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Radiation pressure and momentum transfer in dielectrics: The photon drag effect
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The momentum transfer from light to a dielectric material in the photon drag effect is calculated by
evaluation of the relevant Lorentz force. In accordance with measurements on Si and Ge, the material is taken
as a two-component optical system, with charge carriers described by an extinction coekficieathost
semiconductor described by real refractive indiogs(phas¢ and 7, (group. The calculated momentum
transfer to the charge carriers alone has the vajao/c per photon, the so-called Minkowski value, found
experimentally. The time-dependent Lorentz force is calculated for light in the form of a narrow-band single-
photon pulse. When the pulse is much shorter than the attenuation length, which is much shorter than the
sample thickness, there is a clear separation in time between surface and bulk contributions to the forces. The
total bulk momentum transfeicharges plus hosin this case is found to b&w/ 74c, the so-called Abraham
value.

DOI: 10.1103/PhysRevA.71.063802 PACS nuntber42.50.Nn

[. INTRODUCTION the measured quantity, and not some subsidiary quantity that
hmay not itself be directly measurable. As for the “contro-
ersy” between different formulations of electromagnetic

correct form of the stress tensor of the electromagnetic field1€0ry. we believe that all formulations are equally valid and
in a material mediunisee[1] for a review. Several formu- hat they produce the same predictions when properly ap-

lations of the stress tensor have been developed, but particBli
lar attention has been given to the two contenders in th
so-called Abraham-Minkowski controversy. The quantity at
issue is the momentum per photon available for transfer fron,gh
the light to the medium. Most theoretical work is concemedyge o+ s the generation of currents or electric fields in semi-

with nondispersive media, but the more general calculationgq,ctors, notably germanium and silicon, by the transfer
presented here allow for material dispersion, with the phasg¢ \omentum from an incident light beam to the charge
refractive indexay, different from the group refractive index carriers. The requirements of energy and momentum conser-
7 The accepted convention associates the tébraham  yation generally forbid the absorption of photons by free
momentumwith the quantityfw/7,c or fiw/7,c and the  carriers, and the process can only take place by interband
term Minkowski momenturwith the quantitynyfiw/c. It is  transitions or with the assistance of phonon absorption or
convenient to follow this nomenclature, withbrahamand  emission. The magnitude and sign of the transfer depend on
Minkowski used as labels for these forms of momentumthe detailed band structure of the material in complicated
transfer. The few measurements of radiation pressure in divays [6]. However, for optical angular frequencies and
electric media appear to support the Minkowski value for thecharge carrier relaxation times sufficiently small thatwr
momentum transfer, and several calculations strive to pro<1, the details of the band structure become irreley@nt
duce this result from theories that obstinately seem to supfhe momentum transfer to the charge carriers was observed
port the Abraham expression. to approach a value given byfiw/c per photon for suffi-
Observations of radiation pressure in media rely on meaeiently long optical wavelengths, although the conditions of
surements of the forces exerted by light on some distinguishthe experiments were such that the phase and group refrac-
able component of the medium itself or on some object imtive indices could not be distinguished. This same form of
mersed in the medium. We take the view that the Lorentdimiting momentum transfer was found experimentally for
force provides the fundamental description of radiation presboth n- and p-type germanium and silicofY]. The observed
sure effects and use it as the basis for the present calculaffect of the material is thus to multiply the free-space pho-
tions. This same approach has been used previ¢g@sdyin  ton momentunfiw/c by an additional factor,, and this was
treatments of the radiation pressure on a general semi-infiniteken as evidence in support of the Minkowski momentum
dielectric. It has the advantage that no prior assumptions arteansfer.
made about the magnitude of the optical momentum in the The calculations presented here show that the transfer of
medium. However, the results of the calculation do providemomentum to the charge carriers is accompanied by an ad-
information on the transfer of momentum per photon to theditional transfer of momentum to the host semiconductor.
observed object. Moreover, the calculated force represeniBhe outstanding advantage of the photon drag measurements

Theories of radiation pressure and the momentum of lig
in dielectrics have frequently involved arguments about th

proper isolation of momentum densities from other con-
ributing terms in the relevant continuity equations.

The photon drag effect, observed in 19405], is one of

e simplest manifestations of radiation pressure. The main
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is their ability to separate the contributions from the momen- i oLl NI I -

tum transfer to the charge carriers, associated essentially = 55”E -D-ED'+ ESJH ‘B-HB, (2.2

with the extinction coefficienk, from the unobserved mo-

mentum transfer to the host material, associated with the rea¥here the A form is symmetric in the spatial coordinates

refractive indexz,. The calculated momentum transfer to the j=1, 2, 3 but the M form is not. The dependence of the field

charge carriers has the Minkowski valuemfiw/c per pho-  vectors on space and time is not shown explicitly. The mo-

ton, in agreement with experiment. Calculations equivalentnentum densities are

to those reported here could also be performed in the frame- _ 2 _

work of classical electromagnetic theory, with similar con- g =E X H/c"andgy =D x B 23

clusions. However, the quantum theory is easily applied andnd the so-called Abraham force density is

it has the advantage of providing results directly expressed in J

terms of momentum transfers per incident photon. fa=eox—(E X B). (2.4
The general formulations of the electromagnetic energy- ot

momentum stress tensor by AbrahdBi, Minkowski [9],  The association of each tensor with a different momentum

and others are discussed in Sec. I, where the equivalence ggnsity has been regarded historically as signifigant as

the superficially different theories for the photon drag effecty,55 the presence of the force density in the Abraham formu-
is demonstrated. The relevant optical properties of semiconztion.

ductors are summarized in Sec. lll, and the Lorentz forces on 14 add to the controversy, from time to time other elec-

the charge carriers and host semiconductor are calculated {Fbmagnetic tensors, such as those of Einstein and [#0b
Sec. IV. The time dependences of the forces on the two comyg peierlg11,17, have been constructed. All these tensors
ponents produced by a narrow-band single-photon pulse agst against the background of standard electromagnetic
calculated in Sec. V, and the results are approximated fofheory, containing the well-known symmetric, Maxwell and
some limiting values of pulse length, attenuation length, andanonical tensorl 3]. The Einstein-Laub and Peierls tensors
sample thickness. In particular, when the lengths as listed alge ot formulated from the canonical theory, but directly
in ascending orders of magnitude, it is shown that the bulkry the physics of specific material systems, and we leave
material acquires an Abraham total momentum transfer ofynsideration of these tensors until Sec. Il B.
fiwl n4c per photon. Our conclusions are summarized in Sec. Many of the arguments of the Abraham-Minkowski con-
VI troversy have centered on features that are either irrelevant
for particular experimental conditions, or for optical media in

Il. ELECTROMAGNETIC STRESS TENSORS general, or are inconsistent with the fundamental character-
istics of the canonical formulation of a tensor from a La-
A. History grangian density. So it is the issues involving the presence of

. ... physical boundaries, inhomogeneity, and anisotropy, al-
Two varieties of stress tensor for the electromagnetic fiel : . o X
: . . . hough important in radiation pressure calculations, ought
in a material medium were formulated early in the last cen-

tury by Abraham[8] and Minkowski [9] This section is not, in principle, to arise from a rigorous tensor treatment.

devoted to a brief review of these formulations and others, iri:or example, the variation of the Lagrangian density used to

order to provide a background for the results on the photo?gri?eurll‘?it:a}r}[(e) iigsgggﬁggme;t&aet :L]gt;nrizﬁlh ﬁ]nquitl'frﬁl ll):(;Jenggry
drag effect derived in the following sections. These results’. s . S i

; . since any electromagnetic tensor is a component in a differ-
are based on evaluations of Lorentz forces and are indepen-

dent of any specific formulation. However, it is emphasizedem'al conservation equation, it is not surprising that tensors

here that the Abraham and Minkowski theories are equally < indicative of bulk material only, where physical bound-
4 yaries are removed from the coordinates of interest. Further-

valid when they are properly applied to specific problems. : S
N . LI more, the canonical determinations of Abrah48i and
The refractive indexy and the electric susceptibility=7” Minkowski [9] stress tensors assume that the material’s rela-

-1 are taken to be real and independent of frequency for th{e e -
. . . ive permittivity and permeability are real parameters. Not-
calculations of this section. .

The stress tensors appear in equations expressing ”ne\év*ltr;]standing, the literature (l:ontain_s apparent generqlizations
momentum conservation, which are often written as oft €se tensors,_supposed y obtgmed by .retrospecnve Intro-
duction of material inhomogeneity or anisotropy. Alterna-
tively, one sometimes reads the claim that a particular tensor
is unsound because it failed to include these generalizations
in the first placq 11].

The canonical determination of a stress tensor of a field

where the subscripts A and M indicate Abraham and!nvolves the Hamilton derivative, and it takes place at a level

Minkowski. The tensorial components of the momentum ﬂuxgdep_ende?t gf rt]he qu?ponsfm motifi¥, 15 Thef proce- b
density of the light beam afd] ure is to find the conditions for an extremum of action by

varying the Lagrangian density with respect to the space-

time metric, hence the name “stress tensor.” The Hamilton

T = }{gJE .D-ED -ED} + }{gJH .B-HIBI -HIB} derivative method is applicable to curved and Euclidean
2 2 space-times, whereas the standard determination of the ca-

Loy aTh , Jgh aTy
&+2—A:—fkand%+z—'\ﬂ

. -=0, (21
a5 X i OX @3
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nonical tensor is restricted to flat space-time. In general, theurrents Lagrangian supplies all that is required for the kind
Hamilton derivative produces a tensor that obeys a consenf problem of interest here. To counter the claim sometimes
vation law, in that its covariant derivative vanishes. A spe-made that only the Abraham tensor is correct, we devote the
cialization to Euclidean space-time reduces the covariant dg#emainder of this section to an outline of the historical rea-
rivative to the common form involving the four-vector sons for the claim and to the justification for safely ignoring
gradient operator. it. The mathematical detail can be found elsewhere
A Lagrangian for the electrodynamics of a material me-[14,17-19 and is omitted here. _
dium can be constructed in two distinct forms, depending on 1h€ Hamilton derivative procedure for the effective-

whether the phenomenological relative permittivity and per/Netric Lagrangian reveals what has sometimes been seen as

meability of the material are introduced by means of matter? problem, whose apparent resolution is the origin of the
laim for the unique correctness of the Abraham form. The

induced currents or by means of an effective modification OPariation of the Lagrangian with respect to the effective met-
the space-time metric. The induced-currents formalism give ic, in fact, produces the Minkowski tensor, with a momen-

rise to a minimal-coupling term in the L_agrangla!’\, and it 'Stum conservation equation involving the vanishing of its
perhaps better known than the formalism that involves asur-divergence, as in the M part (2.1). The claimed prob-

i . X em with this procedure is that the real space-time metric is
a material medium at rest on the optical bench. However, th@qt the effective metric but one that, locally at least, is
effective-metric formulation is fully covariant and enables apinkowskian. A correction is supposedly made to ensure
natural introduction of the four-vector velocity of the me- that the effective-metric Lagrangian is varied with respect to
dium. The effective metric is introduced formally; it is a the Minkowskian metric. This correction results in the intro-
function of the material four-vector velocity as well as its duction of the Abraham tensor, whose divergence vanishes
phenomenological parameters, and it performs the usual metnly in combination with the Abraham force, as in the A part
ric role of shifting between covariant and contravariant vec-of (2.1).

tors by raising and lowering indices. The formalisms involving the induced-currents and
After specialization to Euclidean space, the Hamilton de-effective-metric Lagrangians would be expected to lead to
rivative of the induced-currents Lagrangian yields similar results when the space-projection component of the
L medium’s four-velocity vanishes, and this is indeed the case.

Jgk It The Abraham and Minkowski momentum conservation
ot +2 T~ fL, (2.9 equations describe the same situation and lead to identical

=1 results in a spatially stationary frame. This can be appreci-

where ated immediately by noting that the effective metric in this

L L case differs from the Minkowski metric only by the presence
i i - - i ioi of the refractive indexy in its scalar component. Such an
Té= SO{EgJEZ -E EJ} * '“01{5‘5” B*-8 B]} (2.6 alteration in the spee)((jﬂof the scalar eIect?omagnetic field is
simply a gauge transformation and can lead to no new phys-
is the symmetric stress tensor which, with a change of signics. In this situation, the Abraham, Minkowski, and symmet-
is identical to the Maxwell stress tensor. The momentunyic formulations are equally valid, an(.1) and (2.5 are
density is equivalent expressions of momentum conservation. In a spa-
tially stationary frame it is meaningless to claim that one or
9s= ek X B (2.7 the other tensor is correct. The source of the Abraham-
andf, is the Lorentz force density, which for our purposesMinkowski controversy lies in a failure to understand fully
may be written in the conventional forms the canonical construction of the relevant tensors. The differ-
5 L 5 ence between the A and M momentum densitie€iB) can
_ aP _ 1 n, 7 be a source of confusion only if they are detached from the
fL=(P-V)E+ ot xB _gox{z V(E)+ at(E x B)}’ other contributions to the continuity equations(ih1) and
(2.9 individually giv_en physical significance. The _induced_—
currents formalism, but not, of course, the effective-metric
as given by{16]. Note that the momentum density is the  formalism, places no restriction on the material effective per-
same asg, in (2.3 for a nonmagnetic material wittB mittivity and permeability, as these parameters are implicit
= uoH. within the induced polarization currents. Material inhomoge-
The induced-currents Lagrangian contains an inheremeity or anisotropy could therefore be introduced in the sym-
matter-field separation; it is therefore unsurprising that itmetric (or Maxwell) stress formulation. For consistency, the
yields the physically significant Lorentz force. This contrastsequivalence between symmetric, Abraham, and Minkowski
with the effective-metric Lagrangian, which treats the elec-formalisms for vanishing space-projection component of the
tromagnetic field and the material medium as a single entityfour-velocity is restricted to homogeneous and isotropic
It is only the effective-metric Lagrangian that canonically media.
produces the Abraham and Minkowski tensors. Therefore, at A possible significance of the Abraham tensor in general
the center of the Abraham-Minkowski controversy lies a La-relativity, which the Minkowski tensor lacks, is not an issue
grangian whose division into field and matter components ikere. We note, however, that a recent revi@@] of 83 years
ambiguous, and perhaps impossible. It is in any case pointf progress and problems in general relativity and cosmology
less to follow this route as the minimal-coupling induced-fails to mention the controversy.
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B. Stress tensors and photon drag j 3 ij
%, 5 TTe_ g (2.13
Photon drag is a phenomenon of the bulk semiconductor. ot o X - b '
The light fields vary with only the one coordinat€or the
experimental arrangement considered here, wigimdB par- ~ where
allel to thex andy axes, respectively, and Maxwell's equa- 1 1
tions simplify to Ti= EsoﬁlEz -ED + 5'“05” H2-H'B, (2.19
9E + 9B =0 andﬁ + 9D =0. 2.9 the momentum density is identical to the Abraham value in
Jz ot dz ot (2.3), and the force density has the Lorentz form frG28).

The momentum conservation equation can again be written
With material dispersion and loss ignored, the fields arén the form of(2.12. The Peierls theory11,12 uses local,
functions of the argumentz—(ct/#n) and the solutionB  rather than macroscopic, fields with a dielectric function or
=nE/c of (2.9 allows the momentum flux densities from refractive index that satisfies the Clausius-Mossotti or

(2.2 and(2.6) to be written Lorenz-Lorentz formula. The use of local fields is inappro-
priate for semiconductors, where the mobile valence and
TZ=Ti=eq’E?=U andT&=¢o(1 + 7)E?, conduction electrons are not localized on individual atoms,

(2.10 and we consider the Peierls theory no further.
The analysis given here provides a somewhat different

whereU is the energy density of the electromagnetic field inPerspective on the various formulations of the electromag-
the bulk semiconductor. The momentum densities ffar@  Netic stress tensors to that presented by Bré2il, but our

and(2.7) have the values conclusions are substantially the same. The interpretation of
the photon drag experiments is independent of the formal-
i = Ulpc =g andgf, = yUlc. (2.11)  ism, whether that of Abraham, Minkowski, or Einstein-Laub.

All of these provide valid frameworks for analysis of the

menta and, for consistency with other authors, we follow thisor the other.
n_omenclature here to denote the momentum _transfers from Il OPTICAL PROPERTIES OF SEMICONDUCTORS
single photons of energhw to the material medium.

The equivalence of the Abraham, Minkowski, and sym-  The optical properties of semiconductors are described in
metric formulations is explicitly demonstrated by us€2®)  the usual way by a dielectric functios{w) and a complex
to rewrite all three momentum conservation equations fronrefractive indexn(w), related by
(2.1) and(2.5) as the single form

Ve(w) = N(w) = 7(w) +ik(w). (3.2
ﬁ(ﬁ_U) + 4 -0 (2.12 The photon drag measurements were made at optical wave-
Jt\ ¢ 0z ' ’ lengths out to 1.2 mm in Ge and Si. At this wavelength,

w7=~=0.6 in bothn- and p-type Ge, and therefore the condi-

when the force componenfs, and f{ from (2.4) and(2.8)  tion wr<1 for free-carrier absorption independent of the
are combined with appropriate terms on the left-hand sidesemiconductor band structure was not strictly met. However,
of the relevant equations. The total momentum flux densitythe trend toward a limiting value ofpfiw/c, rather than
of the light beam is identical to the energy dengityin the  Aw/ 7., for the momentum transfer was clearly apparent.
semiconductor, and the momentum density is identical to th@©n the other handpr~0.2 for n-Si andwr~0.1 for p-Si at
Minkowski value in(2.11). It may therefore seem that we 1.2 mm, and the experimental results for this semiconductor
have simply confirmed the assertion of Gibsiral.[7] that ~ were in very close agreement withiw/c as the limiting
the photon drag experiment supports the Minkowski rathervalue for the momentum transfer at long wavelendihg?2).
than the Abraham formulation, but this is not the case. WeHowever, it is only for Ge that the optical properties in the
have only demonstrated that the Minkowski formulation rep-submillimeter range have been carefully measured and inter-
resents the simplest but not the only valid matter-field divi-preted[23], and the numerical values quoted below refer to
sion of momentum within a bulk material medium. Providedthis material.
that the momentum density frof2.3) is not detached from It can be assumed to good approximations that the charge
(2.1) and treated in isolation, the Abraham formalism pro-carriers make a purely imaginary contribution tdw),
duces exactly the same momentum conservation equatiomhereas the host material makes a purely real contribution
(2.12 as the other approaches. [23] in the regime wherevr<1. The phase refractive index

The Einstein-Laulj10] (E) tensor formalism is also con- has the valuer,~4.0 for Ge and varies very slowly with
sistent with the photon drag results. The tensor is not confrequency for the conditions of the photon drag experiments.
structed canonically by means of a Hamilton derivative butThe frequency dependence is, however, retained here for
from a consideration of the reaction of a molecular dipole togreater generality of the calculations that follow. The value
electromagnetic fields. The momentum conservation equadf the extinction coefficienk(w) is of order 0.1 or less, and
tion is we can write
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e(w) = 1+ xp(w) + xc(w) = 9w)*+ 2i n(w) k() Sy (" ho ve
. By(Z,t) =i do|——F% ]| nwalw)
with k(w) < 9(w), (3.2 0 AmeCn(w)A
where the host and charge-carrier susceptibilities are given xexp{— iw(t— n(_w)zﬂ (4.2)
by

- 2_ — o Herea(w) is the photon destruction operator at frequengy
Xu(@) = @)~ 1 andyc(w) = 2in(w)(w). (3.3 with a corresponding creation opera#dw). The operator
Referencd 23] provides more detailed justification for the =
approximations made here. n—f
The thicknes® of the semiconductor sample in the pho-

ton drag measurements was 80 mm, and the limiting IOW'represents the number of photons in the light beam. The
frequency power attenuation length was

forms of the square-root normalization factors(él) and
(o) = c/2 ~24 _ 34 (4.2) ensure that the time integrated energy flonza0 is
(@) = cl20x(w) mm 34 given by (4.3 but with an additional weighting factdiw in

Thus essentially all of the photon momentum was transferreé® integ_rano[2,3]_ Note that, by comparison with a more
to the semiconductor. The incident light was in the form of9eneral field quantizatiof24], only the real party(w) of the
pulses with free-space lengthsof the order of 60 m, with a complex refractive index is retained in the normalization fac-
pulse lengthL/ 7, in Ge of the order of 15 m, much larger tors in view of the inequality in(3.2). However, the full
thanD andl. The experiments were, in fact, done with the refractive indexn(w) must be kept in the exponentials, as it
sample in open-circuit conditiorf§], so that the transfer of €nsures the proper attenuation of the light beam as momen-
momentum to the charges resulted not in a current flow, butum is transferred to the charge carriers. The samples used in
in an opposing electric field within the semiconductor. Thethe measuremenfg] were sufficiently long that almost all of
measured open-circuit voltage across the two ends of th#e optical momentum was transferred from the light beam,
sample was processed to provide values for the momentugnd a subsequent integration ovezan accordingly be taken
transfer per photon. to extend from O toe.

The rates of change of the momenta of the charge carriers
and the host semiconductor, caused by their interaction with
the incident light, are determined by integrations of the Lor-
entz force-density operator over time and over the illumi-

We consider the propagation of a polarized light beamnated spa_tial region. iny the second term of the first form of
parallel to thez axis with its electric and magnetic fields the force in(2.8) contributes for the experimental geometry
parallel to thex andy axes, respectively. The Lorentz forces considered here, to give
on bulk dielectrics and their surfaces have been calculated A &|5(z H .
guantum mechanicallj2,3] on the basis of the susceptibility f(zt): =:——— X B(z1):. (4.4)
of the material. We perform a similar calculation of the mo- dat

mentum. transfer to the charge carriers baseg(d®) frpm The first factor on the right is the polarization current, where

(3.9. It is also shown that, because of the attenuation pro—h t '5+( ) is obtained f the electric field

vided by the charge carriers, there is a further momentu € operaloF(z,1) IS obtained from the electric ield opera-
tor in (4.2) by insertion ofegx(w) in the integrand. The ex-

transfer to the host, based on the susceptibjityw) from . .

(3.3, which was not observable in the photon drag experipl'c't forms of the current for the charge carriers and the host

ments. The charge and host contributions are nicely sep&-re given .|n(4.6) an.d(A'f.lo), respectively. The use of normal
ordering in (4.4), indicated by the colons, ensures that

rated for the two-component optical system used in the pho . :
ton drag experimentsp P 4 P vacuum contributions are excluded. The time-dependent

The essential features of the momentum transfer are rEIgrce operator is obtained by integration over the illuminated

produced with the simplifying assumption of an incident S2MPle volume as
light beam of uniform intensity over a cross-sectional akea - *
The fields within the beam then vary only with and the FM):=A J

positive-frequency parts of the quantized field operators are

dwa'(w)a(w) (4.3
0

IV. LORENTZ FORCES ON CHARGE CARRIERS
AND HOST

dz f(z, t):. (4.5
0

[2,3] The force operator vanishes for a transparent sample of infi-
. 1o nite length, but nonzero radiation pressure contributions arise
£ . ho A in the presence of attenuation and at the surfaces of noninfi-
(zt)=i| do a(w) . |
0 dmeCn(w)A nite sampleg2].
) n(w)z A. Momentum transfer to the charge carriers
xXexp —iw|t———— (4.1 L . .

The polarization operator is expressed in terms of the

electric field operatof4.1) via the charge-carrier susceptibil-
and ity from (3.3), with the result
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&I5+(z ) et \ 12 [ problem because of the attenuation of the light by its inter-
—x = (L) f dww®?n(w)k(w)a(w) action with the charge carriers. This causes the leading part
at mCA 0 of the pulse at a given time to be weaker than the trailing part
p{ N(w)z and produces a net negative transfer of momentum to the
xXexp — iw(t— —)} (4.6) bulk semiconductor. There is also a positive “surface” con-
tribution that arises from the lack of balance between leading
The Lorentz force-density operat#.4), therefore, takes the and trailing parts as the pulse passes through the integration
form cutoff at z=0 into the active region of the sample &t 0.
Here we calculate the combined momentum transfer from
N fc fo ,(ww'>l/2 these two effects and discuss their separate contributions in
f(zt): = 5 do| do'{—
2mc?A ), o 7 Sec. V.
The host susceptibility froni3.3) provides a contribution
X(wnrn’ +n" o' 7' k")a (w)a(w’) to the polarization operator with the time derivative
Z A
xexp[i(w— o )t-i(n"w- n'w')—] , (4.7 P} (z,t) B ( gl )1/2100 312 -1/ N
c p AcA . dow®?y V(17 - 1)a(w)

with the convention that the optical variables, andn are
evaluated at frequenay, while %', k', andn’ are evaluated xexp[— iw(t— ”_Z>] (4.10
at o’. Terms in the products of two creation or two destruc- c
tion operators are neglected as they do not contribute to t
momentum transfer of interest here.

The expectation value of the force density can be calcu- i o o o' |12
lated for specific states of the incident light, as in previous :f;'(z,t): = > f dwf dw’<—,> [w(7? - )N’
work [2,3], and this is done in Sec. V. However, for compari- 4mcAJo 0 M

h‘Fhe Lorentz force-density operattt.4) is, accordingly,

son with experiment, we are mainly intereste'd in'the total ' (7%= D]aT(0)a(e')
transfer of momentum, represented by the time-integrated

- i . z
force-density operator Xexp[i(w—w’)t—i(n w—n’w’)g]. (4.11)

o] n h o]

. £C L— at A _
f_m dt:f;(z): = CAL dorywa’ (w)a(w)exp- 2/, with the same convention as i.7) The time-integrated
9 force density is expressed with the use(®#) as
' oo N h o0

where (3.4) is used to express in terms of the power at- f dt:fZH(z,t): =- —f dw(ng— 1) wa'(w)a(w)
tenuation length. The derivation above shows that the phase —w 2¢AJo
refractive index controls the force density apds accord- xexp(- )y, (4.12

ingly replaced byn, in (4.8), which can often be taken as the

value at the mean frequency of the incident light. A furtherwhere the derivation again shows that the phase refractive
integral over the entire illuminated sample gives the form ofindex is involved. A further integration over the illuminated
the operator that represents the total transfer of linear mosample gives the operator that represents the total transfer of

mentum to the charge carriers as linear momentum to the host semiconductor as
oo o ’\C ) nthT A o o0 - =) nz_lﬁw,\-r R
Al dz| dtfS(zt):=| do"—a"(w)a(w). Al dz| dufll(zt):=-] deo—2——&"(wa(w),
0 - 0 c 0 o 0 29, C
(4.9 (4.13

This final expression is the same as the photon-number o negative quantity in the usual case whepe> 1.

erator(4.3) but with an additional weighting factor. It shows  The total transfer of momentum to charges and host is
that the coupling of the light to the charge carriers via therepresented by the operator

Lorentz force results in a calculated momentum transfer of . .

nphwl/c per photon, the same Minkowski value as found in f f .r3C 2H )

the photon drag measuremehfs. A 0 dz . dtlfz(z0) +f;(Z 0]

© 2
) nt+tlhw, .
B. Momentum transfer to host semiconductor :J dw—p—2 _c Al(w)a(w), (4.19
0 7o

The propagation of an optical pulse through a transparent
dielectric causes no transfer of momentum to the material, ashere(4.9) and(4.13 are used. The total linear momentum
a positive Lorentz force in the leading part of the pulse istransferred to a general dielectric medium by narrow-band
exactly balanced by a negative Lorentz force in its trailinglight that carries a single photon of enerfiy, in the me-
part [2]. However, this balance is removed in the presenidium atz=0 can be obtained by considerations of energy and
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momentum conservation. Whet{wg) < 7(wp), as assumed 9 In(w)
here, the result i§3] ng=—(on(w)| =n,+wg (5.7
! 9w @ P Jw wg
2
total momentum transferﬂﬂ, (4.15 Straightforward integration now gives
7 2 ph z z\?¢c?
~ w
consistent with(4.14). <1|;f§(z,t);|1> = \/jﬂu)ex _Z_ 2(»[ — ﬁ_) =1
7 AlL I c/ L
V. TIME-DEPENDENT FORCES FOR SINGLE-PHOTON (5.9
PULSE

The expectation value of the force operator define@ib) is

The details of the transfer of momentum to the chargePbtained by integration overand, with use of the standard
carriers and host crystal can be further investigated with th&aussian integral and the definition of the complementary
assumption of incident light in the form of a single-photon error function, the result is

pulse. The optical state is defined 85,26 R 7 t L2
<1|:Ff(t):|1>:Mexp<—c—+ )
2774 7|

) 87]2|2
11)= f dw&(w)a'(w)|0), (5.2 _ g
Yerfd - v2ct . L (5.9
where|0) is the vacuum state, and these states satisfy er L 2\;’5,79| ' '
a(w)|1) = & w)|0). (5.2 The force expectation value clearly vanishes in the absence

of the attenuation caused by the charge carriers Wherp.
Two limiting cases are of interest. For a pulse that is much
orter than the attenuation lengtls.9) reduces approxi-
mately to

L2 1/4 LZ(w _ wO)Z —

- - T < - h ct |2ct
= 5] o -G o (U201 = e - )e”"(‘\ ) Hp <l

5.9 2774 7gl L

The narrow spectrum ensures thatan often be set equal to
the central frequencw,. The peak of the pulse defined in
this way passes through the coordinate0 and into the
active region of the sample at tinte 0.

The normalized functiod(w) describes the spectrum of the
photon pulse and a convenient choice is the narrow-bangh
Gaussian of spatial length,

(5.10

The value of the complementary error function increases
from O to 2 over a time of ordédr/c as the pulse enters the
active region of the sample a>0 and the force subse-
quently decays over a longer time of ordgf/c as the pulse

_ is attenuated. For a pulse that is much longer than the attenu-
A. Momentum transfer to the charge carriers ation length, we use the asymptotic fof&i]

The expectation value of the Lorentz force-density opera-

tor (4.7) for the single-photon pulse is obtained straightfor- erfex — exp(- X*)/x\m (5.11
wardly with use of the propert{s.2) as to reduce(5.9) to
R i * o oo’ 1/2 2
2C5 e [1y = | LY A 2 pho 2ct
RFCAY ZWCZAfo d‘”fo do (7777,) (1:FS():|1) = \/; pL Oexp(— K ) L/m,> 1.
X(wprn' +n ' 7' k)€ (w)é(w') (5.12

. N ik ;w2 The time dependence is now entirely determined by the free-
xexpilw-o)t-iNe-ne )c : space pulse shape. Note that integration(%010 or (5.12
(5.4) produces a total momentum transfer to the charge carriers of

The frequency integrals are now to be evaluated without the f dt<1|:|52c(t):|1> = pfiwg/C, (5.13
prior integration over time in4.9). It is useful to approxi- —

mate the integrand for frequenciesandw’ in the vicinity of
wg. With use of(3.4) and the inequalities i(3.2) and (5.3),
standard Taylor expansions give

in agreement with the expectation value(4f9) for a single-
photon narrow-band pulse.

' LN A 2 — 2
wnrn’ + N o' 7' k" = 2wgpr(w) =7/l (5.9) B. Momentum transfer to the host semiconductor
and The expectation value of the Lorentz force-density opera-
No—no ~—i(c) +(o-o') (5.6 tor (4.11) for the host semiconductor is obtained in a similar
ek ' manner to that used for the charge carriers. We need the
where the group refractive index is defined by additional Taylor expansion
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o= -n'w'(7'2-1) 8 r

~ (5= D(c/) + (0= o) (7519 + 15— 2775), 6
(5.14

and the resulting single-photon pulse expectation value is

2
N hw /\\
Az 1) =- \/E . {(nfrD% // N

force
T

crpAL 0
o2 time
5 742\ 2C \///
+ (77 + 779_277p)<t_—q_>F} 2 L
¢ 2 0 2 4 6 8 10 12 14

z 74z C? : .
xXexp — - = 2 t = 2= = (5.15 FIG. 1. Time dependence of the forces on charge carriers and

| c/L host for a semiconductor whose attenuation length is 10 times the

. . single-photon pulse length in the medium. The bulk force on the
analogous tg5.8). The corresponding expectation value of charges(CB) is given by(5.10, while the bulk(HB) and surface

the force operato(4.9) is (HS) forces on the host are given by the two termg5ml7). The

force is in unitsfiwgy/2l, the time is in unitsL/+2c, and =g
~u fiwg ) mp 1 ct L2 =4.
<1|Fz(t)|l>:_— 77p__ ex —_+—22
2757 | | 7g 79l 87l
et L with a time variation identical to that of the charge-carrier
Xerfc<_ X, — ) force in (5.12. Further integration 0f5.19 over time pro-
L 2V2p duces a total momentum transfer of
LT ——] :
—\ 7 pmg+ 1= 27 - , N - h -1
ml P8 TR L2 f dt(1):FH(t):]1) = —“’—Oz(g’g, (5.20
(5.16 = K
analogous to the form of the charge-carrier forcé5r9). identical to the summed value i5.18 and in agreement

It is again instructive to consider two limiting cases. For awith the expectation value of4.13 for a single-photon
pulse that is much shorter than the attenuation len&tif narrow-band pulse. The total transfer of momentum to the

reduces approximately to combined system of charge carriers and host semiconductor
obtained by summation of5.13 and (5.20 agrees with
~ ho, 7, 1 ct (4.15.
o= 225 Lo -2}
2mpmg (| Mg 74l
\Ect 21 C. Discussion
xerfe| = —— | = \| == (m3mg+ 15~ 2p) . .
L L A more complete understanding of the detailed processes
2022 of momentum transfer from light to charge carriers and host
><exp<— 2 ) , Lipg,<l. (5.17  semiconductor is provided by consideration of some limiting
cases.

(i) L/ 7,<1<D. These conditions ensure that the passage
the pulse into the active region of the sample occurs in a
time short compared to the duration of its subsequent attenu-
w 5 ation in the bulk material and that none of the light reaches
f dt<1|:|5§'(t):|1> - @{(i _ ﬂp> + (ﬂrﬂ _ i)} the_far boundary of the sample. The_ surface and bu_Ik c_:ontri-
‘ c Mg 27y g butions to the Lorentz force, described at the beginning of
(5.18 Sec. IV B, are clearly separated in this case. They are char-
' acterized by a time dependence similar to that of the Gauss-
where the two terms in the main bracket are the contributioni" Pulse itself for the surface contribution and an exponen-
of the corresponding terms i%.17). In the opposite limit of ~ tial fall-off over the attenuation timep,l/c for the bulk
a pulse that is much longer than the attenuation length, use Gentribution. The time-dependent for¢.10 on the charge
the asymptotic forn(5.11) leads to carriers shows only a bulk contribution, while the_ fo_rce
(5.17 on the host shows both bulk and surface contributions
R 2 fiwg( 72— 1) 2c2t2 given, respectively, by the two terms in the large bracket.
<1|:FZH(t):|1> =- \/j—p—exp<— —2) Liny>1, lllustrations of the time dependences of these three contribu-
™ 2l L tions are shown in Fig. 1. The total time-integrated force
(5.19 obtained from(5.13 and(5.18 is

Integration over the time produces a total momentum transg¢
fer to the host semiconductor of

—00
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o - - with the Abraham value derived here for the total momentum
f dt(1]: F{(t) + Fg(t):]1) transfer. More complicated behavior occurs in the presence
— of reflection at the slab surfac¢g,28]. The results for a
fiwg 7+l 1 1 transparent slab emphasize the qualitative difference between
= T _p_2 e W/ B/ the reversibility of the surface force and the irreversibility of
T M Mg/ chaiee the bulk force.
surface bulk
_hawg 7729+1_1+1 _ (5.21) VI. CONCLUSIONS

| e

surface The main results of the calculations are the expressions
(4.9 and(4.13 for the transfers of momentum from light to
Combination of the charge carrier and host momentum tranghe charge carriers and host semiconductor in the photon
fers to the bulk thus produces the Abraham value ofdrag effect and the expressio(&9) and (5.16) for the re-
fiwpl 74C, in contrast to the Minkowski value ofj,iwg/c  spective time-dependent forces produced by a single-photon
produced by the charge carriers alone. This Abraham valupulse. The calculated transfer of linear momentum to the
represents the total momentum available for transfer frontharge carriers it4.9) agrees with the measuremefi in

the pulse to the bulk material once it has fully entered theassigning the Minkowski value of,iw/c per photon. The
active region of the sample, at the relatively very short timetransfer of momentum to the host semiconductof@iri3 is

of orderL/c. Atotal bulk momentum transfer difwy/ nc was  essentially fixed by momentum conservation, which requires
found previoushyf 2] for a semi-infinite dispersionless dielec- the total momentum transfer per photon to have the value
tric in the form of a single-component optical system, with-given in (4.15. The momentum transfers calculated in Sec.
out the separation intgy and « contributions, which occurs IV are valid for all forms of incident light that satisfy the

in the photon drag effect. overall conditionw7<1 discussed in Sec. lll.

(i) I<D<L/n, The condition that none of the light Additional information on the detailed processes of mo-
reaches the far boundary of the sample is retained, but nomentum transfer is provided by the calculations of Sec. V for
the pulse is much longer than both the attenuation length anan incident single-photon pulse, and the significance of the
the sample thickness. This is the regime of the photon dragesults is discussed in Sec. V C. The main additional feature
measurements’]. The time-dependent forces on the chargeemerges for pulses much shorter than the attenuation length,
carriers and host semiconductor, given(Byl2 and(5.19), when the momentum transfer to the host semiconductor can
respectively, are completely determined by the Gaussiabe separated into surface and bulk contributions, &S.21);
pulse shape. The momentum transfer per photon to ththe total bulk momentum transfer in this case, charges plus
charge carriers retains the Minkowski valuemgfiwp/c, and  host, equals the Abraham value &,/ 7,c. The practical
the total transfer to the host retains the value give(big0), device of the photon drag detector relies on the opposite
but there is no longer the separation into surface and bulkmit of pulses much longer than the attenuation length, when
contributions shown in(5.21). The proportionality of the the time-dependent voltage generated by the forces on the
charge carrier force i85.12) to the pulse intensity is repro- charge carriers mimics the optical pulse shape.
duced in the induced voltage generated across the semicon- Our method of calculation, based on evaluation of the
ductor sample by the photon drag effect. The measured volt-orentz force, has the advantage of providing results for the
age forms the basis for the photon drag detector, a deviceomentum transfers from light to macroscopic media mea-
that measures infrared pulse profi[@2]. surable in experiments. A great deal of previous work, well

(i) L/m,<D<I. Conditions in which the attenuation reviewed in[1], is concerned with the identification of the
length is much greater than the sample thickness have be@emomentum carried by the photon in dielectric media, often
treated in earlier work2,3,28-30. This limit is not covered viewed as a conflict between the Abraham and Minkowski
by the present calculations on the photon drag effect, but thexpressions, with one or the other or neither regarded as the
results are relevant to the value of the total momentum trans‘correct” answer for the system in question. We have argued
fer derived here. With negligible attenuation over the samplén Sec. Il that there is no conflict between the Abraham,
thicknessD, all of the incident light is either reflected or Minkowski, and other formulations of the electromagnetic
transmitted. The surface force mechanism described at th&ress tensor. Furthermore, we have shown in Secs. IV and V
beginning of Sec. IV B continues to operate, but the positivehat there is no unique expression for the momentum transfer
force generated as the pulse enters the mediunr@tis at  from light to matter in the photon drag effect but that the
least partially compensated by a negative force generated ybraham and Minkowski values can both, in principle, be
the same mechanism as the pulse leaves the medium atobserved by appropriate measurements. Another focus of
=D. The two forces exactly cancel for a slab of dielectric previous work that is untouched by our method of calcula-
with antireflection coating$3,29] when the passage of the tion is the devision of total momentum between “electromag-
pulse shifts an initially stationary slab to a new stationarynetic” and “material” contributions, and we can make no
position, with no permanent transfer of momentum. How-comment on this aspect of the problem.
ever, application of momentum conservation to the state of Our specific results for the photon drag system harmonize
the system when the pulse lies within the s[8B] produces with some previous, more general discussions of photon mo-
an optical momentum ofwy/ 774C per photon, in agreement mentum. Thus, Gordon16] finds the Abraham form
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fiwol nyc for the “true field momentum” and the Minkowski optical properties of the mirror determined by its extinction
form nhw/c, identified as the “pseudomomentum,” for the coefficientx and those of the host liquid by its real refractive
momentum transfer to material objects in dielectric mediaindex 7,. A Lorentz force calculatiofi2] again provides an
Joyce[31] presents a classical particle description of the ra-expression for the momentum transfer in agreement with ex-
diation pressure problem, with the Abraham form for theperiment. It was shown that the liquid takes up a momentum
“energy-carrying momentum” that determines the displacetransfer equal to the difference between the Abraham and
ment of a slab and the Minkowski form for the “impulsive Minkowski values, as given by the “host bulk” term in
momentum” that determines the momentum transfer to a re5.21), although the theory ifi2] did not distinguish phase
flector immersed in the medium. Mcintyf@2] considers and group refractive indices. A similar interpretation of the
more general forms of wave and matter, partly in the contexmirror experiments has been given by Mansurif@f]. On
of fluid mechanics, and reaches conclusions similar to thosthe basis of these two examples, it appears that the total
in [16]. Nelson[33] finds the Abraham form for the electro- momentum transfer to bulk material, free of any boundary or
magnetic field in nonmagnetic media and the Minkowskisurface effects, has the Abraham valuéiafy/ 7,C but that
form for the “wave momentum” that enters wave-vector con-the transfer to an attenuating subsystem within the bulk ma-
servation relations. Very recently, Garrison and CHiad] terial has the Minkowski value ofj,fiw/c.
have given a quantum theory of the electromagnetic momen- The photon drag system treated here has a remarkable
tum in a dispersive dielectric, finding that the Abraham formcombination of properties, in providing bases for both the
determines the rigid acceleration of a dielectric, while theirpractical device of the photon drag detector and the theoret-
“canonical momentum,” equivalent to the Minkowski form ical understanding of momentum transfer from light to mat-
as defined by us, determines the transfer to immersed olter. The separate contributions of the two system components
jects. These authors also use macroscopic field quantizatida the real and imaginary parts of the complex refractive
of the classical expression to derive a form of “Minkowski index in the photon drag effect provide a uniquely simple
momentum” that differs from ours by an additional factor division of the momentum transfers to the host semiconduc-
7o/ Mg, NOt detectable in the photon drag experimentf7gf ~ tor (unmeasuredand charge carrierémeasurey] respec-
By contrast, Mansuripui35,36 has considered experiments tively.
sensitive to the total momentum transfdrl5), equal to the Note added in proofThe Minkowski momentum transfer
arithmetic mean of the Abraham and Minkowski forms. to the charge carriers in the photon drag effect has been
The best measurements of the momentum transfer to aserived by an alternative treatmdi@8].
immersed object are those of Jones and Ldsgid. They
suspended a highly reflecting mirror in a range of dielectric ACKNOWLEDGMENTS
liquids and observed the Minkowski transfer gff.w/c per We thank Andy Walker for encouragement and Maurice
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