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The momentum transfer from light to a dielectric material in the photon drag effect is calculated by
evaluation of the relevant Lorentz force. In accordance with measurements on Si and Ge, the material is taken
as a two-component optical system, with charge carriers described by an extinction coefficientk in a host
semiconductor described by real refractive indiceshp sphased and hg sgroupd. The calculated momentum
transfer to the charge carriers alone has the valuehp"v /c per photon, the so-called Minkowski value, found
experimentally. The time-dependent Lorentz force is calculated for light in the form of a narrow-band single-
photon pulse. When the pulse is much shorter than the attenuation length, which is much shorter than the
sample thickness, there is a clear separation in time between surface and bulk contributions to the forces. The
total bulk momentum transferscharges plus hostd in this case is found to be"v /hgc, the so-called Abraham
value.
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I. INTRODUCTION

Theories of radiation pressure and the momentum of light
in dielectrics have frequently involved arguments about the
correct form of the stress tensor of the electromagnetic field
in a material mediumsseef1g for a reviewd. Several formu-
lations of the stress tensor have been developed, but particu-
lar attention has been given to the two contenders in the
so-called Abraham-Minkowski controversy. The quantity at
issue is the momentum per photon available for transfer from
the light to the medium. Most theoretical work is concerned
with nondispersive media, but the more general calculations
presented here allow for material dispersion, with the phase
refractive indexhp different from the group refractive index
hg. The accepted convention associates the termAbraham
momentumwith the quantity"v /hpc or "v /hgc and the
term Minkowski momentumwith the quantityhp"v /c. It is
convenient to follow this nomenclature, withAbrahamand
Minkowski used as labels for these forms of momentum
transfer. The few measurements of radiation pressure in di-
electric media appear to support the Minkowski value for the
momentum transfer, and several calculations strive to pro-
duce this result from theories that obstinately seem to sup-
port the Abraham expression.

Observations of radiation pressure in media rely on mea-
surements of the forces exerted by light on some distinguish-
able component of the medium itself or on some object im-
mersed in the medium. We take the view that the Lorentz
force provides the fundamental description of radiation pres-
sure effects and use it as the basis for the present calcula-
tions. This same approach has been used previouslyf2,3g in
treatments of the radiation pressure on a general semi-infinite
dielectric. It has the advantage that no prior assumptions are
made about the magnitude of the optical momentum in the
medium. However, the results of the calculation do provide
information on the transfer of momentum per photon to the
observed object. Moreover, the calculated force represents

the measured quantity, and not some subsidiary quantity that
may not itself be directly measurable. As for the “contro-
versy” between different formulations of electromagnetic
theory, we believe that all formulations are equally valid and
that they produce the same predictions when properly ap-
plied to specific problems. Any controversy arises from the
improper isolation of momentum densities from other con-
tributing terms in the relevant continuity equations.

The photon drag effect, observed in 1970f4,5g, is one of
the simplest manifestations of radiation pressure. The main
effect is the generation of currents or electric fields in semi-
conductors, notably germanium and silicon, by the transfer
of momentum from an incident light beam to the charge
carriers. The requirements of energy and momentum conser-
vation generally forbid the absorption of photons by free
carriers, and the process can only take place by interband
transitions or with the assistance of phonon absorption or
emission. The magnitude and sign of the transfer depend on
the detailed band structure of the material in complicated
ways f6g. However, for optical angular frequenciesv and
charge carrier relaxation timest sufficiently small thatvt
!1, the details of the band structure become irrelevantf7g.
The momentum transfer to the charge carriers was observed
to approach a value given byhp"v /c per photon for suffi-
ciently long optical wavelengths, although the conditions of
the experiments were such that the phase and group refrac-
tive indices could not be distinguished. This same form of
limiting momentum transfer was found experimentally for
bothn- andp-type germanium and siliconf7g. The observed
effect of the material is thus to multiply the free-space pho-
ton momentum"v /c by an additional factorhp, and this was
taken as evidence in support of the Minkowski momentum
transfer.

The calculations presented here show that the transfer of
momentum to the charge carriers is accompanied by an ad-
ditional transfer of momentum to the host semiconductor.
The outstanding advantage of the photon drag measurements
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is their ability to separate the contributions from the momen-
tum transfer to the charge carriers, associated essentially
with the extinction coefficientk, from the unobserved mo-
mentum transfer to the host material, associated with the real
refractive indexhp. The calculated momentum transfer to the
charge carriers has the Minkowski value ofhp"v /c per pho-
ton, in agreement with experiment. Calculations equivalent
to those reported here could also be performed in the frame-
work of classical electromagnetic theory, with similar con-
clusions. However, the quantum theory is easily applied and
it has the advantage of providing results directly expressed in
terms of momentum transfers per incident photon.

The general formulations of the electromagnetic energy-
momentum stress tensor by Abrahamf8g, Minkowski f9g,
and others are discussed in Sec. II, where the equivalence of
the superficially different theories for the photon drag effect
is demonstrated. The relevant optical properties of semicon-
ductors are summarized in Sec. III, and the Lorentz forces on
the charge carriers and host semiconductor are calculated in
Sec. IV. The time dependences of the forces on the two com-
ponents produced by a narrow-band single-photon pulse are
calculated in Sec. V, and the results are approximated for
some limiting values of pulse length, attenuation length, and
sample thickness. In particular, when the lengths as listed are
in ascending orders of magnitude, it is shown that the bulk
material acquires an Abraham total momentum transfer of
"v /hgc per photon. Our conclusions are summarized in Sec.
VI.

II. ELECTROMAGNETIC STRESS TENSORS

A. History

Two varieties of stress tensor for the electromagnetic field
in a material medium were formulated early in the last cen-
tury by Abrahamf8g and Minkowski f9g. This section is
devoted to a brief review of these formulations and others, in
order to provide a background for the results on the photon
drag effect derived in the following sections. These results
are based on evaluations of Lorentz forces and are indepen-
dent of any specific formulation. However, it is emphasized
here that the Abraham and Minkowski theories are equally
valid when they are properly applied to specific problems.
The refractive indexh and the electric susceptibilityx=h2

−1 are taken to be real and independent of frequency for the
calculations of this section.

The stress tensors appear in equations expressing linear
momentum conservation, which are often written as

]gA
j

]t
+ o

i=1

3
]TA

i j

]xi = − fA
j and

]gM
j

]t
+ o

i=1

3
]TM

i j

]xi = 0, s2.1d

where the subscripts A and M indicate Abraham and
Minkowski. The tensorial components of the momentum flux
density of the light beam aref1g

TA
i j =

1

2
hdi jE · D− EiDj − EjDij +

1

2
hdi jH · B − HiBj − HjBij

TM
i j =

1

2
di jE · D− EiDj +

1

2
di jH · B − HiBj , s2.2d

where the A form is symmetric in the spatial coordinatesi,
j =1, 2, 3 but the M form is not. The dependence of the field
vectors on space and time is not shown explicitly. The mo-
mentum densities are

gA = E 3 H/c2 andgM = D 3 B s2.3d

and the so-called Abraham force density is

fA = «0x
]

]t
sE 3 Bd. s2.4d

The association of each tensor with a different momentum
density has been regarded historically as significantf1g, as
has the presence of the force density in the Abraham formu-
lation.

To add to the controversy, from time to time other elec-
tromagnetic tensors, such as those of Einstein and Laubf10g
and Peierlsf11,12g, have been constructed. All these tensors
exist against the background of standard electromagnetic
theory, containing the well-known symmetric, Maxwell and
canonical tensorsf13g. The Einstein-Laub and Peierls tensors
are not formulated from the canonical theory, but directly
from the physics of specific material systems, and we leave
consideration of these tensors until Sec. II B.

Many of the arguments of the Abraham-Minkowski con-
troversy have centered on features that are either irrelevant
for particular experimental conditions, or for optical media in
general, or are inconsistent with the fundamental character-
istics of the canonical formulation of a tensor from a La-
grangian density. So it is the issues involving the presence of
physical boundaries, inhomogeneity, and anisotropy, al-
though important in radiation pressure calculations, ought
not, in principle, to arise from a rigorous tensor treatment.
For example, the variation of the Lagrangian density used to
formulate the tensor assumes that the mathematical boundary
is identical to the boundary of the material medium. Indeed,
since any electromagnetic tensor is a component in a differ-
ential conservation equation, it is not surprising that tensors
are indicative of bulk material only, where physical bound-
aries are removed from the coordinates of interest. Further-
more, the canonical determinations of Abrahamf8g and
Minkowski f9g stress tensors assume that the material’s rela-
tive permittivity and permeability are real parameters. Not-
withstanding, the literature contains apparent generalizations
of these tensors, supposedly obtained by retrospective intro-
duction of material inhomogeneity or anisotropy. Alterna-
tively, one sometimes reads the claim that a particular tensor
is unsound because it failed to include these generalizations
in the first placef11g.

The canonical determination of a stress tensor of a field
involves the Hamilton derivative, and it takes place at a level
independent of the equations of motionf14,15g. The proce-
dure is to find the conditions for an extremum of action by
varying the Lagrangian density with respect to the space-
time metric, hence the name “stress tensor.” The Hamilton
derivative method is applicable to curved and Euclidean
space-times, whereas the standard determination of the ca-
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nonical tensor is restricted to flat space-time. In general, the
Hamilton derivative produces a tensor that obeys a conser-
vation law, in that its covariant derivative vanishes. A spe-
cialization to Euclidean space-time reduces the covariant de-
rivative to the common form involving the four-vector
gradient operator.

A Lagrangian for the electrodynamics of a material me-
dium can be constructed in two distinct forms, depending on
whether the phenomenological relative permittivity and per-
meability of the material are introduced by means of matter-
induced currents or by means of an effective modification of
the space-time metric. The induced-currents formalism gives
rise to a minimal-coupling term in the Lagrangian, and it is
perhaps better known than the formalism that involves an
effective metric. It also has direct experimental relevance to
a material medium at rest on the optical bench. However, the
effective-metric formulation is fully covariant and enables a
natural introduction of the four-vector velocity of the me-
dium. The effective metric is introduced formally; it is a
function of the material four-vector velocity as well as its
phenomenological parameters, and it performs the usual met-
ric role of shifting between covariant and contravariant vec-
tors by raising and lowering indices.

After specialization to Euclidean space, the Hamilton de-
rivative of the induced-currents Lagrangian yields

]gS
j

]t
+ o

i=1

3
]TS

ij

]xi = − fL
j , s2.5d

where

TS
ij = «0H1

2
di jE2 − EiEjJ + m0

−1H1

2
di jB2 − BiBjJ s2.6d

is the symmetric stress tensor which, with a change of sign,
is identical to the Maxwell stress tensor. The momentum
density is

gS= «0E 3 B s2.7d

and fL is the Lorentz force density, which for our purposes
may be written in the conventional forms

fL = sP · ¹ dE +
]P

]t
3 B = «0xH1

2
¹ sE2d +

]

]t
sE 3 BdJ ,

s2.8d

as given byf16g. Note that the momentum densitygS is the
same asgA in s2.3d for a nonmagnetic material withB
=m0H.

The induced-currents Lagrangian contains an inherent
matter-field separation; it is therefore unsurprising that it
yields the physically significant Lorentz force. This contrasts
with the effective-metric Lagrangian, which treats the elec-
tromagnetic field and the material medium as a single entity.
It is only the effective-metric Lagrangian that canonically
produces the Abraham and Minkowski tensors. Therefore, at
the center of the Abraham-Minkowski controversy lies a La-
grangian whose division into field and matter components is
ambiguous, and perhaps impossible. It is in any case point-
less to follow this route as the minimal-coupling induced-

currents Lagrangian supplies all that is required for the kind
of problem of interest here. To counter the claim sometimes
made that only the Abraham tensor is correct, we devote the
remainder of this section to an outline of the historical rea-
sons for the claim and to the justification for safely ignoring
it. The mathematical detail can be found elsewhere
f14,17–19g and is omitted here.

The Hamilton derivative procedure for the effective-
metric Lagrangian reveals what has sometimes been seen as
a problem, whose apparent resolution is the origin of the
claim for the unique correctness of the Abraham form. The
variation of the Lagrangian with respect to the effective met-
ric, in fact, produces the Minkowski tensor, with a momen-
tum conservation equation involving the vanishing of its
four-divergence, as in the M part ofs2.1d. The claimed prob-
lem with this procedure is that the real space-time metric is
not the effective metric but one that, locally at least, is
Minkowskian. A correction is supposedly made to ensure
that the effective-metric Lagrangian is varied with respect to
the Minkowskian metric. This correction results in the intro-
duction of the Abraham tensor, whose divergence vanishes
only in combination with the Abraham force, as in the A part
of s2.1d.

The formalisms involving the induced-currents and
effective-metric Lagrangians would be expected to lead to
similar results when the space-projection component of the
medium’s four-velocity vanishes, and this is indeed the case.
The Abraham and Minkowski momentum conservation
equations describe the same situation and lead to identical
results in a spatially stationary frame. This can be appreci-
ated immediately by noting that the effective metric in this
case differs from the Minkowski metric only by the presence
of the refractive indexh in its scalar component. Such an
alteration in the speed of the scalar electromagnetic field is
simply a gauge transformation and can lead to no new phys-
ics. In this situation, the Abraham, Minkowski, and symmet-
ric formulations are equally valid, ands2.1d and s2.5d are
equivalent expressions of momentum conservation. In a spa-
tially stationary frame it is meaningless to claim that one or
the other tensor is correct. The source of the Abraham-
Minkowski controversy lies in a failure to understand fully
the canonical construction of the relevant tensors. The differ-
ence between the A and M momentum densities ins2.3d can
be a source of confusion only if they are detached from the
other contributions to the continuity equations ins2.1d and
individually given physical significance. The induced-
currents formalism, but not, of course, the effective-metric
formalism, places no restriction on the material effective per-
mittivity and permeability, as these parameters are implicit
within the induced polarization currents. Material inhomoge-
neity or anisotropy could therefore be introduced in the sym-
metric sor Maxwelld stress formulation. For consistency, the
equivalence between symmetric, Abraham, and Minkowski
formalisms for vanishing space-projection component of the
four-velocity is restricted to homogeneous and isotropic
media.

A possible significance of the Abraham tensor in general
relativity, which the Minkowski tensor lacks, is not an issue
here. We note, however, that a recent reviewf20g of 83 years
of progress and problems in general relativity and cosmology
fails to mention the controversy.
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B. Stress tensors and photon drag

Photon drag is a phenomenon of the bulk semiconductor.
The light fields vary with only the one coordinatez for the
experimental arrangement considered here, withE andB par-
allel to thex and y axes, respectively, and Maxwell’s equa-
tions simplify to

]E

]z
+

]B

]t
= 0 and

]H

]z
+

]D

]t
= 0. s2.9d

With material dispersion and loss ignored, the fields are
functions of the argumentz−sct/hd and the solutionB
=hE/c of s2.9d allows the momentum flux densities from
s2.2d and s2.6d to be written

TA
zz= TM

zz = «0h2E2 = U andTS
zz= «0s1 + h2dE2,

s2.10d

whereU is the energy density of the electromagnetic field in
the bulk semiconductor. The momentum densities froms2.3d
and s2.7d have the values

gA
z = U/hc = gS

z andgM
z = hU/c. s2.11d

These are the conventional Abraham and Minkowski mo-
menta and, for consistency with other authors, we follow this
nomenclature here to denote the momentum transfers from
single photons of energy"v to the material medium.

The equivalence of the Abraham, Minkowski, and sym-
metric formulations is explicitly demonstrated by use ofs2.9d
to rewrite all three momentum conservation equations from
s2.1d and s2.5d as the single form

]

]t
ShU

c
D +

]U

]z
= 0, s2.12d

when the force componentsf A
z and f L

z from s2.4d and s2.8d
are combined with appropriate terms on the left-hand sides
of the relevant equations. The total momentum flux density
of the light beam is identical to the energy densityU in the
semiconductor, and the momentum density is identical to the
Minkowski value in s2.11d. It may therefore seem that we
have simply confirmed the assertion of Gibsonet al. f7g that
the photon drag experiment supports the Minkowski rather
than the Abraham formulation, but this is not the case. We
have only demonstrated that the Minkowski formulation rep-
resents the simplest but not the only valid matter-field divi-
sion of momentum within a bulk material medium. Provided
that the momentum density froms2.3d is not detached from
s2.1d and treated in isolation, the Abraham formalism pro-
duces exactly the same momentum conservation equation
s2.12d as the other approaches.

The Einstein-Laubf10g sEd tensor formalism is also con-
sistent with the photon drag results. The tensor is not con-
structed canonically by means of a Hamilton derivative but
from a consideration of the reaction of a molecular dipole to
electromagnetic fields. The momentum conservation equa-
tion is

]gA
j

]t
+ o

i=1

3
]TE

i j

]xi = − fL
j , s2.13d

where

TE
i j =

1

2
«0di jE2 − EiDj +

1

2
m0di jH2 − HiBj , s2.14d

the momentum density is identical to the Abraham value in
s2.3d, and the force density has the Lorentz form froms2.8d.
The momentum conservation equation can again be written
in the form of s2.12d. The Peierls theoryf11,12g uses local,
rather than macroscopic, fields with a dielectric function or
refractive index that satisfies the Clausius-Mossotti or
Lorenz-Lorentz formula. The use of local fields is inappro-
priate for semiconductors, where the mobile valence and
conduction electrons are not localized on individual atoms,
and we consider the Peierls theory no further.

The analysis given here provides a somewhat different
perspective on the various formulations of the electromag-
netic stress tensors to that presented by Brevikf21g, but our
conclusions are substantially the same. The interpretation of
the photon drag experiments is independent of the formal-
ism, whether that of Abraham, Minkowski, or Einstein-Laub.
All of these provide valid frameworks for analysis of the
measurements, which do not themselves favor one formalism
or the other.

III. OPTICAL PROPERTIES OF SEMICONDUCTORS

The optical properties of semiconductors are described in
the usual way by a dielectric function«svd and a complex
refractive indexnsvd, related by

Î«svd = nsvd = hsvd + iksvd. s3.1d

The photon drag measurements were made at optical wave-
lengths out to 1.2 mm in Ge and Si. At this wavelength,
vt<0.6 in bothn- and p-type Ge, and therefore the condi-
tion vt!1 for free-carrier absorption independent of the
semiconductor band structure was not strictly met. However,
the trend toward a limiting value ofhp"v /c, rather than
"v /hpc, for the momentum transfer was clearly apparent.
On the other hand,vt<0.2 for n-Si andvt<0.1 for p-Si at
1.2 mm, and the experimental results for this semiconductor
were in very close agreement withhp"v /c as the limiting
value for the momentum transfer at long wavelengthsf7,22g.
However, it is only for Ge that the optical properties in the
submillimeter range have been carefully measured and inter-
pretedf23g, and the numerical values quoted below refer to
this material.

It can be assumed to good approximations that the charge
carriers make a purely imaginary contribution to«svd,
whereas the host material makes a purely real contribution
f23g in the regime wherevt!1. The phase refractive index
has the valuehp<4.0 for Ge and varies very slowly with
frequency for the conditions of the photon drag experiments.
The frequency dependence is, however, retained here for
greater generality of the calculations that follow. The value
of the extinction coefficientksvd is of order 0.1 or less, and
we can write
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«svd = 1 +xHsvd + xCsvd < hsvd2 + 2ihsvdksvd,

with ksvd ! hsvd, s3.2d

where the host and charge-carrier susceptibilities are given
by

xHsvd = hsvd2 − 1 andxCsvd = 2ihsvdksvd. s3.3d

Referencef23g provides more detailed justification for the
approximations made here.

The thicknessD of the semiconductor sample in the pho-
ton drag measurements was 30 mm, and the limiting low-
frequency power attenuation length was

lsvd = c/2vksvd < 2.4 mm. s3.4d

Thus essentially all of the photon momentum was transferred
to the semiconductor. The incident light was in the form of
pulses with free-space lengthsL of the order of 60 m, with a
pulse lengthL /hp in Ge of the order of 15 m, much larger
than D and l. The experiments were, in fact, done with the
sample in open-circuit conditionsf5g, so that the transfer of
momentum to the charges resulted not in a current flow, but
in an opposing electric field within the semiconductor. The
measured open-circuit voltage across the two ends of the
sample was processed to provide values for the momentum
transfer per photon.

IV. LORENTZ FORCES ON CHARGE CARRIERS
AND HOST

We consider the propagation of a polarized light beam
parallel to thez axis with its electric and magnetic fields
parallel to thex andy axes, respectively. The Lorentz forces
on bulk dielectrics and their surfaces have been calculated
quantum mechanicallyf2,3g on the basis of the susceptibility
of the material. We perform a similar calculation of the mo-
mentum transfer to the charge carriers based onxCsvd from
s3.3d. It is also shown that, because of the attenuation pro-
vided by the charge carriers, there is a further momentum
transfer to the host, based on the susceptibilityxHsvd from
s3.3d, which was not observable in the photon drag experi-
ments. The charge and host contributions are nicely sepa-
rated for the two-component optical system used in the pho-
ton drag experiments.

The essential features of the momentum transfer are re-
produced with the simplifying assumption of an incident
light beam of uniform intensity over a cross-sectional areaA.
The fields within the beam then vary only withz, and the
positive-frequency parts of the quantized field operators are
f2,3g

Êx
+sz,td = iE

0

`

dvS "v

4p«0chsvdAD
1/2

âsvd

3expF− ivSt −
nsvdz

c
DG s4.1d

and

B̂y
+sz,td = iE

0

`

dvS "v

4p«0c
3hsvdAD

1/2

nsvdâsvd

3expF− ivSt −
nsvdz

c
DG . s4.2d

Hereâsvd is the photon destruction operator at frequencyv,
with a corresponding creation operatorâ†svd. The operator

n̂ =E
0

`

dvâ†svdâsvd s4.3d

represents the number of photons in the light beam. The
forms of the square-root normalization factors ins4.1d and
s4.2d ensure that the time integrated energy flow atz=0 is
given bys4.3d but with an additional weighting factor"v in
the integrandf2,3g. Note that, by comparison with a more
general field quantizationf24g, only the real parthsvd of the
complex refractive index is retained in the normalization fac-
tors in view of the inequality ins3.2d. However, the full
refractive indexnsvd must be kept in the exponentials, as it
ensures the proper attenuation of the light beam as momen-
tum is transferred to the charge carriers. The samples used in
the measurementsf7g were sufficiently long that almost all of
the optical momentum was transferred from the light beam,
and a subsequent integration overz can accordingly be taken
to extend from 0 tò .

The rates of change of the momenta of the charge carriers
and the host semiconductor, caused by their interaction with
the incident light, are determined by integrations of the Lor-
entz force-density operator over time and over the illumi-
nated spatial region. Only the second term of the first form of
the force ins2.8d contributes for the experimental geometry
considered here, to give

: f̂sz,td: = :
]P̂sz,td

]t
3 B̂sz,td:. s4.4d

The first factor on the right is the polarization current, where

the operatorP̂x
+sz,td is obtained from the electric field opera-

tor in s4.1d by insertion of«0xsvd in the integrand. The ex-
plicit forms of the current for the charge carriers and the host
are given ins4.6d ands4.10d, respectively. The use of normal
ordering in s4.4d, indicated by the colons, ensures that
vacuum contributions are excluded. The time-dependent
force operator is obtained by integration over the illuminated
sample volume as

:F̂std: = AE
0

`

dz: f̂sz,td:. s4.5d

The force operator vanishes for a transparent sample of infi-
nite length, but nonzero radiation pressure contributions arise
in the presence of attenuation and at the surfaces of noninfi-
nite samplesf2g.

A. Momentum transfer to the charge carriers

The polarization operator is expressed in terms of the
electric field operators4.1d via the charge-carrier susceptibil-
ity from s3.3d, with the result
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] P̂x
+sz,td
]t

= iS «0"

pcA
D1/2E

0

`

dvv3/2hsvd1/2ksvdâsvd

3expF− ivSt −
nsvdz

c
DG . s4.6d

The Lorentz force-density operators4.4d, therefore, takes the
form

: f̂ z
Csz,td: =

"

2pc2A
E

0

`

dvE
0

`

dv8Svv8

hh8
D1/2

3svhkn8 + n*v8h8k8dâ†svdâsv8d

3expFisv − v8dt − isn*v − n8v8d
z

c
G , s4.7d

with the convention that the optical variablesh, k, andn are
evaluated at frequencyv, while h8, k8, andn8 are evaluated
at v8. Terms in the products of two creation or two destruc-
tion operators are neglected as they do not contribute to the
momentum transfer of interest here.

The expectation value of the force density can be calcu-
lated for specific states of the incident light, as in previous
work f2,3g, and this is done in Sec. V. However, for compari-
son with experiment, we are mainly interested in the total
transfer of momentum, represented by the time-integrated
force-density operator

E
−`

`

dt: f̂ z
Csz,td: =

"

cA
E

0

`

dvhpvâ†svdâsvdexps− z/ld/l ,

s4.8d

where s3.4d is used to expressk in terms of the power at-
tenuation lengthl. The derivation above shows that the phase
refractive index controls the force density andh is accord-
ingly replaced byhp in s4.8d, which can often be taken as the
value at the mean frequency of the incident light. A further
integral over the entire illuminated sample gives the form of
the operator that represents the total transfer of linear mo-
mentum to the charge carriers as

AE
0

`

dzE
−`

`

dt: f̂ z
Csz,td: =E

0

`

dv
hp"v

c
â†svdâsvd.

s4.9d

This final expression is the same as the photon-number op-
erators4.3d but with an additional weighting factor. It shows
that the coupling of the light to the charge carriers via the
Lorentz force results in a calculated momentum transfer of
hp"v /c per photon, the same Minkowski value as found in
the photon drag measurementsf7g.

B. Momentum transfer to host semiconductor

The propagation of an optical pulse through a transparent
dielectric causes no transfer of momentum to the material, as
a positive Lorentz force in the leading part of the pulse is
exactly balanced by a negative Lorentz force in its trailing
part f2g. However, this balance is removed in the present

problem because of the attenuation of the light by its inter-
action with the charge carriers. This causes the leading part
of the pulse at a given time to be weaker than the trailing part
and produces a net negative transfer of momentum to the
bulk semiconductor. There is also a positive “surface” con-
tribution that arises from the lack of balance between leading
and trailing parts as the pulse passes through the integration
cutoff at z=0 into the active region of the sample atz.0.
Here we calculate the combined momentum transfer from
these two effects and discuss their separate contributions in
Sec. V.

The host susceptibility froms3.3d provides a contribution
to the polarization operator with the time derivative

] P̂x
+sz,td
]t

= S «0"

4pcA
D1/2E

0

`

dvv3/2h−1/2sh2 − 1dâsvd

3expF− ivSt −
nz

c
DG . s4.10d

The Lorentz force-density operators4.4d is, accordingly,

: f̂ z
Hsz,td: =

i"

4pc2A
E

0

`

dvE
0

`

dv8Svv8

hh8
D1/2

fvsh2 − 1dn8

− n*v8sh82 − 1dgâ†svdâsv8d

3expFisv − v8dt − isn*v − n8v8d
z

c
G . s4.11d

with the same convention as ins4.7d The time-integrated
force density is expressed with the use ofs3.4d as

E
−`

`

dt: f̂ z
Hsz,td: = −

"

2cA
E

0

`

dvshp
2 − 1dvâ†svdâsvd

3exps− z/ld/hpl , s4.12d

where the derivation again shows that the phase refractive
index is involved. A further integration over the illuminated
sample gives the operator that represents the total transfer of
linear momentum to the host semiconductor as

AE
0

`

dzE
−`

`

dt: f̂ z
Hsz,td: = −E

0

`

dv
hp

2 − 1

2hp

"v

c
â†svdâsvd,

s4.13d

a negative quantity in the usual case wherehp.1.
The total transfer of momentum to charges and host is

represented by the operator

AE
0

`

dzE
−`

`

dt:f f̂ z
Csz,td + f̂ z

Hsz,tdg:

=E
0

`

dv
hp

2 + 1

2hp

"v

c
â†svdâsvd, s4.14d

wheres4.9d and s4.13d are used. The total linear momentum
transferred to a general dielectric medium by narrow-band
light that carries a single photon of energy"v0 in the me-
dium atz=0 can be obtained by considerations of energy and
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momentum conservation. Whenksv0d!hsv0d, as assumed
here, the result isf3g

total momentum transfer =
"v0

c

hp
2 + 1

2hp
, s4.15d

consistent withs4.14d.

V. TIME-DEPENDENT FORCES FOR SINGLE-PHOTON
PULSE

The details of the transfer of momentum to the charge
carriers and host crystal can be further investigated with the
assumption of incident light in the form of a single-photon
pulse. The optical state is defined byf25,26g

u1l =E dvjsvdâ†svdu0l, s5.1d

whereu0l is the vacuum state, and these states satisfy

âsvdu1l = jsvdu0l. s5.2d

The normalized functionjsvd describes the spectrum of the
photon pulse and a convenient choice is the narrow-band
Gaussian of spatial lengthL,

jsvd = S L2

2pc2D1/4

expH−
L2sv − v0d2

4c2 J, c/L ! v0.

s5.3d

The narrow spectrum ensures thatv can often be set equal to
the central frequencyv0. The peak of the pulse defined in
this way passes through the coordinatez=0 and into the
active region of the sample at timet=0.

A. Momentum transfer to the charge carriers

The expectation value of the Lorentz force-density opera-
tor s4.7d for the single-photon pulse is obtained straightfor-
wardly with use of the propertys5.2d as

k1u: f̂ z
Csz,td:u1l =

"

2pc2A
E

0

`

dvE
0

`

dv8Svv8

hh8
D1/2

3svhkn8 + n*v8h8k8dj*svdjsv8d

3expFisv − v8dt − isn*v − n8v8d
z

c
G .

s5.4d

The frequency integrals are now to be evaluated without the
prior integration over time ins4.8d. It is useful to approxi-
mate the integrand for frequenciesv andv8 in the vicinity of
v0. With use ofs3.4d and the inequalities ins3.2d and s5.3d,
standard Taylor expansions give

vhkn8 + n*v8h8k8 < 2v0hp
2ksv0d = chp

2/l s5.5d

and

n*v − n8v8 < − isc/ld + sv − v8dhg, s5.6d

where the group refractive index is defined by

hg =U ]

]v
svhsvddU

v0

= hp +Uv0
]hsvd

]v
U

v0

. s5.7d

Straightforward integration now gives

k1u: f̂ z
Csz,td:u1l =Î 2

p

hp"v0

AlL
expH−

z

l
− 2St −

hgz

c
D2 c2

L2J .

s5.8d

The expectation value of the force operator defined ins4.5d is
obtained by integration overz and, with use of the standard
Gaussian integral and the definition of the complementary
error function, the result is

k1u:F̂z
Cstd:u1l =

hp"v0

2hgl
expS−

ct

hgl
+

L2

8hg
2l2
D

3erfcS−
Î2ct

L
+

L

2Î2hgl
D . s5.9d

The force expectation value clearly vanishes in the absence
of the attenuation caused by the charge carriers whenl →`.

Two limiting cases are of interest. For a pulse that is much
shorter than the attenuation length,s5.9d reduces approxi-
mately to

k1u:F̂z
Cstd:u1l =

hp"v0

2hgl
expS−

ct

hgl
DerfcS−

Î2ct

L
D, L/hp ! l .

s5.10d

The value of the complementary error function increases
from 0 to 2 over a time of orderL /c as the pulse enters the
active region of the sample atz.0 and the force subse-
quently decays over a longer time of orderhgl /c as the pulse
is attenuated. For a pulse that is much longer than the attenu-
ation length, we use the asymptotic formf27g

erfcx → exps− x2d/xÎp s5.11d

to reduces5.9d to

k1u:F̂z
Cstd:u1l =Î 2

p

hp"v0

L
expS−

2c2t2

L2 D, L/hp @ l .

s5.12d

The time dependence is now entirely determined by the free-
space pulse shape. Note that integration ofs5.10d or s5.12d
produces a total momentum transfer to the charge carriers of

E
−`

`

dtk1u:F̂z
Cstd:u1l = hp"v0/c, s5.13d

in agreement with the expectation value ofs4.9d for a single-
photon narrow-band pulse.

B. Momentum transfer to the host semiconductor

The expectation value of the Lorentz force-density opera-
tor s4.11d for the host semiconductor is obtained in a similar
manner to that used for the charge carriers. We need the
additional Taylor expansion
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vsh2 − 1dn8 − n*v8sh82 − 1d

< ishp
2 − 1dsc/ld + sv − v8dshp

2hg + hg − 2hpd,

s5.14d

and the resulting single-photon pulse expectation value is

k1u: f̂ z
Hsz,td:u1l = −Î 2

p

"v0

chpAL
Hshp

2 − 1d
c

2l

+ shp
2hg + hg − 2hpdSt −

hgz

c
D2c2

L2 J
3expH−

z

l
− 2St −

hgz

c
D2 c2

L2J , s5.15d

analogous tos5.8d. The corresponding expectation value of
the force operators4.5d is

k1u:F̂z
Hstd:u1l = −

"v0

2hphg
Hhp

l
Shp −

1

hg
DexpS−

ct

hgl
+

L2

8hg
2l2
D

3erfcS−
Î2ct

L
+

L

2Î2hgl
D

−Î 2

p

1

L
shp

2hg + hg − 2hpdexpS−
2c2t2

L2 DJ ,

s5.16d

analogous to the form of the charge-carrier force ins5.9d.
It is again instructive to consider two limiting cases. For a

pulse that is much shorter than the attenuation length,s5.16d
reduces approximately to

k1u:F̂z
Hstd:u1l = −

"v0

2hphg
Hhp

l
Shp −

1

hg
DexpS−

ct

hgl
D

3erfcS−
Î2ct

L
D −Î 2

p

1

L
shp

2hg + hg − 2hpd

3expS−
2c2t2

L2 DJ, L/hp ! l . s5.17d

Integration over the time produces a total momentum trans-
fer to the host semiconductor of

E
−`

`

dtk1u:F̂z
Hstd:u1l =

"v0

c
HS 1

hg
− hpD + Shp

2 + 1

2hp
−

1

hg
DJ ,

s5.18d

where the two terms in the main bracket are the contributions
of the corresponding terms ins5.17d. In the opposite limit of
a pulse that is much longer than the attenuation length, use of
the asymptotic forms5.11d leads to

k1u:F̂z
Hstd:u1l = −Î 2

p

"v0shp
2 − 1d

2hpL
expS−

2c2t2

L2 D, L/hp @ l ,

s5.19d

with a time variation identical to that of the charge-carrier
force in s5.12d. Further integration ofs5.19d over time pro-
duces a total momentum transfer of

E
−`

`

dtk1u:F̂z
Hstd:u1l = −

"v0shp
2 − 1d

2chp
, s5.20d

identical to the summed value ins5.18d and in agreement
with the expectation value ofs4.13d for a single-photon
narrow-band pulse. The total transfer of momentum to the
combined system of charge carriers and host semiconductor
obtained by summation ofs5.13d and s5.20d agrees with
s4.15d.

C. Discussion

A more complete understanding of the detailed processes
of momentum transfer from light to charge carriers and host
semiconductor is provided by consideration of some limiting
cases.

sid L /hp! l !D. These conditions ensure that the passage
of the pulse into the active region of the sample occurs in a
time short compared to the duration of its subsequent attenu-
ation in the bulk material and that none of the light reaches
the far boundary of the sample. The surface and bulk contri-
butions to the Lorentz force, described at the beginning of
Sec. IV B, are clearly separated in this case. They are char-
acterized by a time dependence similar to that of the Gauss-
ian pulse itself for the surface contribution and an exponen-
tial fall-off over the attenuation timehgl /c for the bulk
contribution. The time-dependent forces5.10d on the charge
carriers shows only a bulk contribution, while the force
s5.17d on the host shows both bulk and surface contributions
given, respectively, by the two terms in the large bracket.
Illustrations of the time dependences of these three contribu-
tions are shown in Fig. 1. The total time-integrated force
obtained froms5.13d and s5.18d is

FIG. 1. Time dependence of the forces on charge carriers and
host for a semiconductor whose attenuation length is 10 times the
single-photon pulse length in the medium. The bulk force on the
chargessCBd is given bys5.10d, while the bulksHBd and surface
sHSd forces on the host are given by the two terms ins5.17d. The
force is in units"v0/2l, the time is in unitsL /Î2c, and hp=hg

=4.
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E
−`

`

dtk1u:F̂z
Hstd + F̂z

Cstd:u1l

=
"v0

c 5hp
2 + 1

2hp
−

1

hg
host

surface

+ S 1

hg
− hpD

host
bulk

+ hp
charge
bulk 6

=
"v0

c Hhp
2 + 1

2hp
−

1

hg
surface

+
1

hg
bulk
J . s5.21d

Combination of the charge carrier and host momentum trans-
fers to the bulk thus produces the Abraham value of
"v0/hgc, in contrast to the Minkowski value ofhp"v0/c
produced by the charge carriers alone. This Abraham value
represents the total momentum available for transfer from
the pulse to the bulk material once it has fully entered the
active region of the sample, at the relatively very short time
of orderL /c. A total bulk momentum transfer of"v0/hc was
found previouslyf2g for a semi-infinite dispersionless dielec-
tric in the form of a single-component optical system, with-
out the separation intoh andk contributions, which occurs
in the photon drag effect.

sii d l !D!L /hp. The condition that none of the light
reaches the far boundary of the sample is retained, but now
the pulse is much longer than both the attenuation length and
the sample thickness. This is the regime of the photon drag
measurementsf7g. The time-dependent forces on the charge
carriers and host semiconductor, given bys5.12d and s5.19d,
respectively, are completely determined by the Gaussian
pulse shape. The momentum transfer per photon to the
charge carriers retains the Minkowski value ofhp"v0/c, and
the total transfer to the host retains the value given ins5.20d,
but there is no longer the separation into surface and bulk
contributions shown ins5.21d. The proportionality of the
charge carrier force ins5.12d to the pulse intensity is repro-
duced in the induced voltage generated across the semicon-
ductor sample by the photon drag effect. The measured volt-
age forms the basis for the photon drag detector, a device
that measures infrared pulse profilesf22g.

siii d L /hp!D! l. Conditions in which the attenuation
length is much greater than the sample thickness have been
treated in earlier workf2,3,28–30g. This limit is not covered
by the present calculations on the photon drag effect, but the
results are relevant to the value of the total momentum trans-
fer derived here. With negligible attenuation over the sample
thicknessD, all of the incident light is either reflected or
transmitted. The surface force mechanism described at the
beginning of Sec. IV B continues to operate, but the positive
force generated as the pulse enters the medium atz=0 is at
least partially compensated by a negative force generated by
the same mechanism as the pulse leaves the medium atz
=D. The two forces exactly cancel for a slab of dielectric
with antireflection coatingsf3,29g when the passage of the
pulse shifts an initially stationary slab to a new stationary
position, with no permanent transfer of momentum. How-
ever, application of momentum conservation to the state of
the system when the pulse lies within the slabf30g produces
an optical momentum of"v0/hgc per photon, in agreement

with the Abraham value derived here for the total momentum
transfer. More complicated behavior occurs in the presence
of reflection at the slab surfacesf2,28g. The results for a
transparent slab emphasize the qualitative difference between
the reversibility of the surface force and the irreversibility of
the bulk force.

VI. CONCLUSIONS

The main results of the calculations are the expressions
s4.9d ands4.13d for the transfers of momentum from light to
the charge carriers and host semiconductor in the photon
drag effect and the expressionss5.9d and s5.16d for the re-
spective time-dependent forces produced by a single-photon
pulse. The calculated transfer of linear momentum to the
charge carriers ins4.9d agrees with the measurementsf7g in
assigning the Minkowski value ofhp"v /c per photon. The
transfer of momentum to the host semiconductor ins4.13d is
essentially fixed by momentum conservation, which requires
the total momentum transfer per photon to have the value
given in s4.15d. The momentum transfers calculated in Sec.
IV are valid for all forms of incident light that satisfy the
overall conditionvt!1 discussed in Sec. III.

Additional information on the detailed processes of mo-
mentum transfer is provided by the calculations of Sec. V for
an incident single-photon pulse, and the significance of the
results is discussed in Sec. V C. The main additional feature
emerges for pulses much shorter than the attenuation length,
when the momentum transfer to the host semiconductor can
be separated into surface and bulk contributions, as ins5.21d;
the total bulk momentum transfer in this case, charges plus
host, equals the Abraham value of"v0/hgc. The practical
device of the photon drag detector relies on the opposite
limit of pulses much longer than the attenuation length, when
the time-dependent voltage generated by the forces on the
charge carriers mimics the optical pulse shape.

Our method of calculation, based on evaluation of the
Lorentz force, has the advantage of providing results for the
momentum transfers from light to macroscopic media mea-
surable in experiments. A great deal of previous work, well
reviewed inf1g, is concerned with the identification of the
momentum carried by the photon in dielectric media, often
viewed as a conflict between the Abraham and Minkowski
expressions, with one or the other or neither regarded as the
“correct” answer for the system in question. We have argued
in Sec. II that there is no conflict between the Abraham,
Minkowski, and other formulations of the electromagnetic
stress tensor. Furthermore, we have shown in Secs. IV and V
that there is no unique expression for the momentum transfer
from light to matter in the photon drag effect but that the
Abraham and Minkowski values can both, in principle, be
observed by appropriate measurements. Another focus of
previous work that is untouched by our method of calcula-
tion is the devision of total momentum between “electromag-
netic” and “material” contributions, and we can make no
comment on this aspect of the problem.

Our specific results for the photon drag system harmonize
with some previous, more general discussions of photon mo-
mentum. Thus, Gordonf16g finds the Abraham form
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"v0/hgc for the “true field momentum” and the Minkowski
form hp"v /c, identified as the “pseudomomentum,” for the
momentum transfer to material objects in dielectric media.
Joycef31g presents a classical particle description of the ra-
diation pressure problem, with the Abraham form for the
“energy-carrying momentum” that determines the displace-
ment of a slab and the Minkowski form for the “impulsive
momentum” that determines the momentum transfer to a re-
flector immersed in the medium. McIntyref32g considers
more general forms of wave and matter, partly in the context
of fluid mechanics, and reaches conclusions similar to those
in f16g. Nelsonf33g finds the Abraham form for the electro-
magnetic field in nonmagnetic media and the Minkowski
form for the “wave momentum” that enters wave-vector con-
servation relations. Very recently, Garrison and Chiaof34g
have given a quantum theory of the electromagnetic momen-
tum in a dispersive dielectric, finding that the Abraham form
determines the rigid acceleration of a dielectric, while their
“canonical momentum,” equivalent to the Minkowski form
as defined by us, determines the transfer to immersed ob-
jects. These authors also use macroscopic field quantization
of the classical expression to derive a form of “Minkowski
momentum” that differs from ours by an additional factor
hp/hg, not detectable in the photon drag experiments off7g.
By contrast, Mansuripurf35,36g has considered experiments
sensitive to the total momentum transfers4.15d, equal to the
arithmetic mean of the Abraham and Minkowski forms.

The best measurements of the momentum transfer to an
immersed object are those of Jones and Leslief37g. They
suspended a highly reflecting mirror in a range of dielectric
liquids and observed the Minkowski transfer ofhp"v /c per
photon. The measurements were sufficiently accurate to es-
tablish the occurrence of the phase refractive indexhp in the
momentum transfer, and not the group valuehg. The system
is somewhat similar to that in the photon drag effect, with the

optical properties of the mirror determined by its extinction
coefficientk and those of the host liquid by its real refractive
index hp. A Lorentz force calculationf2g again provides an
expression for the momentum transfer in agreement with ex-
periment. It was shown that the liquid takes up a momentum
transfer equal to the difference between the Abraham and
Minkowski values, as given by the “host bulk” term in
s5.21d, although the theory inf2g did not distinguish phase
and group refractive indices. A similar interpretation of the
mirror experiments has been given by Mansuripurf35g. On
the basis of these two examples, it appears that the total
momentum transfer to bulk material, free of any boundary or
surface effects, has the Abraham value of"v0/hgc but that
the transfer to an attenuating subsystem within the bulk ma-
terial has the Minkowski value ofhp"v /c.

The photon drag system treated here has a remarkable
combination of properties, in providing bases for both the
practical device of the photon drag detector and the theoret-
ical understanding of momentum transfer from light to mat-
ter. The separate contributions of the two system components
to the real and imaginary parts of the complex refractive
index in the photon drag effect provide a uniquely simple
division of the momentum transfers to the host semiconduc-
tor sunmeasuredd and charge carrierssmeasuredd, respec-
tively.

Note added in proof:The Minkowski momentum transfer
to the charge carriers in the photon drag effect has been
derived by an alternative treatmentf38g.
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