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It was shown by Kocharovskaya and KhaninfSov. Phys. JETP63, 945s1986dg that a comb of optical pulses
can induce a ground-state atomic coherence and change the optical response of an atomic medium. In our
experiment, we studied the propagation of a comb of optical pulses produced by a mode-locked diode laser in
rubidium atomic vapor. Electromagnetically induced transparencysEITd was observed when the pulse repeti-
tion rate is a subharmonic of the hyperfine splitting of the ground state. The width of the EIT resonance is
determined by the relaxation rate of the ground-state coherence. Possible applications to magnetometery,
atomic clocks, and frequency chains are discussed.
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I. INTRODUCTION

Coherent effects such as electromagnetically induced
transparencysEITd and coherent population trappingsCPTd
f1–3g attract a lot of attention because of their ability to
suppress linear absorption and enhance the nonlinear re-
sponse of a resonant medium. These complementary coher-
ent effects impact techniques such as high-precision spec-
troscopy f4–7g, atomic clocksf8,9g, nonlinear interaction
with weak light fields at the single-photon levelf11–13g,
greatly reduced phase-matching requirementsf14g, large
Kerr nonlinearitiesf15g, etc.

CPT was first reported in Ref.f16g where the elimination
of resonant fluorescence of sodium atoms was observed un-
der conditions where the mode spacing of a multimode dye
laser was equal to the ground-state splitting. A description of
other experiments with cw lasers can be found in the review
f2g. CPT has also been observed in the pulsed regimef17g.

Growing interest in EIT was stimulated by Harris’s theo-
retical workf18g. EIT has been successfully demonstrated in
different experiments: in continuous-wave and pulsed re-
gimesf18g, with atomic and molecular gasessat room tem-
peraturef19,20g or with cold atomsf21gd, with solids doped
by rare-earth ionsf22g and semiconductor quantum wells
f23g, and for different wavelengths ranging fromg rays to
microwavesf18,19,24,25g.

Recently, frequency chains based on femtosecond lasers
were developedf26g. One approach in realizing a frequency
chain is stabilization of the pulse repetition rate by micro-
wave Cs or Rb standardsf26g. By using the approach devel-
oped by Kocharovskaya and Khaninf1g, it is possible to
create an all-optical reference frequency chainf7g.

As was predicted in Ref.f1g, a comb of short optical
pulses interacting with a three-level atom can effectively ex-
cite coherence between ground statesb and c ssee Fig. 1d
when the ground-state splitting is a multiple of the pulse
repetition frequency 1/T, namely,wcb=2pp/T, wherep is an
integer number. If the intensity of the laser radiation is suf-

ficiently high, coherence is excited, and the medium be-
comes transparent to the laser field.

In this paper, we experimentally show the possibility of
EIT in a resonant atomic medium by using a mode-locked
diode laser generating a comb of picosecond pulses.

II. EXPERIMENTAL SETUP AND OBTAINED RESULTS

The experimental setup is shown schematically in Fig. 2.
We use an actively mode-locked external-cavity diode laser
tuned to the vicinity of the 5S1/2→5P3/2sD2d transition of
85Rb to produce a comb of short optical pulses. Properties of
mode-locked diode lasers are described in the reviewf27g.
The laser assembly is similar to the Littman-Metcalf con-
figuration f28g. It is a three-mirror laser cavity that consists
of an antireflection-coated diode laser, a collimation lens, a
diffraction gratings1200 grooves/mm, blaze angle 37°d, and
external mirror. The spectral width of optical feedback is
chosen as broad as 20 GHz which is more than the hf split-
ting of 85Rb. Mode separation is tuned by variation of the
cavity length to 506 MHz which is close to one-sixth of the
hf splitting ssixth subharmonicd. Mode-locked operation is
achieved by modulating the diode laser current near this fre-

FIG. 1. Schematic of atomic levels.
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quency. When the modulation frequency is changed, the rep-
etition rate is also changed. The spectral distribution of our
laser covers the hyperfine components of the85Rb ground
state 5S1/2 swavelength 780 nm, ground-state hyperfine split-
ting 3035.7 MHzd.

The laser pulses are measured by an optical sampling os-
cilloscope. Typical pulses are shown in Fig. 3. The time reso-
lution of the oscilloscope is about 200 ps. One can see that
the duration of the observed pulses is defined by the resolu-
tion of the oscilloscope. It is clear that the duration of ob-
served pulses is less than 200 ps.

The laser beam is sent into a glass cellsl =2.5 cmd with
the natural abundance of87Rb and85Rb. To increase the den-
sity of rubidium atoms, the cell is heated to 60 °C. The cell is
installed in a three-layer magnetic shield. The transmission
of the cell was studied by using a heterodyne technique. A
beat note at frequencies close to the ground-state hf splitting
was recorded. The signal from the fast photodiodesPDd is
sent to a microwave spectroanalyzersSAd which is used as a
narrow-band microwave amplifier with central frequency
3035.7 MHz and bandwidth 3 MHz. The signal from the
spectroanalyzer is recorded by a digital oscilloscope. When
the modulation frequency is scanned around 506 MHz, the
variation of transmitted laser power is observed.

The observed EIT resonance for 0.2 mW average power is
presented in Fig. 4sad. To reduce the possible field broaden-
ing, we decreased the average power to 0.05 mW. The result
is shown in Fig. 4sbd. The amplitudes of resonances are nor-
malized in order to demonstrate the small difference between

the spectral widthsffull width at half maximum FWHM 0.5
and 0.37 MHz measured by the ratio of amplitudesg. One can
see that we worked with low laser power and spectral broad-
ening of the EIT resonances can be attributed mainly to the
interaction timestime of flight of atoms through the laser
beamd. With a buffer gas cell, one can dramatically reduce
the spectral width of the EIT resonance due to a longer in-
teraction time. For instance, Brandtet al.observed CPT reso-
nance with a 40 Hz widthf5g.

The amplitude of pulses propagating through the cell de-
pends on the repetition rate 1/T. When the repetition rate
corresponds to a subharmonic of the hf splitting,wcb
=12p /T, the absorption of the cell decreases, i.e., EIT for the
comb of optical pulses is observed.

This experimental result can be easily understood by in-
voking a so-called dark state, a linear combination between
sublevels of ground states which is decoupled from the ex-
ternal field. Indeed, the Hamiltonian of the system in the
interaction picture is given by

V̂ = V1stdublkau + eipvcbtV2stduclkau + H.c., s1d

whereV1std=`abEstd /" and V2std=`acEstd /" are the Rabi
frequencies;̀ ab and `ac are the dipole moments of corre-
sponding transitions;D is the hf splitting;Estd is the laser
field. The field is periodic, so a Fourier transformation can be
made. The Hamiltonian can be rewritten as

V̂ = o
p

eipVtsV1,publkau + V2,pe
ipvcbtuclkau + H.c., s2d

whereV is the frequency corresponding to the time between
pulsesV=2p /T; V1,p andV2,q are the Rabi frequencies cor-
responding to thepth and qth Fourier components of the
field.

Let us assume that the repetition rate of the pulses is a
multiple of the hf splitting

vcb = QV; s3d

then the Hamiltonian can be rewritten in the form

FIG. 2. Schematic of the experimental setup. PBS, polarizing
beam splitter.

FIG. 3. Optical pulses generated by the mode-locked diode la-
ser. Period between pulsesT is about 2 ns which is six times larger
than the period of oscillation of the coherence between sublevels of
the ground state.

FIG. 4. Transmission of laser radiation vs frequency of repeti-
tion rates1/Td for short pulses. The repetition rate changes around
506 MHz, which is one-sixth of the hf splittingssixth subharmonicd.
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V̂ = o
p

eipVtÎV1,p
2 + V2,p−Q

2 uBplkau + H.c., s4d

where we introduce the states

uBpl =
V1,publ + V2,p+Qucl

ÎV1,p
2 + V2,p+Q

2
. s5d

If the pulses are short, then the states are the same,

uBpl . uBl, s6d

and it is a bright state which is driven by a train of pulses
with effective Rabi frequency

Veff = ÎV1,p
2 + V2,p+Q

2 . s7d

The states orthogonal to the bright one are the excited state
ual and the dark state given by

uDl =
V2,p+Qubl − V1,pucl

ÎV1,p
2 + V2,p+Q

2
; s8d

the latter is decoupled from the electromagnetic field. The
system interacting with the field ends up in this state and
does not absorb radiation.

III. DISCUSSION

We have shown that a comb of short pulses can induce
atomic coherence in a resonance atomic medium, and this
coherence leads to electromagnetically induced transparency.
The width of the EIT resonance is determined by the relax-
ation rate of coherence between ground statesubl anducl, and

it would be dramatically reduced if an appropriate Rb cell
with a buffer gas were used. In the literature the observation
of an EIT width below 40 Hz is reported in Ref.f5g. It
confirms that mode-locked lasers can be used to create nar-
row EIT resonances, and in the next step the repetition rate
should be locked to the EIT resonance frequency.

The narrow transparency resonances obtained here with a
comb of short pulses can be used for most applications
where EIT has advantages, for example, magnetometery
f6,10g atomic clocksf8,9g, and frequency chainsf7,26g.

IV. SUMMARY

In summary, a technique based on a mode-locked laser
was applied to observe narrow EIT resonances in rubidium
vapor. This technique can be used for realization of all-
optical reference frequency chains by using femtosecond la-
sers. Another application might be the realization of a com-
pact atomic clock with a mode-locked diode laser. In this
case a fiber may be used as the external cavity.
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