this radiation enters in Eqs.s8d–s10d only through the
contribution of the radiation losses to the relaxation rates
1/t, G andG0 ssee Sec. IVd. In Eqs.s8d–s10d the polarization
of the nanoparticles,a0d replaces the electromagnetic field
in the usual laser theory. We refer to the phenomena de-
scribed by the nontrivial stationary solution of Eqs.s8d–s10d
asdipole lasing.

Equations similar tos8d–s10d can be derived, in principle,
through an extension of the formalism used for the spaser in
f17g. This can be done through adiabatic elimination, under
proper conditions, of all the surface plasmon modesfsee Eq.
4 of f17gg, to obtain the interaction energy between the TLS
and the metallic nano-object and so to derive the equations
of motion. In this way the theoretical approach taken to de-
scribe the spaserf17g can also be used for the DNL, and the
threshold condition can be found for the spontaneous appear-
ance of polarizationfsimilar to Eq.s11dg. This threshold con-
dition may be different from the threshold condition for a
particular surface-plasmonsSPd mode, given by Eq. 5 of

f17g. Indeed, the near field in the DNL includes all SPs with
v<v0<v2 contributing into the interaction of the TLS with
the nanoparticle. Free-space emission from the DNL, as well
as the strong SP modes, appear as a consequence of a spon-
taneous buildup of the nanoparticle polarization. Whether a
spaser or DNL is realized depends on which lifetime is
longer: the SP lifetimetnearor the coherent polarization life-
time tpl of the nanoparticle at the plasmon resonance. In the
case of the dipole interaction considered in this paper,tnear
, r /cøv−1. Indeed, the microscopic mechanism for the di-
pole interaction is the emission of a photon by the TLS, the
absorption of that photon by the nanoparticle and then pho-
ton emission into free spacef29g. Therefore tpl=Q/v
@tnear, where Q@1 is the quality factor for nanoparticle
polarization oscillations at the plasmon resonance. When the
TLS is close to nano-objects of complex structure, as inf17g,
the contribution of all multipole terms into the near-field in-
teraction becomes important, so that one may reach the limit
tpl!tnear, which is the case for the spaser.

The stationary solution of Eqs.s8d–s10d is most easily
realized when the inversion conditions are minimized, which
requires, from Eq.s8d, to maximizeVint. As one can see from
Eq. s3d, Vint reach its maximum whenmW 0 is parallel tomW 2.
The dipole momentm0 of the ellipsoidal nanoparticle shown
in Fig. 1 has its maximum value along thex axis, and there-
fore the magnitude ofVint is maximized whenmW 0 andmW 2 are
parallel and directed along this axis.

Let us find the lasing rategR describing the rate of dipole
radiation from the TLS and from the nanoparticle. For the
conditions given by Eq.s2d, the total dipole moment of the
TLS and the nanoparticle is the sum of the dipole moments
of each particle, so that the dipole radiation ratef18g is

gR =
4k3

3"
ud0 + d2u2, s12d

whered0=2m0a0, d2=2m2s, anda0 ands are given by Eqs.
s8d–s10d. It is convenient to expressgR in terms of the reso-
nant polarizabilitiesa0svd anda2svd of the nanoparticle and
the TLS

a0 = a0r
i − D̄

1 + D̄2
a2 = a2r

d̄ − i

1 + d̄2
, s13d

where a0r =m0
2/ s"G0d, a2r =m2

2/ s"Gd, D̄=D /G, and d̄=d /G.
Equationss13d follow from Eqs.s5d and s6d, if one replaces
the terms,Vint by −m2E/" in Eq. s5d and by −m0E/" in Eq.
s6d, whereE is the amplitude of an external electromagnetic
field. By inserting the stationary solutionss10d into Eqs.s11d,
s12d, ands8d and by using Eq.s13d, we derive

gR =
4k3a0r

3t
sD0 − DthdU1 +

r3

2ua0u
eiDwU2

, s14d

Dth =
r6

4ua0uua2u
ø 1, Dth , D0 ø 1. s15d

Note that the TLS polarizabilitya2 enters only inDth, fsee
Eq. s15dg, while the nanoparticle polarizabilitya0 also ap-
pears in Eq.s14d for gR. This implies that the radiation is
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caused, at most, by polarization oscillations of the nanopar-
ticle.

If we add termsm2E/" andm0E/" into Eqs.s5d and s6d
and find the stationary solution, we can obtain the polariz-
ability atot of the TLS and the nanoparticle in a monochro-
matic fieldE. This case will be analyzed in detail elsewhere.
Here we only note thatatot→` whenD0=Dth, implying the
spontaneous appearance of nonzero dipole moment when the
external electromagnetic fieldE→0. One can see that this is
in direct analogy with the linear laser amplifier, where the
amplification coefficient goes to infinity at the lasing thresh-
old ssee, for examplef20gd. On the other hand, it is also well
known that the linear DC polarizability goes to infinity for a
ferroelectric phase transitionf21g. Besides, the theory of the
local field in a dielectric medium also predictsatot→` under
certain conditions, giving the so-called Clausius-Mossotti ca-
tastrophef22g. The similarities among dipole lasing, an ordi-
nary laser, ferroelectric phase transitions, and local field phe-
nomena will be discussed in more detail elsewhere.

With the help of Eqs.s14d and s15d we can estimate the
magnitude of the nanoparticle and TLS parameters required
in order to achieve dipole lasing. Toward this end, we deter-
mine in the Sec. IV the polarizability of the nanoparticle in
terms of the generally used expressions for the dielectric
functionse and em of the materials of the nanoparticle and
the surrounding “matrix” medium.

IV. ESTIMATION OF POLARIZABILITY OF THE
NANOPARTICLE

In Eq. s6d G0=GT+GR, where GT is the relaxation rate
related to thermal and other nonradiative losses, andGR is the
radiative loss rate. We defineg;GR/GT to be the ratio of the
two relaxation rates. We then rewrite Eq.s13d for a0 identi-
cally as

a0 = aTS1 −
g

1 + g − iD̄8
D , s16d

where aT= iaT0/ s1−iD̄8d, D̄8=D /GT, and aT0=m0
2/ s"GTd.

The radiative loss rate for the polarization amplitude isGR
=s2/3dm0

2k3/", and thereforeg=s2/3daT0k
3. In the limit g

→0 we havea0→aT and aT approaches the static polariz-
ability of the nanoparticle. Following Ref.f27g, the static
polarizability of an ellipsoidal nanoparticle is

ast =
V

4p

ẽ − 1

1 + nsẽ − 1d
, s17d

whereV is the volume of the nanoparticle, 0,n,1 is the
depolarizability factor, which depends on the ratioa/b of the
nanoparticle semiaxes andẽ=e /em, wheree and em are, re-
spectively, the dielectric functions of the nanoparticle mate-
rial and of the surrounding medium. By equatingaT=ast
near the plasmon resonance we find

aT0 =
V

4p
Fẽ9 +

sẽ8 − 1d2

ẽ9
G, D̄8 = −

ẽ8 − 1

ẽ9
fnsẽ8 − 1d + 1g,

s18d

whereẽ8=e8 /em, ẽ9=e9 /em, e=e8+ ie9 are taken at the plas-
mon resonance frequency, andem is real. We have, finally,

a0r =aT0/ s1+gd and D̄=D̄8 / s1+gd, so that all parameters in
Eq. s13d for a0 are expressed through well-known quantities.
BecauseaT=ast only at g=0, expressions18d gives good
quantitative results only forg!1, which is usually the case.
A rigorous calculation ofa0 can be carried out in the frame
of Mie theory f23g.

V. ESTIMATION OF NECESSARY CONDITION FOR
DIPOLE LASING

Let us take the resonant wavelengthl=1.3 mm and sup-
pose that the nanoparticle and TLS are embedded in a semi-
conductor “matrix” medium withem=11.7 f24g. We assume
a silver ellipsoidal nanoparticle withe8sld=−55 ande9sld
=5.74 atT0=300 K f25g. If the temperatureT is of the order
of tens of Kelvin or more, thene9sld,T according, for ex-
ample, with the Drude modelf26g, so that we can estimate
e9sTd=5.74sT/300d. We suppose that the ratio of the axes of
the nanoparticle isa/b<2, so that the depolarizability factor
n<0.175 f27g. By inserting these values into the second

equation of Eqs.s18d we find D̄=0.027, which means that
l=1.3 mm is very close to the plasmon resonance of the
nanoparticle. We take the nanoparticle axes to be of length
2a=13 nm and 2b=2c=6.5 nm; the volume of the nanopar-
ticle is V=s4/3dpab2. We consider a quantum dot of size
2r2=10 nm as the TLS. By using the expression for the ra-
diative rate of the TLS,G2R=s4/3dsm2

2k3/"d, where k
=2p /l we can represent the resonant polarizability of the
TLS as

a2r =
3

4k3

G2R

G
, G = G2R + G2TsTd, s19d

where G2TsTd is the width of the nonradiative broadening.
The homogeneous linewidth of a single quantum dot was
studied in f28g, where it was found that atT,60 K, G2R
<1 ns, andG2TsTd<gacT, wheregac,0.5 meV K−1.

Dipole lasing is possible ifDthø1, which requires, ac-
cording to Eq.s15d, that the distancer between the TLS and
the nanoparticle must be small

r ø rcr = s4ua0uua2ud1/6. s20d

Because the particles have finite sizes, we also require that
rcr. r2+a ssee Fig. 1d. From Eq.s2d, the condition for the
dipole approximation to be valid is thatrcr−sr2+ad
@maxs2r2,2ad. Figure 2 shows the dimensionless parameter
j;frcr−sr2+adg /2a as a function ofT with rcrsTd deter-
mined by Eq.s20d. As one can see from the dotted curve in
Fig. 2, the necessary condition for dipole lasingj.0 can be
satisfied even if we neglect the decrease ofe9 with tempera-
ture for T,300 K. The conditionj@1 necessary for the
validity of the dipole approximation is more or less satisfied
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at low temperaturessfew tens of Kelvind, assuming a linear
decrease ofe9 with temperature. The conditionr !k−1 fsee
Eq. s2dg is satisfied, indeed r ø432a=52 nm!k−1

<210 nm. Thus, we conclude that the necessary condition
for dipole lasing can, in principle, be satisfied. The condi-
tions will be most easily satisfied with a narrow plasmon
resonance. More detailed studies of dipole lasing are also
required to take into account the interaction between par-
ticles beyond the dipole approximation.

VI. DISCUSSION

Let us summarize the physical mechanism and some par-
ticular features of dipole lasing. The TLS and the nanopar-
ticle are placed close to each other, so that there is a strong
interactionsin particular, a dipole interactiond between them
through the near field. The condition of Eq.s11d sat D=0d
that Vint.ÎGG0 means that the interaction rate must exceed
the average polarization loss rate. The near field then pro-
vides the feedback between the nanoparticle and the TLS,
which stimulates coherent oscillations of their dipole mo-
ments and leads to coherent dipole radiation into the sur-
rounding space. The lifetime of a photon in the near field is
very small,,r /c, wherec is the speed of light. This is why
the near field can be adiabatically eliminated from the treat-
mentsas it is inf29gd, which leads to the Hamiltonian of Eq.

s1d with the interaction termV̂ fsee Eqs.s1d and s3dg.
The spatial pattern of dipole nanolaser radiation is the

same as that for a single dipole. Far above the lasing thresh-
old, the radiation linewidth can be narrower thatG andG0. In
the ideal case the dipole lasing linewidth is determined by
quantum fluctuations of the nanolaser dipole momentd0
+d2, just as the linewidth of an ideal conventional laser is
determined by quantum fluctuations in the lasing mode. In

practice, the linewidth of the dipole nanolaser will increase
due to thermal and other noise factors, which can be taken
into account by adding appropriate Langevin forces into Eqs.
s4d–s6d.

Let us compare the threshold conditions for a dipole
nanolaser with the threshold conditions for an ordinary laser.
These conditions can be obtained from Eqs.s4d–s6d, where
a0 is a dimensionless measure of the amplitude of the lasing
mode and we replaceVint by VR=m2ER/", and whereER

=Î2p"v /Vm and Vm is the effective volume of the lasing
mode. By settingVint=VR we find that the dipole nanolaser
is comparable to an ordinary laser for which the volume of
the lasing mode is

Vm =
pr6

2a0r
Q0, s21d

whereQ0=v /G0 is the quality factor for polarization oscil-
lations in the nanoparticle. From the Drude model we esti-
mateQ0,50 for our case. Thus when the distance between
the particles,r ,332a,50 nm, the dipole nanolaser corre-
sponds to an ordinary laser withVm<0.17mm3. The small
effective volume of a dipole nanolaser arises because the
nanoparticle plays the role of the cavity, and the interaction
between the TLS and the nanoparticle occurs throughnear-
field modes, which are different from the electromagnetic
wave-cavity modes of an ordinary laser. The small value of
Vm allows one to satisfy the threshold conditions, even for
rather smallQ0,50, and therefore to propose a typical size
of a dipole nanolaser of the order of a few tens of nanom-
eters.

If the cavity escape losses dominate in an ordinary laser,
then the lasing rate is equal to the pump rate of the TLS

glas; 2G0ua0
†eivt + a0e

−ivtu2 = s1/tdsDth − D0d.

With the help of Eq.s14d one can see thatgR is different
from glas by a factor,k3a0r, if ua0u / r3@1, or by a factor
,skrd3, if ua0u / r3ø1. By taking into account thata0r

,a0s/ s1+gd, we conclude that in either casegRøglas.
The threshold condition of Eq.s15d can be interpreted as

requiring that the polarizabilities of the TLS and the nano-
particle “overlap” each other, as shown in Figs. 3sad–3scd.
When such “overlapping” takes place, the conditions in Eq.
s2d are satisfied whenr0! sa0d1/3 and r2! sa2d1/3 fsee Fig.
3sadg. This corresponds, for example, to a metallic nanopar-
ticle excited at the plasmon resonance frequency and a reso-
nant atom or quantum dot with broadening close to the natu-
ral broadening limit. According to the results presented
earlier, such a situation can be realized at low temperatures
for the parameters assumed in Fig. 2. Higher-temperature
operation requires a search for nanoparticles with a narrower
plasmon resonance and/or TLS with higher polarizability.

The threshold condition of Eq.s15d cannot be satisfied if
the polarizabilities of both particles are smaller then their
volumes. However, conditions15d can be satisfied, in prin-
ciple, if only one polarizability substantially exceeds the vol-
ume of the particle, for example, whensa2d1/3@ r2, but r0

ø sa0d1/3, as shown in Fig. 3sbd. This implies that a plasmon
resonance may not be strictly necessary in the nanoparticle

FIG. 2. Dimensionless distancej between the TLS and the
nanoparticle as a function of temperature. The necessary condition
for dipole lasing isj.0. The dipole approximation used in our
estimates is valid ifj@1. The solid line assumese9,T, the dashed
line uses theT=300 K value ofe9=5.74.
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for dipole lasing, although it undoubtedly helps to satisfy the
threshold condition for large values of interparticle separa-
tion. One could take a dielectric nanoparticle withsa0d1/3

, r0, and the conditions given by Eq.s2d could still be sat-
isfied. Finally, polarizability overlapping is possible even if
both r0 and r2 are just a little smaller thata0

1/3 and a2
1/3

respectively, as shown in Fig. 3scd. For the cases shown in
Figs. 3sbd and 3scd, however, Eq.s2d is no longer satisfied. It
is then necessary to include quadrupole and possibly higher-

order multipole moments in the interactionV̂ between the
TLS and the nanoparticle when estimating the DNL lasing
threshold value. One can do this by utilizing the procedure of
f17g to calculate the SP modes responsible for the nondipole
interaction between the particles. Then one has to eliminate
adiabatically the SP modes to derive the interaction term
Vint.

In the meanwhile, we suggest that the requirement of
“overlapping polarizability” provides the necessary condition
for a dipole nanolaser, which remains useful when consider-

ing a general interactionV̂ between the particles. The verifi-
cation of this hypothesis will be done elsewhere in the frame
of a more general model, beyond the dipole approximation.
In support of this hypothesis, we note that the threshold con-
dition for an ordinary laser is 2pa2rQ0/Vm.1, which can be
interpreted in the present context as requiring that the polar-
izability 2pa2rQ0 of an atom with respect to a cavity mode is
larger than the cavity mode volumeVm.

An important condition for dipole lasing is that any an-
harmonicity in the polarization oscillations of the nanopar-
ticle is small, so that the polarization of one particle has
Bosonic properties. This condition can be broken when the
nanoparticles become too small. As an “extreme” limit, for

example, dipole lasing is not possible in the case of two
atoms close to each otherf29g.

It order to make the analysis as straightforward as pos-
sible, we have presented here the simplest scheme for a di-
pole nanolaser. Other schemes can also be considered, in-
cluding, for example, a dipole nanolaser array with more
then one TLS orsandd nanoparticles. With the increase in the
number of particles involved in lasing, the threshold condi-
tions can be more easily satisfied and the lasing rate can be
increased. One can also insert the dipole laser in a cavity,
which reduces considerably the threshold conditions, but in-
creases the size of the laser. Instead of a small number of
particles, one may consider also the case of a continuous
active medium with a large number of TLSs embedded, and
with an ordered or disordered distribution of nanoparticles
f13g. One can also construct layered structures, where an
active semiconductor layer has a layer of nanoparticles above
it f30g. A dipole nanolaser can act as an amplifier for external
radiation, and also when the threshold conditions of Eq.s15d
are not satisfied. Similar to the case of an ordinary laser with
an external signal, the dipole nanolasersnanoamplifierd can
show bistable behavior in the presence of an external elec-
tromagnetic field. We suggest that a good starting point for
experimental studies of dipole lasing is to search for a nar-
rowing in the spectrum of the radiation scattered by a TLS
with population inversion near or on the surface of a nano-
particle. Finally, we remark that dipole nanolasers can find
applications in quantum optics as single-photon sources, a
necessary prerequisite for many quantum optics experiments
f31g.

VII. CONCLUSION

We propose a “dipole nanolaser”sDNLd consising of a
metallic nanoparticle coupled through a near field with a
two-level systemsTLSd, with population inversion provided
by an external pump. The transition frequency of TLS is
close to the plasmon resonance frequency of the nanopar-
ticle. We found threshold conditions, when nonzero dipole
momentaspolarizationd of TLS and the nanoparticle appears
even at the absence of external electromagnetic field; we call
this phenomenon “dipole lasing.” Because of this nonzero
polarization, TLS and nanoparticles emit coherent dipole ra-
diation into free space. Dynamics of the polarization of par-
ticles obeys standard Maxwell-Bloch equations, where nano-
particle dipole moment stands for a lasing mode. This
enables us to apply to DNL some well-known results of stan-
dard laser theory, in particular, the narrowing in the radiation
spectrum with the increase in the pump above the dipole
lasing threshold. Specific conditions necessary for dipole las-
ing is that the distancer between the nanoparticle and TLS
must be smaller than the critical valuercr; this condition
guarantees strong coupling of particles through the near field.
In the limit of the dipole-dipole interaction between particles
r , rcr means that polarizabilities of TLS and the nanopar-
ticle overlap in space. DNL does not need an optical cavity;
this is why the typical size of DNL may be smaller than the
lasing wavelength. As an example, DNL with a silver ellip-
soidal nanoparticle coupled with a semiconductor quantum

FIG. 3. Schematic of different approaches to achieve overlap-
ping polarizabilities for dipole nanolaser; 2 indicates two-level sys-
tem, 0 the nanoparticle. Dashed curves reflect the values of the
polarizabilities, the solid curves show the geometrical size of the
particles.
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dot is considered. It is shown that such a DNL can operate, in
principle, for typical parameters of TLS and silver nanopar-
ticles; however, the narrowing in the plasmon resonance and
TLS transition as, for instance, at low temperatures, help to
satisfy threshold conditions. We compared DNL with an or-
dinary laser and with SPASER proposed inf17g.
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