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Decay of superfluid currents in a moving system of strongly interacting bosons
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We analyze the stability and decay of supercurrents of strongly interacting bosons on optical lattices. At the
mean-field level, the system undergoes an irreversible dynamic phase transition, whereby the current decays
beyond a critical phase gradient that depends on the interaction strength. At commensurate filling the transition
line smoothly interpolates between the classical modulational instability of weakly interacting bosons and the
equilibrium Mott transition at zero current. Below the mean-field instability, the current can decay due to
quantum and thermal phase slips. We derive asymptotic expressions of the decay rate near the critical current.
In a three-dimensional optical lattice this leads to very weak broadening of the transition. In one and two
dimensions the broadening leads to significant current decay well below the mean-field critical current. We
show that the temperature scale below which quantum phase slips dominate the decay of supercurrents is easily

within experimental reach.
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I. INTRODUCTION

Many-body physics of strongly interacting ultracold at-
oms in optical lattices has been actively explored in the re-
cent years [1]. In particular, quantum effects of strongly in-
teracting bosons, such as number squeezed states generation
[2] and a quantum phase transition from the superfluid to the
Mott insulator [3], have been observed in agreement with
earlier theoretical predictions [4,5]. These developments
were followed by a broader theoretical analysis of phase dia-
grams of more complex systems including multicomponent
bosons [6-9], Bose-Fermi mixtures [10-12], and exotic
states exhibiting topological orders [13,14]. Such studies are
motivated by issues that arise in a traditional condensed-
matter context. However, unique features of the cold atom
systems also raise a completely new set of questions. In par-
ticular, the ability to continuously vary interaction param-
eters, coupled to the near perfect isolation of these systems,
opens the way to address quantum dynamics far from equi-
librium.

In this context, there exists a purely dynamical phase tran-
sition of a condensate of weakly interacting bosons moving
in an optical lattice. If the wave vector associated with the
condensate momentum exceeds a critical value, which is
equal to one-quarter of the reciprocal-lattice constant for the
square lattice [15,16], then the coherent motion of the con-
densate becomes unstable, resulting in the loss of superflu-
idity. Such a dynamical instability was observed experimen-
tally [17] by measuring loss of coherence as a function of the
condensate momentum. This transition is of classical origin,
in the sense that it is seen as an instability in the Gross-
Pitaveskii equations of motion (GPE). Reltaed nonlinear dy-
namical phenomena such as self-trapping and soliton forma-
tion have been studied in theory and experiment [18-21].
However, these studies focused on essentially classical sys-
tems, well described by GPE. Very little progress has been
made in analyzing far from equilibrium behavior of systems
where strong interactions and quantum fluctuations play an
important role.

In the present work we address this issue by focusing on a
problem relevant to recent experiments: the fate of superfluid
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currents in optical lattices in the strongly interacting regime.
We shall consider this issue via two questions, which will
turn out to be closely related. First, what is the effect of
quantum (as well as thermal) fluctuations on the dynamical
instability of a moving condensate? May the instabilitiy oc-
cur earlier, for example, in this case than the GPE prediction
of p.=m/2? The second question is, how does the
superfluid—to—Mott-insulator transition take place when the
condensate is moving in the lattice. This question may have
direct relevance for ongoing experiments on the superfluid-
insulator transition. When the condensate is loaded into a
magnetic trap it is hard to completely avoid center-of-mass
oscillations. In the absence of the optical lattice such a mo-
tion is frictionless and can persist for very long times. The
same is true in the superfluid phase in the presence of the
optical lattice as long as the center-of-mass momentum re-
mains small and the interactions are weak. But what is the
ultimate fate of this motion as the optical potential is in-
creased and the system approaches the insulating regime?

Effect of weak quantum fluctuations on the modulational
instability in one-dimensional traps was analyzed earlier nu-
merically by one of us [22]. It was shown that the quantum
fluctuations smoothen the sharp classical transition and lead
to the current decay at smaller amplitude of the center-of-
mass oscillations than predicted using the classical Gross-
Pitaevskii (GP) equations alone. Similar numerical results
were also reported in Ref. [23]. Recent experiments con-
firmed strong damping of the center-of-mass oscillations in
one-dimensional condensates far from the classical modula-
tional instability [24].

In this paper we present a general theoretical framework
of a superfluid-insulator transition in the current carrying
state. Strictly speaking this is a true phase transition only at
zero current. However, we find regimes where the broaden-
ing of the transition is small and even where a true discon-
tinuity survives. In such cases a phase boundary is still well
defined.

We shall show that at any nonzero current the transition is
irreversible. If one starts from a condensate with nonzero
current, increases the lattice strength past the transition point,
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then decreases it back to the original state, the current in the
final state will have vanished. The energy contained in the
initial motion of the condensate is transferred into thermal
incoherent excitations. Thus the dynamical transition is of
the first-order type. The current carrying state is a metastable
minimum of the classical (saddle-point) energy, and the tran-
sition occurs when the system escapes from this state.
Throughout this work we employ the well-known boson
Hubbard model [25], described by the Hamiltonian

H=2, —J(a;ak+a,'(aj)+2ga'»aj(a;aj—l), (1)
(k) J
where a;f and a; are the boson creation and annihilation op-
erators at the lattice site j, (jk) denotes pairs of nearest
neighbors, J is the single-particle hopping amplitude, and U
is the on-site repulsive interaction. Another implicit param-
eter is the average number of bosons per site N. If also a
condition UN>J is fulfilled, then the boson Hubbard model
can be mapped into the O(2) quantum rotor model [25]:

U
=52

H=2, —2]Ncos(¢k—¢j)+2 L

(k) J

2)

where ¢; and n; are the conjugate phase and the number of
particles on the site j. The system described by Eq. (2) also
undergoes a superfluid insulator transition at JN~ U and can
support current in the superfluid phase. In many situations,
the quantum rotor model is easier to analyze analytically and
we will frequently appeal to it. It is usually well justified in
the case N>1. Indeed, in this limit it is possible to have
simultaneously UN>J and JN either smaller or larger than
U. So at large N the mapping from the boson Hubbard to the
quantum rotor model can be justified in both the superfluid
and insulating phases.

Our paper is organized as follows. In Sec. II we give an
overview of our main results and present a physical picture.
In Sec. IIl we derive the mean-field phase diagram separating
stable and unstable regimes of current flow. Section IV fo-
cuses on the current decay mechanisms due to quantum and
thermal fluctuations. In particular, we obtain leading
asymptotic contributions to both quantum and thermal decay
rates near the mean-field instability. Then in Sec. V we con-
sider dynamics of the current decay and discuss the effects of
a parabolic confining potential. Section VI addresses the loss
of coherence in a condensate following supercurrent decay.
In Sec. VII we present the results of exact simulations in
small systems and discuss them in the context of our theo-
retical analysis. Finally, in Sec. VIII we summarize the re-
sults and discuss experimental implications. A shorter discus-
sion of the results presented here can be found in Ref. [26].

II. PHYSICAL PICTURE AND OVERVIEW OF THE
RESULTS

The existence of a critical velocity of a condensate in an
optical lattice was predicted [15,16] and observed experi-
mentally [17,18] in the regime of weak quantum fluctuations
(JN>U). In this case one can solve the Gross-Pitaevskii
equations of motion and find that the condensate becomes
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FIG. 1. Schematic representation of a perturbation to a state
with a uniform phase gradient. Dots represent phases on different
sites for uniform and perturbed systems. The lines are guides to the
eye.

unstable when the phase difference between adjacent sites
becomes larger than 7/2. There is a simple way to under-
stand this instability by considering how the superfluid cur-
rent flowing through the system changes with the condensate
momentum. In a continuum system the current is just

J=psp, (3)

where p, denotes the superfluid density and p the momentum
or phase gradient such that ¢(x)=px. In a discrete system
described by a tight-binding model, the above expression is
modified to

J=p,sinp. 4)

More generally sin p is replaced by a different function of p,
with the same elementary period. At small currents we re-
cover the continuum limit from Eq. (4). In the Gross-
Pitaevskii regime, the superfluid density does not depend on
momentum. Therefore the maximal current occurs at p
=/2, precisely where the condensate motion becomes un-
stable. As we argue below, this is not a coincidence. Con-
sider a perturbation, where the state with a uniform phase
gradient p is split into two equal domains with slightly
higher and slightly lower momenta p+dp (see Fig. 1). At
small dp we can expand the energy difference between the
perturbed and unperturbed configurations in powers of Jp.
The linear term in the expansion vanishes because the con-
tributions to the energy from the left and the right domains
exactly cancel each other and we are left only with the qua-
dratic term:

1dE . 1dE \dE ., 1d°E,_ ,
OE= ———6&p+_——(=dp)+2,——(dp)"=5"=(dp)".
2dp 2dp 4dp 2dp

(5)

Noting that the superfluid current is formally defined as the
derivative of the energy with respect to phase gradient,
J(p)=dE/dp, we find
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s " (5o, ©)
dp

Thus if the current is an increasing function of the momen-
tum, then small deviations from the uniform state increase its
energy. On the other hand, if dJ/dp <0 then the fluctuation
just considered reduces the energy of the system. In this case
it is obvious there is a manifold of resonant configurations
obtained by a smooth continuum transformation from a uni-
form state. For example, one can take the state in Fig. 1 plus
a weak positive energy fluctuation. So there is no energy
barrier protecting a uniform state from fragmentation. Let us
note that this argument shows that the positive slope of the
current with respect to p is a necessary condition for the
stability of the uniform state. It does not exclude, however,
that the current can decay even if this condition is satisfied.
In Sec. IV we will see that this indeed occurs due to quantum
or thermal phase slips [27,28].

Consider now the strongly interacting regime. Suppose
that we deal with a uniform system at commensurate (i.e.,
integer) filling. It is well known that such systems undergo a
superfluid-insulator transition [4] at zero temperature. This
transition is driven by quantum fluctuations which increase
with the interaction strength. As p increases the effective
hopping amplitude in the direction parallel to the current
decreases as J.;— J cos p resulting in reduction of the sound
velocity [16]. Alternatively, reduction of J.¢ can be viewed
as an increase of the single-particle effective mass with qua-
simomentum. This immediately follows from a single-
particle band structure. As a result, quantum fluctuations,
which are determined by the ratio (U/J.zN) [35], become
stronger with p, implying concomitant increase of quantum
depletion of the superfluid density. Therefore Eq. (4) should
be rewritten as

J=p(p)sinp, (7)

where p(p) is a monotonically decreasing function of the
momentum. Thus the product reaches a maximum at some
p* < /2. In the Gross-Pitaevskii regime JN> U, the depen-
dence of p(p) on p is very weak and we find that p* =~ 77/2.
On the other hand, in the vicinity of the superfluid-insulator
transition p(p) is both very small and very sensitive to varia-
tions of J,g. Thus we expect that in this case p* will be close
to zero.

In Sec IIT we give a formal derivation of the critical mo-
mentum at which the condensate motion becomes unstable.
Using the time-dependent Gutzwiller approximation, we plot
the critical momentum as a function of the interaction
strength. This phase boundary interpolates between the usual
dynamical instability occurring at p=1/2 for small interac-
tions and the vanishing critical momentum at the equilibrium
superfluid-insulator (SF-IN) transition (see the top graph in
Fig. 4).

The situation is different in the noncommensurate case.
No matter how strong the interaction strength, it cannot lo-
calize the excess particles (or holes) moving on top of the
Mott background. This excess density always remains super-
fluid, independent of J. and thus also of p. Together with
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Eq. (7), this implies that at strong interactions the instability
occurs at p=m/2. On the other hand, for sufficiently weak
interactions, where the number fluctuation per site SN>1,
there is no distinction between integer and noninteger den-
sity. Therefore for U not too large the critical momentum
should decrease with U from /2. Indeed we find, using the
time-dependant Gutzwiller approximation, that for the in-
commensurate case p,. reaches a minimum at some finite
interaction strength and saturates on /2 for both very weak
and very strong interactions (see the bottom graph in Fig. 4).

In Sec. Il B we develop an analytical approach, which
describes the behavior of the critical momentum p,. versus
interaction in the vicinity of the zero-current SF-IN transi-
tion. We show that in the commensurate case p,. vanishes as
1/¢, where & is a coherence length, which diverges at the
transition. At noninteger filling we confirm the nonmono-
tonic behavior of the critical momentum.

In practice the system always includes a global harmonic
confinement, which leads to a nonuniform density distribu-
tion. In this case we find that the instability first occurs at the
the edges of the condensate where N=1 regardless of the
peak density N, in the middle of the trap (see Sec. V). There
is a difference between large and small N, which manifests
in the dynamics of the current decay. For Ny=1 (as well as
in uniform systems with arbitrary filling) we find that near
the instability the decay is underdamped, i.e., the instability
rapidly grows in time destroying the current state. On the
other hand, if N, is large, the momentum oscillations decay
gradually after the edges become unstable. There is another
important difference between the uniform and parabolically
trapped condensates. In a uniform lattice there are only two
energy scales, set by U and J, and their ratio completely
determines the behavior of the system. With harmonic con-
finement on the other hand, due to the presence of another
energy scale one should take into consideration whether U or
J or both are being changed in the experiment (see the dis-
cussion in Sec. V and Appendix C).

So far we concentrated on the results of the mean-field
dynamics at zero temperature, where the time evolution is
simply described by classical equations of motion. In Sec. IV
we go beyond the mean-field dynamics to analyze the effect
of quantum and thermal fluctuations. These act to generate
phase slips, which induce current decay even prior to the
classical instability. A phase configuration for a particular
phase slip is shown in Fig. 2. Basically a phase slip corre-
sponds to generation of a large phase difference on a particu-
lar link (or in the vicinity of this link) and simultaneous
reduction of the phase gradient in the rest of the chain. Be-
cause the energy is a periodic function of phase differences,
by generating phase slips the system reduces its superfluid
current. We calculate the leading exponents of the decay
rates in the Gross-Pitaevskii regime of relatively weak inter-
actions and in the quantum critical regime close to the SF-IN
transition. We find that broadening of the mean-field transi-
tion is strongest in the one-dimensional case. In particular,
deep in the superfluid regime, the phase-slip tunneling rate at
p— /2 scales as
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FIG. 2. Schematic representation of a phase slip. Notations are
the same as in Fig. 1.

JN
I'ex exp(—Sd\/?(77/2—[))(6_‘”2)), (8)

where S; is just a number that depends on the number of
space dimensions [see Egs. (50)-(52)]. We obtain similar
results for the thermal decay. Although below 77/2 the decay
in three dimensions is clearly much weaker than in one di-
mension, there is no qualitative difference between various
dimensions. As long as the ratio JN/U remains large, the
tunneling of phase slips is exponentially suppressed.

Next we derive analytical expressions for the exponents
characterizing the decay rate in the vicinity of the equilib-
rium SF-IN transition. We find again that fluctuation induced
decay is stronger in lower dimensions. However, there is no
small parameter like U/JN controlling the mean-field results.
We show that in one dimension the exponent always remains
of the order of 1, implying significant broadening of the
mean-field transition. In three dimensions, by contrast, we
find that the quantum decay rate does not vanish at the mean-
field instability, but rather exhibits a discontinuous jump. In
this sense, the three-dimensional system undergoes a sharp
dynamical transition at zero temperature.

The physical picture of current decay due to generation of
phase slips is similar to the situation in superconductors. In
particular, deviation of the critical current from the mean-
field result was observed in thin superconducting wires [29]
and explained theoretically [30,31]. The mechanism respon-
sible for reduction of the critical current was identified as
creation of phase slips due to thermal fluctuations. The ques-
tion of observing current decay in superconductors due to
quantum tunneling is still debated (see Ref. [27] for recent
developments). We will show that in the systems under con-
sideration here, current decay due to quantum effects is eas-
ily within experimentally reach. For a one-dimensional sys-
tem, for example, the characteristic temperature below which
quantum decay dominates in the GP regime (far from the
Mott transition) is of the order of the Josephson energy (7™
~\UJN). This is much higher than typical temperatures in
optical lattice experiments. At strong interactions, in the vi-
cinity of the Mott transition, broadening of the mean-field
transition due to quantum phase slips is always large in one
and two dimensions. Only in the three-dimensional case,
where quantum tunneling is suppressed, can thermal fluctua-
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tions be responsible for current decay below the mean-field
transition. Some additional details on the relation between
current decay in superconductors and in optical lattices can
be found in Ref. [32].

Let us now briefly mention some interesting experimental
implications of our results. We envision the following experi-
mental scheme. Start with a superfluid state far from the
Mott insulator. Then either boost the condensate to some
nonzero momentum [17], or induce a center-of-mass oscilla-
tion in the trap [24]. Now, slowly increase the interaction
parameter up to a specified point. This can be done in the
usual way by increasing the lattice intensity, or alternatively
by decreasing the detuning from a Feshbach resonance. Fi-
nally decrease the interactions back to their original value. If
the dynamical phase transition is sharp then as long as the
system does not cross the transition boundary [Fig. 4(a)]
within this cycle, the process should be completely revers-
ible. In particular, the initial current (or center-of-mass oscil-
lation), as well as phase coherence, should be fully recov-
ered. At the same time, if the system does pass through the
transition, the current will be lost irreversibly and the system
will heat and partially lose its coherence, compared to the
original state.

One of our main results is that in a three-dimensional
optical lattice this mean-field dynamical transition is sharp,
and it essentially survives the effect of fluctuations. Such
experiments can thus map the nonequilibrium phase diagram
shown in (Fig. 4) and directly trace the connection between
the classical modulational instability (p.=7/2) and the the
equilibrium Mott transition. In fact, due to its discontinuous
nature, the dynamical transition point is much easier to de-
tect. This suggests an accurate method to determine the po-
sition of the equilibrium Mott transition by extrapolating the
dynamical transition line to zero momentum.

One comment is in order concerning heating and loss of
coherence in the final state. In Sec. VI we show that in three
dimensions this loss of coherence is only significant at very
large currents (p~ 7/2). In one dimension (and to a lesser
extent in two dimensions), the loss of coherence due to irre-
versible heating depends on the system size or experimental
resolution and may thus be large even at small currents.

III. MEAN-FIELD DYNAMICS AND CRITICAL
CURRENTS IN OPTICAL LATTICES

A. Gross-Pitaveskii regime

Despite its simple form, the Bose Hubbard model (1) is
not integrable in any spatial dimension [33,34] and cannot be
solved completely. Nevertheless, there are some limits where
one can make considerable progress in understanding its
static and dynamic properties. In particular, one can easily
address the regime of weak quantum fluctuations, which is
the case when JN> U [35]. Then one can use discrete Gross-
Pitaveskii equations [36]. For the Hamiltonian (1) these are
given by

dir.
S g Uy, 9)
t keO

where the classical fields ¢; and (/1; correspond to the expec-
tation values of a; and a']’-', respectively; the set O contains the
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nearest neighbors of site j. In the quantum rotor limit UN
>J the number fluctuations are weak and can be integrated
out leaving us with equations of motion for the phase ¢,

=arg ¢; only:

2
%le—szE sin(¢y — ;). (10)
dt keO

Both Egs. (9) and (10) can support stationary current carry-
ing states ;%exp(ipj). A simple linear stability analysis
shows that these states are stable towards small perturbations
for p<ar/2 and become unstable otherwise [15,16]. Thus
/2 is the critical phase twist above which a uniform super-
fluid state breaks down. The transition from the superfluid to
the insulating state associated with this instability is known
as the classical localization transition. It was recently ob-
served experimentally [17]. In the presence of quantum fluc-
tuations, the current can decay even for p < /2 via quantum
tunneling. Clearly these fluctuations should be increasingly
important as the system approaches the Mott phase. The
same is true for decay due to thermal fluctuations as one
increases the temperature. In the next section we will address
this issue in detail.

B. Critical current in the vicinity of the SF-IN transition

The Gross-Pitaveskii description of the dynamics breaks
down at strong interactions. Moreover, when JN~ U the
Bosonic system at commensurate filling (N is integer) under-
goes the Mott insulator transition entirely driven by quantum
fluctuations [4,25]. In the uniform system with a fixed den-
sity this transition lies in the universality class of the xy
model in d+1 dimensions [25], the properties of which were
well studied long ago [37]. So there is also hope to get in-
sights to some nonequilibrium properties of the interacting
bosons in the vicinity of the phase transition. The latter, as
any generic second-order phase transition, is characterized
by a diverging correlation length & [25], which sets the
length scale for all low-energy universal properties of the
system. In particular, close to the critical point the low-
energy long-wavelength fluctuations can be described by
relativistic (z=1) effective field theory [25]. In terms of dy-
namics this implies that the classical equations of motion
also take explicitly relativistic invariant form [38]:

s
(9—;//=Vzl/f+rllf—|l//|2¢/f, (11)

where i is the superfluid order parameter, r tunes the system
across the SF-IN transition: >0 corresponds to the super-
fluid phase and r<<0 does to the insulator. Here we rescaled
the units of coordinates and time by a constant of the order
of 1 (see Appendix A for the details). The correlation length
& is related to the tuning parameter r as £ 1/4|r]. We point
out that Eq. (11) is very reminiscent of the conventional con-
tinuum Gross-Pitaeskii equation with the only difference that
there is a second- (as opposed to first-) order time derivative
in the left-hand side. This equation has a conserved charge:
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Q= fd =W b= payp), (12)

which is proportional to the deviation of the particle density
from the integer filling; the constant A is explicitly given in
Appendix A. Thus the stationary solutions correspond to the
commensurate transition. In the noncommensurate regime
there is no phase transition, but one can still use Eq. (11) if
the deviation from the integer filling is small.

1. Commensurate case

Let us analyze the fate of the current-carrying case if the
mean number of bosons per site is integer. Equation (11)
supports stationary states of the form

Yx,z) = \r— pze””‘ (13)

where z denotes the d—1-dimensional space of transverse
coordinates. Without any further analy51s it is obvious that
current states become unstable at p = \r~1/¢, i.e., the criti-
cal momentum vanishes at the superfluid-insulator transition
point. To be more precise, we can evaluate the spectrum of
small fluctuations of Eq. (11) around the stationary solution
(13):

Q) =r-p+ @ = \(r-p)?+4p’CE,  (14)

where ¢ is the wave vector characterizing the fluctuations
around the state (13). In the long-wavelength limit |q| — 0
the expression above yields simplified frequencies for the
amplitude and the phase modes:

2
+p
wi(q) = 2(r- p2)+ pzqﬁql, (15)
2 2= P’ 2
wz(‘l)qu 2 +q; . (16)

The first (amplitude) branch is always gapped unless p>>r
and therefore is stable against small fluctuations. On the con-
trary, the second, phase mode, becomes unstable at p>p,
=\r/3. We would like to stress that the relativistic nature of
excitations is crucial to get this instability. Despite being
continuum Eq. (11) relies on the presence of the underlying
lattice, which breaks the translational invariance. Otherwise
the equations of motion would be Gallilean invariant and no
critical current would exist.

From the analysis above we see that close to the
superfluid-insulator phase transition current states become
unstable at momenta inversely proportional to the correlation
length of the condensate. As one goes deeper into the super-
fluid regime the correlation length decreases saturating at 1
(in the lattice units) and we come back to the Gross-
Pitaveskii result of instability occurring at p=m/2~ 1.

2. Incommensurate case

It is also interesting to consider the stability of the current
states at the noncommensurate filling. In this case the system
remains superfluid at arbitrarily strong interactions [25]. If
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the interactions are weak the system is in the Gross-
Pitaveskii regime and the filling is not important. In this case
we expect a usual modulational instability at p =~ 7/2. At the
same time, when the interaction strength becomes very large,
we can think about excess particles as hard-core bosons
moving on top of the Mott insulator. But in turn, this would
be equivalent to a spin-one-half system. At the mean-field
level we can use again spin-wave theory to see that p,. is
exactly equal to 7/2. This suggests that p,. should have a
minimum at the intermediate interaction strength.

The solution of Eq. (11) corresponding to the noncom-
mensurate filling factor can be written as

Pl(x,z,1) = p ePHH, (17)

where p=\r+u?—p? and u is related to the deviation from
integer filling on:

Sh=Aup’. (18)

As in the commensurate case, in the long-wavelength limit
there are two branches describing a gapped amplitude mode
and gapless phase fluctuations. The dispersion of the latter
for q parallel to the x axis reads

2up g+ —2L
2uP+p* 2uP+p

w(q) = SV3p* - 2r|q]. (19)

From this we observe that the current state first becomes
unstable when 3p?=2r. Together with Eq. (18) this gives the
critical momentum

_frL e 20)
Pe= N 3T 4242

This result reduces to the commensurate limit for on=0.
However, for any nonzero on it shows that p. reaches the
minimum value pX « n'”3 at ry n®> and then diverges as
r— 0. While the divergence is the spurious result of the con-
tinuum approximation; it should be cut off by the lattice at
p=1, the existence of the minimum agrees with the simple
general argument given above.

C. Gutzwiller approximation

Having derived the conditions for the stability of the
current-carrying condensate in a lattice in the two extreme
limits, one can try to find a unifying approach, which inter-
polates between them. A natural choice is the Gutzwiller ap-
proximation. This is a time-dependent generalization of the
standard mean-field theory, where the wave function is as-
sumed to be factorizable:

Gy =11 | X fiuln; |- (21)
J n=0

Here j denotes a site index and »n site occupation. The ansatz

(21) supplemented by self-consistency conditions leads to

equations of motion:
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FIG. 3. Condensate fraction as a function of scaled interaction
for a two-dimensional condensate with filling N=1 evaluated within
Gutzwiller approximation on a square lattice of size 80X 2 [40].
The initial momentum is p=1r/5. The other parameters are J=1 (so
that the interaction strength corresponding to the transition to the
Mott state is U,~23.2) and the interaction increases in time as U
=0.04¢. The condensate motion clearly becomes unstable at certain
interaction (U/U,.~0.57), which marks the dynamical transition.

r U — — *
- lfjn = En(n - l)fjn - JZ( \”nfj,n—le +\Nn+ 1fj,n+ll/"j)»
(22)
where
1
W=~ 2 (GlalG). (23)
ieO

O is the set of nearest neighbors to j and z is the coordination
number (z=2d for a hypercubic lattice). In practice the sum
in Eq. (21) is limited to a finite number of states, on each
site, so that only a finite number of equations need to be
solved. We checked that in our numerical simulations we
take sufficient number of states so that the results are insen-
sitive to the truncation. In particular, for N=1 we compared
simulations for the spectrum truncated at five and ten states
per site and the results were practically indistinguishable.
The Gutzwiller approximation can be justified at high dimen-
sions, where the coordination number z becomes large. In
this sense it is reminiscent to the dynamical mean-field
theory [39]. In reality, it is necessary to calculate first quan-
tum corrections to the evolution governed by Eq. (22) to see
the validity of the Gutzwiller result at a given dimensionality.
We will postpone such an analysis until the next section.
To find numerically the position of the dynamical insta-
bility corresponding to Eq. (22) we can carry out one of the
following procedures. (i) Starting from the noninteracting
state (U=0), where the Gutzwiller ansatz becomes exact, and
a given phase gradient p we adiabatically increase U. Ob-
serving either the current or the condensate fraction (which
we define as the population of the state with the momentum
p) we can identify the critical interaction at which the motion
becomes unstable (see Fig. 3). (ii) Alternatively we can find
numerically the mean-field ground state corresponding to
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given U and J and adiabatically increase a gauge potential so
that Eq. (23) modifies to

1 . .
Ui = Z<<G|aj+l,l|G>el¢(t) + <G|aj—1,1|G>e_'¢(t)

+ E <G|aj,l’|G>)- (24)

1'e0’

Here we explicitly introduced indices along the current j and
in the transverse direction 1; O’ is a subset of O, which
excludes the sites {j+1,1}. If the system is stable then the
condensate remains at the momentum p=0 in a moving lat-
tice, which is of course equivalent to a moving condensate
with p=¢(7) in a stationary lattice. Once the motion becomes
unstable the distribution at p=0 rapidly drops. The second
approach is favorable, because it does not require quantiza-
tion of the momentum in units of 27r/M in finite systems of
longitudinal size M, where the actual calculations are per-
formed.

Identifying the point of dynamical instability as described
above for different interaction strengths we can construct a
mean-field phase diagram separating stable and unstable con-
densate motion for both integer and noninteger filling factors
(see Fig. 4). This phase diagram is in complete agreement
with what we expected from the analysis given in the previ-
ous subsections. Thus at small interactions the critical mo-
mentum approaches /2 for any filling or dimensionality of
the lattice. At integer filling the critical momentum vanishes
at the point of commensurate superfluid-insulator transition.
In the incommensurate case the critical momentum first goes
down with the interaction strength and then increases back to
/2 in the strongly interacting regime.

IV. BEYOND MEAN-FIELD THEORY. CURRENT DECAY
DUE TO FLUCTUATIONS

The analysis given in the previous section is valid only at
the mean-field level. Quantum and thermal fluctuations can
destroy the current by either phase-slip tunneling or thermal
activation. The main goal of this section is to derive leading
contributions to the decay rate and check the validity of the
mean-field results. To simplify the analysis we will concen-
trate on the two tractable limits: the Gross-Pitaveskii regime
describing the system deep in the superfluid phase and the
Ginzburg-Landau regime, which is valid in the vicinity of the
superfluid insulator transition, where the correlation length
becomes large compared to the lattice constant. Also for sim-
plicity we assume that the filling is large and integer so that
one can use the quantum-rotor model.

A. Gross-Pitaveskii regime
1. Current decay due to quantum tunneling

As we argued above, the current state with p<<a/2 is
stable with respect to small fluctuations. However, this state
does not correspond to the energy minimum, which has no
current. So we conclude that such a state must be metastable.
Contrary to a uniform system, where the momentum can be
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FIG. 4. Mean-field phase diagram separating stable and unstable
motion of condensate. The vertical axis is the condensate momen-
tum in the inverse lattice units and the horizontal axis is the nor-
malized interaction. The top graph shows the result for integer fill-
ing N=1 at different spatial dimensions. The bottom graph
describes a two-dimensional lattice with different filling factors.

gauged away via the Gallilean transformation, in a lattice
there is a preferred reference frame. This immediately im-
plies that such a metastable state should be able to spontane-
ously decay because of quantum tunneling.

In the leading order in U/JN, which plays the role of the
effective Planck’s constant for this problem [41], the tunnel-
ing rate (I') corresponds to the action (S) of the bounce so-
lution (instanton) of the classical equations of motion in the
inverted potential [42]:

[oces, (25)

We will not attempt to compute the prefactor here and will
concentrate only on S. We just point out that the prefactor
scales with the system size and in the thermodynamic limit
the tunneling rate per unit volume is size independent. Ex-
plicitly the action reads as
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S= 2 (@‘u)z—Z]NCOS((ﬁ - i)
2U dr 1+ i

—2JNcos(p+ 11— ¢,‘,1)] , (26)

where as before j denotes the coordinate along the current
direction and 1 corresponds to the transverse coordinates. In
Eq. (26) we redefined phases compared to Eq. (10): ¢,
— ¢;—px; so that ¢;=0 corresponds to a metastable current
state and the new phases are the fluctuations around this
state. It is convenient to redefine the imaginﬂ'ﬂime T, mea-
suring it in Josephson time units: 7— 7/UNJ. Then it is

easy to see that
JN
S=1/—s, 27
V7R (27)
where

S dT[i(%)2
1 2

dr

-2 COS(d’j,m - d’j,l) —2cos(p + dis11— ¢j,l):| .
(28)

The desired instanton trajectory is the solution of the Euler-
Lagrange equations, which can be obtained extremizing the
action with respect to the phases ¢;; and subject to a bound-
ary conditions ¢;;=0 at 7=+

Before proceeding with a general analys1s in higher spa-
tial dimensions let us consider the case d=1 first. In this
work we are interested in the decay close to the critical cur-
rent p.=/2. Clearly as p— p,. the effective tunneling bar-
rier becomes weaker and weaker and hence we can expand
Eq. (28) in powers of ¢;:

2
5= 2 f d?{%(%) +cos(p) (s = d’j)z

(¢+13 (1= $)° ] (29)

This expansion is similar to that used in the analysis of ther-
mally mediated decomposition near the spinodal point [43].
In the action above we used that sin p~sin p.=1. Now we
can do another rescaling:

b;=cos(p) B, T=———, (30)
Veos(p)

which simplifies the action even further:
s = (cos p)>°s, (31)

where
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~_ - d¢ 2 ($'+1_$')3
S‘?J‘”z<d ) (G — @) -

(32)

Note that 5 is just a number of the order of 1 so that Eq. (31)
completely determines the momentum dependence of the ac-
tion. The scaling (30) guarantees that the original phases ¢,
remain small for the instanton trajectory and Eq. (29) is in-
deed a correct asymptotical form of Eq. (28).

Since the action § contains no small parameters, the
bounce solution should be localized within a few sites. With-
out loss of generality we can assume that the maximum
phase difference develops between the sites labeled by j=0
and j=1. For the rest of the system the phase gradients are
relatively small so we can neglect cubic terms. Then those
degrees of freedom can be integrated out:

3= [ (a6

where a(7)=,(7) - y(7) and a(w) is its Fourier transform;

2 2

w w
Mo)=1+———1/1+—. 34
(@=1+ 5 =51+ 5 (34)

Substituting Eq. (33) into Eq. (32) we find

- 1(da(n) 1
S~Jd7[4( dT) (7) a*m]

+ f 4 wp— (35)

4 || + V8 + ?

Clearly, if we ignore the last term in the expression (35) we
get the action of a single particle moving in a metastable
potential. The last term represents a dissipativelike contribu-
tion coming from the rest of the chain. If we ignore this term
then the solution extremizing Eq. (35) is

3

—_—. 36
cosh? ¢/ \5 (36)

a(7) =

This yields §=24/5=4.8. In a general case with dissipation
we can try a variational ansatz solution:

37
a(n) = (:osh2 rr (37)
A simple numerical analysis gives

r=064, A=331, §=7.11. (38)

So the action is about a factor of 1.5 larger than without the
bath degrees of freedom. Using Egs. (33) and (38) one can
verify the consistency of the harmonic approximation used
for the sites other than “1” and “0.” In particular, it is
straightforward to get
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|,(0) — &,(0)]

o0) ~ (0.326, (39)

which is relatively small. The difference between phases in
further nearest-neighbor sites is even less. Therefore for
them the harmonic approximation is justified even better.

Instead of harmonic treatment of the phases other than ¢,

and ¢, we can exactly take into account the four nearest-
neighbor sites and ignore the rest of the chain. Then the
instanton solution is parametrized by the two independent
angles o and S:

bo=—d.1=al2, $=-d,=al2+p. (40)
Substituting this into the action and solving the correspond-
ing Euler-Lagrange equations one can show that in this case
§=6.1, which is about a factor of 1.26 larger than the result
with 8=0. This number is the exact lower bound for the
action 5 since the other degrees of freedom can only increase
the action. We will not further attempt to improve the accu-
racy of § noting only that the variational result 5=~ 7.1 should
be very close to the exact value.

We can straightforwardly generalize the one-dimensional
results to higher spatial dimensions. In particular, using the
same arguments as before close to the critical current we can
expand the action (28) up to the cubic order in ¢;:

dr

1(d¢;)’
5= d7.|: 5(—]‘) +cos(p)(bju11— &)’
il

> (i — b)) — %(¢j+l,l - ¢j,1)3] . (41)
1'e0’

Note that at p— /2 only longitudinal modes become soft,
acquiring a prefactor cos p in front of the quadratic term in
the action. This implies that the transverse width of the in-
stanton should be much larger than its longitudinal size and
we can safely use the continuum approximation for the
phases along the transverse directions. Then instead of Eq.
(41) we derive

2 2
5~ 2 f drd®! x{—(%) + (%) +cos(p)(dju1 — #)°

3B ¢,->3]. @)

In this equation x denotes transverse coordinates which re-
side in a d—1-dimensional space. As in the one-dimensional
case we can rescale

—
~ T xV2
¢=cos(p)p, 7= , X=— . (43)
Veos(p) Vecos p
In this way the action (42) becomes
5= (pe=p) "5y, (44)

where
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_Z(d_1>/22 fdd§|: ( ~.) +(¢j ¢J+1)2

1
_§(¢j_¢j+l)3]' “5)

Here {=(7,X) is a d-dimensional space-time coordinate. As
before 5, is just a number, which depends only on dimen-
sionality. The result (44) is quite remarkable. First of all it
shows that the action in higher dimensions vanishes much
more slowly near the critical current. From the scaling (43) it
is obvious that the chara@ﬁc transverse dimension of the
instanton scales as 1/yp.—p>1, justifying the continuum
approximation. Above d=6 the tunneling action would expe-
rience a discontinuous jump at p=p,, however, since we deal
with d=<3 this is not relevant. Now let us try to estimate 5.
We again proceed in the same spirit as in the one-
dimensional case. In the first approximation we consider

only a single phase slip ¢;=a/2, ¢,=—a/2 and treat the
motion of other phases in the harmonic approximation. The
corresponding dimensionless action reads
1
——ad
3 }

1
§d=2(d_l)/2Jdd§[Z(Va)2+a
1 ( d%
+ = y —2,
(2m) k+\8+K2

|la(k)[* (46)

where a(k) is the Fourier image of a(x). If we ignore the last
dissipative term in Eq. (46), then our action is identical to
that considered in Ref. [42] for the decay of a false vacuum.
In that work it was argued that the bounce solution is spheri-
cally symmetric and it satisfies the following equations of
motion:

11 d( da
240dg

bg d—g):Za—az, 47)
with the boundary conditions a(©)=0 and a'(0)=0. These
equations can be easily solved numerically and the result is

5,~21.92, §, ~87.32. (48)

So it is clear that at higher dimensions not only the exponent
of (p,—p) in the instanton action gets lower but also the
numerical prefactor gets larger. Now we can find the correc-
tion to the action due to the bath degrees of freedom coming
from the last term in Eq. (46). Instead of using the variational
approach as we did in the one-dimensional case, we will use
the exact solution of Eq. (47) to evaluate the contribution of
the bath term in the action. This will be the exact upper
bound of the action §;. Direct evaluation of Eq. (46) gives

48<75 <80, 87.3 <5, <97.5.
(49)

21.9 <5, <276,

Obviously the local approximation ¢;=0 for j#0, 1 works
better and better at higher dimensions implying that the ef-
fective size of the instanton in the longitudinal direction
(along the current) decreases with the dimensionality of the
space.
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Momentum p (in units of x)

FIG. 5. Large N zero-temperature phase diagram for the non-
equilibrium superfluid-insulator transition. The dashed line repre-
sents mean-field transition at p=7/2. The shaded regions corre-
spond to the tunneling action satisfying 1=<S=3, obtained within
the discrete phase model in different spatial dimensions. Below the
shaded regions the tunneling action is large and the current decay is
slow, so the superfluid state is stable for long time scales. Above the
shaded regions the current decays very fast and the superfluid state
is unstable.

Because the decay rate is strongly (exponentially) depen-
dent on momentum and coupling constants we can approxi-
mately define the stable phase at which the tunneling action
is larger than some number, say S>3, and unstable phase,
when there is no exponential suppression of the tunneling of
phase slips, say S<<1. The region in between will denote the
crossover between the stable and unstable regimes. In this
way we can define a crossover phase diagram (Fig. 5). We
see that except for U/JN << 1, there is a very strong broaden-
ing of the classical transition in one dimension. On the con-
trary, in the three-dimensional case effects of quantum fluc-
tuations are relatively weak and the crossover is very sharp.
We would like to point out that the derivation given here is
valid only deep in the superfluid regime U/JN <8d. Close to
the critical point it is necessary to use the coarse-grained
description which we discuss later.

To summarize this subsection we write explicit expres-
sions for the tunneling action in the phase model in three
spatial dimensions:

IN/[ 52

Sd=1z7.l U(E—p> s (50)
IJN(7 \*

Sd:2z25 U 5—]) , (51)
IN/[ 3/2

Sd=3 ~ 903 ?(E —p) . (52)

2. Thermally activated current decay

Now let us turn our attention to broadening of the mean-
field transition due to thermal fluctuations. A general formal-
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ism for finding the decay rate was developed by Langer [44].
It was later successfully applied to quasi-one-dimensional
superconductors [30,31] and to three-dimensional superfluids
at small currents [45].

Before proceeding with this general method let us point
out an essential difference between conventional condensed-
matter systems and the cold atoms systems addressed in this
work. In the former, it is the environment which introduces
thermal noise and dissipation [46] to the system leading to
diffusion in energy space and eventually thermal activation.
In cold atom systems, by contrast, the temperature is intro-
duced into the system during the preparation of the conden-
sate, i.e., the initial state of the condensate is described by a
thermal density matrix rather than a pure wave function.
Later the system is essentially isolated from the environment
and evolves according to the Hamiltonian equations of mo-
tion. We point out that the formalism of Ref. [44] was based
on very general assumptions, and therefore should be inde-
pendent of the details of the thermal fluctuations. Neverthe-
less, certain issues arise that require special attention. Con-
sider, for example, a superfluid flowing in a container whose
walls act as the thermal bath. The wall as well as the thermal
fluctuations arising from it set a preferred reference frame,
breaking the Galilean invariance of the superfluid and thus
allowing for the current decay. An isolated superfluid, on the
other hand, even if prepared at finite temperature, is Galilean
invariant. Thus current in such a superfluid cannot decay
unless there is an external potential, such as a lattice, that
sets a preferred reference frame. Because we are interested in
the current decay in the limit where the lattice is strong and
boson Hubbard model (BHM) is applicable, this subtlety is
irrelevant for our consequent analysis. The effect of breaking
Galilean invariance by weak external potential on thermally
activated current decay in one-dimensional superconductors
was recently studied in Ref. [47].

To simplify the analysis we assume that the temperature is
small so that there is no difference between the energy and
the free energy. Indeed, the difference between the two
amounts to the product 7S, where S is the entropy of the
system. At small temperatures the latter vanishes in the su-
perfluid as 7¢ so that the product TS goes to zero at least as
7% at T—0 and is always negligible compared to the activa-
tion energy, which does not depend on temperature.

As in the previous subsection, we first consider the one-
dimensional case. Following Refs. [31,44] we find the sta-
tionary solutions of the classical equations of motion:

Ld¢; -
2 a7 =S+ b= b)) +sin(-p+ =~ ). (53)

Clearly ¢;=0 describes a metastable state carrying the
current 2JN sin p. We note again that phases in Eq. (53) are
the deviations from the metastable current state. The other
saddle-point solution separating the states with different cur-
rents is

¢A_{(p;—p)j j<0 "
olmepli-2-pi =1,

where p’ =p—(m—2p)/M and p,=~p+(mw+2p)/M for a pe-
riodic chain of size M. The indices “~" and “+” correspond
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L =0 =N
| — N

FIG. 6. Schematic representation of a metastable current carry-
ing state and an unstable saddle-point solution. The arrows repre-
sent the superfluid phase at different sites of the lattice.

to phase slip and antiphase slip, respectively, with the con-
vention that the slip reduces the current. Schematically the
saddle-point and the metastable solutions are depicted in Fig.
6. Clearly the energy difference between the two states is

AE_=2JN[2 cos p —sin p(m—2p)] (55)
and
AE, =2JN[2 cos p + sin p(7+2p)]. (56)

Correspondingly, the decay rate to lower (higher) current
state is proportional to

FI o e—,BAE: — e—2]NB[2 cos p¥(m+2p)sin p]‘ (57)
In particular when p — m/2 we have
[ o g WNIB(ml2 ~ p)3. (58)

In the one-dimensional case it is also straightforward to
evaluate the prefactor in the decay rate. We give details of
such derivation in Appendix B and quote only the final result
here:

I 64cosp |JN ( 2 — pt 4NJ[
= ——\[ —exp|— an p — ——|cos
T U P 4 P T P

- (W/Z—P)Sinp]), (59)
64cosp |IN 72+ p 4NJ
I, = — T, tan p — T[COS p
+ (/2 + p)sin p]) . (60)

Here 7is a relaxation time of the condensate towards thermal
equilibrium, which we will leave as a phenomenological pa-
rameter.

We can now compare the leading exponential terms for
the two current decay mechanisms. Thus if we require that
the exponent in Eq. (57) is equal to the tunneling action
computed in the previous section we can find when the two
exponents coincide. It is convenient to introduce a character-
istic temperature scale T, at which the energy of the zero-
point fluctuations is equal to the thermal energy of the
corresponding classical system. Using Bogoliubov’s approxi-
mation one finds that
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-
202 —
Ty="—"\NJU. 61)
n

We can now rewrite the expression for I'_ at p close to p,
=/2 in a more convenient form:

=
64cosp |JN V27 NI T,
F_ ~ — P o — - 3 .
et Uexp{ 3 U T(pC P)
(62)

Note that the exponent in the expression above coincides
with that in Eq. (50) when

T* =~ 0.21 Ty\w/2 - p. (63)

The temperature 7% separates regimes of thermally activated
and quantum current decay. Thus if 7<<7T* thermal phase
slips are unimportant so that quantum tunneling dominates
the decay and vice versa. Note that unless p is very close to
/2, the crossover temperature 7% is of the order of the
characteristic Josephson energy 7, (or equivalently the
sound velocity in the lattice units). Under present experimen-
tal conditions it is very easy to achieve T<<T, and thus
T<T* and therefore to observe current damping due to
quantum phase slips.

In higher dimensions we cannot find an explicit analytic
expression for the energy of the metastable state. However,
we can get an approximate result near the critical current.
Using again the idea that the transverse fluctuations can be
treated in the continuum approximation and expanding
cos(p+ ;.1 — ;) up to the third order in phases we can write
the energy in the approximate form:

de;\?
EdzJNZ fd"“x{(f) +cos(p)(pjs1 — B)°
J

1
=34 - ¢,-)3] , (64)
where ¢;(x) is the nontrivial solution of the corresponding

Euler-Lagrange equations vanishing at x — 0. After rescaling
¢d=cos(p)¢ and x=x\2/+cos p we find

1{ a3\
j 2\ dx

+ (&m - <7’j)2 - %(‘Zjﬂ - &,‘)3:| . (65)

Note that the integral in the expression above coincides with
5,_, up to a number 22”2, So using results (50) and (51),
and (58) we immediately conclude that

T 3
E\~ 13N Z-p) . (66)

ar 5/2
Ey=10JN\ > -p) (67)
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T 2
Ey~35IN{~p) - (68)

Correspondingly, the exponents in the thermal and quantum
decay rates become the same at a temperature

T* ~ 044 Ty\m/2 - p (69)

both in two and three dimensions. This crossover tempera-
ture is about a factor of 2 higher than in the one-dimensional
case (63). If p is not too close to /2, T* is again of the
order of T, and thus the quantum tunneling should be re-
sponsible for the current damping below the mean-field tran-
sition at experimentally relevant temperatures.

B. Current decay in the vicinity of the SF-MI phase transition

As we show in Appendix A the quantum action in imagi-
nary time takes the following form:

dyg|”_ | d¢
dz dx

2

2
1
S=Cfddzdx —|¢|2+5|¢|4. (70)

Here z denotes the imaginary time and transverse coordinates
which form a d-dimensional space, x is a longitudinal coor-
dinate along the current. Note that in this section we measure
coordinates in units of the coherence length. This is because
we focus on the commensurate case and hence we are inter-
ested only in the superfluid regime >0 [see Eq. (11)]. In
this case it is convenient to rescale x— x/\r to simplify the
notations (in the original lattice units x is measured in the
units of the correlation length &). The constant C depends on
the original microscopic parameters of the underlying Hamil-
tonian. Within the variational ansatz described in Appendix
A we find [38]

1

1
=;W(l—u)(3_d/2), (71)

C

where u=U/8dJN is the dimensionless interaction;

1
= (72)
12d(1 — u)
In the case when thermal fluctuations are more important
than the zero-point motion, we are interested in the energy
functional rather than the action:

d
5=C’fdd‘1zdx‘—w
dz

2
+

d

—+ 4 (73
I (73)

2 5 1
= [uf*+ 21

where z comprises now d—1 transverse coordinates only.
The value of the constant C’ can be found within the mean-
field approximation (see Appendix A):

C'=JN (1—u)>, (74)

u (2 d)d/2—1

Before proceeding we would like to point out that the
mean-field expressions for £ and C are valid in the vicinity of
the quantum phase transition at large spatial dimensions. For
example, at d=1 the superfluid-insulator transition belongs
to the Kosterlitz-Thouless universality class and it is charac-
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terized by proliferation of vortices [48,49]. In particular, dis-
sipation in two spatial dimensions in the vicinity of the ther-
mal superfluid-to-normal fluid transition, which is also of the
Kosterlitz-Thouless class was studied in Ref. [50]. It was
shown that the dissipation comes from unbinding of existing
vortices and it does not have an exponential suppression. So
while the mean-field description near the quantum critical
point in one dimension is questionable, we believe that it is
justified in two and especially in three spatial dimensions.

Decay of superconducting current in the GL model was
studied by several authors. In particular, the exponent char-
acterizing the decay rate in the one-dimensional case was
studied in Ref. [30] and the prefactor setting the time scale
was later found in Ref. [31]. In three dimensions at small
currents the corresponding exponent was derived by Langer
and Fisher [45], where it was shown that the decay rate van-
ishes as exp(-C/p) as p—0. However, here we are inter-
ested in quite the opposite limit p — p., where the method
used in that paper does not work.

Let us start our analysis from the quantum decay. We first
emphasize that quantum in this context means due to fluc-
tuations beyond the saddle-point approximation. Contrary to
the Gross-Pitaveskii regime, where the classical description
is well controlled by the smallness of the ratio U/JN, there is
no obvious small parameter here. The validity of the mean-
field description in this case can be checked a posteriori by
explicit computation of quantum corrections. The other com-
ment we would like to make is that the parameters C and &
entering the Ginzburg-Landau action are generally renormal-
ized and deviate from the mean-field results.

To compute the tunneling action we need to find a bounce
solution of the classical equations of motion in imaginary
time. Instead of using complex fields ; we introduce two
real fields 7 and ¢ describing amplitude and phase fluctua-
tions around the metastable minimum:

Wx,z) = V1 = K1 + plx,z)]e™+ien), (75)

Here we intentionally use another notation k for the conden-
sate momentum, because it is measured in the units of in-
verse correlation length &. It is related to the usual momen-
tum p in inverse lattice units as k=p & We can expect that
close to the critical current both 7 and ¢ remain small and
we can expand the action up to the cubic terms in these fields
to find the correct asymptotical behavior of the instanton
action at k—k_:

5= § J dzdx(9,m) + (3,0)" + (3,7)” + (0,8)” + 2(1 = k) o

2 4
+4knd, p+2m(0,¢)* + 27(d,P)* + ,—§ﬂ26x¢+ 5773-
\

(76)

It is easier to start the analysis of Eq. (76) calculating the
corresponding energy in d=1. This problem was already
solved in Ref. [31] for all values of k. So we will use the
asymptotic of their expression at k— k. to compare with our
result and thus check the validity of our scheme. It is easy to
see that upon the transformation
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k d.d (77)
e ——
n—n 2™

the cross term in 7 and ¢ vanishes in the quadratic part of
Eq. (76). Since the amplitude 7 mode remains gapped at k
=k, it can be disregarded and the approximate energy [which
is equivalent to the action (76) at d=0] takes the form

e~ [ @y ar+ 2Bk 0087 - 0
y

(78)
Upon rescaling
x N
= 31/42ch_k’ (;b_) ¢7vk(7_k (79)

we obtain

6*93"4(kc-—k)5’2fdX(3§¢)2+(0x¢)2—(&x¢)3- (80)

The last integral is just a number equal to the energy of the

saddle point, which is a nontrivial solution of the Euler-
Lagrange equations,

d2 ’

P

dx

+2¢' -3¢ 2=0, (81)

where ¢’ =d¢p/dx. This equation has a simple solution:

1
"X)=———, 82
') cosh? x/2 82)
which after substitution into Eq. (80) gives:
48
e= 3k~ k)". (83)

This result coincides with that derived in Ref. [31] at
k— k.. Now we can proceed with a general d-dimensional
case. As in the previous section the instanton action in d+ 1
dimensions is equal to the barrier energy in d dimensions.
After performing the transformations (77) and ignoring the
gapped amplitude mode 7 we find

s= [ e @07 20,07 5P 20

X(0,0) — —=(0,)". (84)
V3

It is easy to see that the rescaling required to make the action
independent of the momentum is

X 33/4 z

—
—_ —k.—k, z——.
x_>3“42\e’kc—k o= 2 Ve ©7 6k~ )

(85)

Upon these transformations the first term in the action be-
comes irrelevant and in the leading order in k.—k the action
reads

PHYSICAL REVIEW A 71, 063613 (2005)

(9-4d)/4

2d

Sqg=

(k. — k)22 f dzdx(V ¢)* + (5, ¢)* - (3,.4)°,
(86)

where V=(4,,d,) is the gradient in d+ 1 dimensions. For the
classical energy, as we mentioned above, one has to substi-
tute d—d-1 in Eq. (86). The important difference between
the result for the continuum model (86) and the lattice result
(44) is that the power of the k,—k in the prefactor in Eq. (86)
is smaller than that in Eq. (44). Moreover, in d=3 the whole
scaling breaks down suggesting the the instanton action be-
comes discontinuous at d=3 near the Mott transition.

We can evaluate the integral in Eq. (86) using the varia-
tional ansatz. For simplicity we will take a separable func-
tion

tanh ax
cosh Bx’

P(z,x) = A(z) (87)
where « and B are the variational parameters and the func-
tion A(z) can be found solving the remaining one-
dimensional problem. With this choice it is easy to show that
in one and two dimensions we obtain

a,; =032, B1y=~053, s;,~T73k.—k?>* (88)

@y =072, Biy=108, s5,,~67k.—k". (89)

In three dimensions this variational ansatz gives S;—0,
which implies breaking of the scaling as k. — k. Indeed, the
power of (k,—k) in Eq. (86) becomes negative. However, it is
unphysical to expect any divergence near the point of insta-
bility. This indicates that the original ansatz that the longitu-
dinal coordinate scales as 1/vk.—k is not valid in this case
and the tunneling action becomes momentum independent as
k— k.. To see that this is indeed the case and to estimate the
actual value of s in three dimensions we return to the the
action (84) without preforming rescaling Eq. (85) and apply
the variational ansatz (87). Then as k— k, we find

a3~ 053, PByy~08, 53~ 125. (90)

Using the mean-field parameters C and ¢ in Eq. (70) and
the results (88)—(90) we can rewrite the tunneling action in
the following form:

57 =

Si= g (=3 9™, o1
3.2

S~ - p 9", (92)

Sy=423. (93)

The equilibrium superfluid-insulator phase transition corre-
sponds to é=o. Notice that in one and two dimensions the
tunneling action is always small as long as £€>1 and p is
close to the critical momentum. This implies that at small
currents the broadening of the nonequlibrium transition is
very large. This is consistent with earlier numerical findings
[22] and recent experiments [24]. In three dimensions, as we
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argued above, the tunneling action is discontinuous at the
transition, therefore the mean-field phase boundary is defined
very well. So at d=3 at zero temperature we can accurately
define a relatively sharp phase transition between the current
carrying superfluid and the insulator.

Quite similar considerations apply to the current decay
due to thermal fluctuations. The decay rate is determined by
the ratio of the activation energy E, and the temperature. In
different spatial dimensions we get

JN

Er=135(1- 3p 92, (94)
JN -

E, =~ 7.8?(1 —\3p &2, (95)
JN -

E;~ 8.6?(1 —\3p &' (96)

It is obvious that the thermal broadening is also strongest in
one dimension. However, contrary to the quantum case, even
at three dimensions close to the mean-field transition the
activation barrier vanishes continuously. Only in four dimen-
sions and above we would be able to define a sharp phase
boundary separating current carrying superfluid and insulat-
ing phases at finite temperature.

We would like to point out that the thermal decay is
strongly suppressed at low temperatures 7<<JN/§. Note that
this condition is also necessary in order to observe the equi-
librium superfluid-insulator transition and thus can be satis-
fied experimentally. Another important point is that the ac-
tion for the quantum phase-slip tunneling in one and two
dimensions is never large near the mean-field critical current.
This implies that the quantum decay mechanism should be
experimentally relevant at d=1 and d=2. This conclusion is
similar to that reached in the previous section when we dis-
cussed current decay at small interactions.

It is also possible to make some qualitative statements
beyond the mean-field approximation in the vicinity of a
quantum critical point separating equilibrium superfluid and
insulating phases. Thus we can still expect that both the tun-
neling action and the thermal activation barrier vanish at

1
~-. 97

e (97)
On the other hand, quite generally 1/&~\", where v is a
critical exponent [25] and \ is a tuning parameter across the
transition, say deviation of the interaction U or hopping J
from the critical point. In the one-dimensional case v= [51]
[more precisely for the Kosterlits-Thouless transition &
xexp(b/\\), where b is some constant]. In two and three
dimensions the quantum critical point is characterized by the
universality class of the classical xy model in one dimension
higher and the corresponding critical exponents are v
~(0.67 at d=2 and v=0.5 at d=3 [37]. We see that in three
dimensions the mean-field description gives the correct value
of v. Also, quite generally, we can argue that the action (70)
and the energy (73) remain valid near the quantum critical
point, but with constants C and C’ being renormalized,
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C §d+z—4’ C' x é:d_4- (98)

This in turn implies that near the quantum critical point A
<1 we get

Sd ~ )\V(3/2_Z)Ad(Bd)\V _ p)5/2—d,

(99)
Ed —~ JNAC;)\V/Z(B;)\V _p)7/2—d’

where A, A(’J, B,, and Bg’, are nonuniversal numbers. In the
nongeneric commensurate case, which we are mostly inter-
ested in here, z=1. The scaling form above agrees with the
mean-field results (v=1/2) obtained earlier. Despite quanti-
tative difference between the correct and mean-field scaling
in one and two dimensions, the qualitative features of the
nonequilibrium phase transition discussed after Egs. (92) and
(96) remain intact.

V. DYNAMICS OF THE DECAY: INFLUENCE OF THE
CONFINING POTENTIAL

A. Underdamped versus overdamped dynamics

As we showed above, quantum or thermal fluctuations
lead to the broadening of the dynamical phase transition.
However, this does not imply that within a single experimen-
tal run a gradual current decay will be necessarily detected as
the system is slowly tuned through the crossover region. The
tunneling or the thermal activation times define a probability
of generating a single phase slip. Once created the phase slip
can either decay into phonon (Bogoliubov’s) modes and
bring the system to a next metastable minimum with a lower
current, or this phase slip can trigger the current decay in the
whole system. This situation is analogous to the motion of a
particle on a tilted washboard potential with friction (see Fig.
7). If the friction is large enough (or the tilt is small) then the
particle, after it tunnels, will be stuck in the next minimum.
On the other hand in the frictionless case a single tunneling
event will cause accelerated motion of the particle through
the whole lattice. In a closed system these two regimes are
well defined because the damping of the phase-slip motion
comes from the internal degrees of freedom, which are com-
pletely described by the equations of motion. To see which of
the regimes is realized in our systems within the classical
thermal decay mechanism we numerically solve Gross-
Pitaveskii equations of motion for an array of condensates.
We start from a uniform current state. To have a current
decay we add small fluctuations to the initial values of the
classical fields. This is similar to starting from a thermal
state. Since we cannot change the internal friction, instead
we consider two different tilts. In Fig. 8 we plot the com-
puted current versus time for a one-dimensional array of M
=200 sites with periodic boundary conditions. The initial
state is the noninteracting U=0 condensate with a given
phase gradient p (specifically p=2#/5 and p=/10) and
unit hopping. It is clear from the figure that we have an
overdamped case for the smaller current case, where the
phase slips occur one by one. On the other hand, for the
larger current a single phase slip generates immediate current
decay in the whole sample and this corresponds to the un-
derdamped regime. We will not attempt here to find the pre-
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FIG. 7. Possible motion of a particle after a tunneling event in a
tilted washboard potential if the friction is small (left) and if the
friction is large (right). Instead of changing the friction, one can
vary the tilt. It is clear that reducing the tilt is similar to increasing
the friction.

1.0 4 A
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£ AT
8 0.6 L NKin
ko] ‘“""-o\
1]
% 0.4 [—
[&] - 5
wn
0.2
0.04
T T T T T T Y
0 500 1000 1500 2000

Time (t)

FIG. 8. Current (scaled to one at t=0) versus time for a one-
dimensional periodic array of 200 sites with two different initial
phase gradients. Here and in the following graphs time is dimen-
sionless. Its units are set by the inverse units of couplings J and U.
The evolution is determined solving equations of motion (9) with
constant hopping amplitude J=1 and interaction increasing in time
U=0.01 tanh 0.01¢ for p=27/5 and U=tanh 0.01¢ for p=m/10. To
get the current decay we add small fluctuations to the initial values
of the classical fields #,(t=0).
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cise boundary between the two scenarios, since it is not the
purpose of our paper. We would like to emphasize that near
the mean-field instability the system is always underdamped,
while if the current decays at small p the motion is over-
damped. These considerations agree with the experimental
observations [17,24]. We checked that the situation is similar
in other spatial dimensions. Thus if the current decays close
to the mean-field instability, then in a given experiment one
will observe a sharp transition from the superfluid to the
insulating regime. However, the precise point, where the cur-
rent decays will depend on the details of the experiment, for
example on the rate of change of external parameters like
tunneling and interaction or on the rate of change of the
phase gradient p if the system is accelerated. On the other
hand, in the absence of any fluctuations the transition is very
sharp and always occurs at p=m/2. We can also perform a
similar analysis close to the SF-IN transition. The qualitative
result that close to the modulational instability the phase-slip
motion is underdamped remains correct. However, we should
stress that in one and two dimensions broadening of the
mean-field transition is very strong and the actual decay may
occur very far from the critical current. In this case an over-
damped scenario should be realized.

Unfortunately we cannot simulate the dynamics of the
decay due to quantum tunneling. However, we would like to
argue that near the critical current the fate of quantum and
thermal phase slips is identical. This is because the tunneling
(activation) barrier is very narrow and the classically allowed
motion after the tunneling event starts very close to the
maximum of the barrier (see Fig. 7).

We have to make another important remark that if the
motion of phase slips is underdamped then in a truly infinite
system the current state is always unstable. Indeed the prob-
ability of a phase slip is proportional to the system size M. If
it causes the current decay in the whole system, then obvi-
ously a uniform current state cannot exist. However, in
finite-size systems these effects are not so crucial, because
the decay probability depends exponentially on the couplings
and the current but only linearly in the system size. So the
phase diagram plotted in Fig. 5 is quite robust to changes in
M.

B. Decay in a parabolic trap

If in addition to the optical lattice potential the condensate
is placed into a parabolic trap, then even at the classical
(Gross-Pitaevskii) level the condensate momentum is not a
conserved quantity. In a typical experiment, where the SF-IN
transition is probed, the lattice potential is slowly ramped up
resulting in hopping amplitude going down. In Appendix C
we show that in this case the amplitude of momentum oscil-
lations increases in time: p[1/J(t)]'* [see Eq. (C13)]. If
we ignore completely the effects of quantum fluctuations,
then for arbitrarily small initial displacement the condensate
momentum will ultimately exceed the critical value of /2
and the condensate motion will become unstable. If this hap-
pens before the quantum fluctuations become significant, this
effect will dominate the SF-IN transition. In Fig. 9 we show
the time evolution of the center-of-mass momentum p,
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FIG. 9. Center-of-mass momentum (in the units of = per
lattice site) versus time for a two-dimensional condensate in a
parabolic trap with hopping amplitude decreasing in time: J(r)
=2.5 exp(=0.01z). The other parameters are U= 1, number of atoms
per central site Ny=1.5, strength of the confining potential k=0.02.

=2,pn,/Z,n, of the condensate in a trap using Gutzwiller
approximation. Here np=2j’,<a_;'a,-)exp[ip(l— j)] is the mo-
mentum distribution function. The condensate initially in
equilibrium is given a small momentum boost. In agreement
with our expectations the amplitude of momentum oscilla-
tions grows in time. We note that at the same time the con-
densate velocity v(f)o+J()p(¢) decreases with time. This
behavior continues until the momentum exceeds a critical
value, where the condensate motion becomes chaotic.

One can avoid complications related to the nonconserva-
tion of the amplitude of momentum oscillations by tuning the
interaction strength rather then the hopping amplitude. In this
case one can directly probe the boundary separating stable
and unstable motion of condensates at a given condensate
momentum. Another important feature, which distinguishes
trapped condensates from homogeneous systems, is the spa-
tial variation of the density. Thus if the density profile is
smooth enough, the condensate motion becomes unstable
first near the edges where N~ 1. In the center of the trap the
current decays at higher interactions. As we argued earlier in
this section, in homogeneous systems the motion of phase
slips is underdamped near the instability, i.e., a single phase
slip triggers current decay in the whole system. We can ex-
pect the same to be true in a trap as long as the mean occu-
pation number in the central site Ny remains close to unity.
On the other hand, if Ny>1 then it is intuitively clear that
phase slips occurring near the edges cannot destabilize the
motion of the bulk of the condensate, which is very far from
the instability. To verify this reasoning numerically we again
employ Gutzwiller approximation. In Fig. 10 we plot the
momentum oscillations of a two-dimensional condensate
versus time. We set the hopping amplitude J=1/4 while
increasing the interaction linearly in time: U(7)=0.01z.
The simulations are performed on a lattice of dimensions
120X 60 with global trapping potential V(j,, jy)=0.01(j)2(
+ ])2) We consider two different filling factors in the central
site Np=1.5 and Ny=3. It is obvious that the onset of insta-
bility in both cases occurs at roughly the same interaction
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FIG. 10. Time dependence of the condensate momentum in a
two-dimensional harmonic trap with different filling factors per
central site.

strength (which is close to the uniform result at filling factor
N=1). However, while the motion becomes chaotic very fast
for Ny=1.5, there is a very gradual decay of momentum os-
cillations at larger filling Ny=3. In agreement with our ex-
pectations this indicates that an overdamped current decay is
realized in the latter case.

VI. LOSS OF COHERENCE IN THE NONEQULIBRIUM
PHASE TRANSITION

The superfluid—to—Mott-insulator transition at equilibrium
is a continuous quantum phase transition. As such, it is ex-
pected to be reversible. That is, if we tune through the tran-
sition and then back to the initial state slowly enough, we
would recover arbitrarily large fractions of the superfluid
density [52].

With finite current the situation is markedly different. We
envision the following experimental procedure. (i) The con-
densate is boosted to small but finite velocity (dipole oscil-
lation in a trap). (ii) An optical lattice is turned on adiabati-
cally, until the system passes the line of instability (see Fig.
11), and then slowly turned off. Finally the atoms are re-
leased from the trap, and their final momentum distribution
is measured and compared to the initial one.

o

FIG. 11. Possible experimental sequence to observe a
superfluid-insulator transition in a moving condensate.
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The current carrying state has a finite energy, which is
released into the system when the current decays. Since the
system is nonintegrable, it is reasonable to assume that the
energy associated with the supercurrent is released in the
form of incoherent excitations, which eventually thermalize.
If now the system parameters are changed sufficiently
slowly, the subsequent evolution of the system is adiabatic
conserving the entropy of the system. Thus the entropy
change following the current decay, may be used to obtain
the depletion of the superfluid in the final state of the system.
We would like to emphasize that these assumptions apply if
the parameters of the system change not too fast, so that the
current decays in a quasistatic regime. Otherwise the current
decay and the entropy release are not governed by the prop-
erties of the transition point and the actual time-dependent
problem has to be solved.

The temperature of the equilibrium state reached follow-
ing the current decay, and before the system parameters had
a chance to change appreciably, may be calculated by equat-
ing the energy of the superflow, prior to its decay, with the
internal energy of the system in the new thermal equilibrium:

1 )
Sep)=—2, — 1. 100
0= 32 (100)
The low-energy excitations in the superfluid state are linearly
dispersing sound modes with oy =~ck. Substituting this in
Eq. (100), we can solve for the temperature to obtain

T=Adcd/(d+l)56(p)1/(d+l), (101)
where
(27T)d )1/(d+1)
Aj=\——"7"""= , 102
d (Qdd!§(1+d) (102)

Q) is the surface area of the d-dimensional unit sphere, and ¢
stands for the Riemann zeta function. Accordingly, the en-
tropy of this thermal state is given by

S Se\d@+ g4
S:e—(p)—Eln(l—e_ﬁ‘”q)zA;(—E) —_—
T q c d

(103)

As argued above, we can use this entropy to calculate the
condensate depletion in the final state.

Let us apply this procedure assuming that the current de-
cays via the instability in the vicinity of the Mott transition.
Though we do the calculation for all dimensions, one should
note that such a scenario is particularly relevant for a three-
dimensional optical lattice. According to Sec. V, in lower
dimensions the current will most probably have decayed due
to fluctuations before reaching the instability.

The energy per site of a state near the Mott transition
according to the Ginsburg-Landau model (see Appendix A)
is given by

€e=——

d 22y L
" 2duv dx[W‘M E7NyP+ Sluft | (104)

Substituting the field corresponding to the current carrying
state, =& 2—pZe’P*, we obtain
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- _IN( o 1 2) 2

de = €(p) 6(0)—2du<§ AL (105)
Recall that our proposed experiment maintains constant p
and changes the dimensionless interaction, and hence also &,
by increasing the lattice intensity. The current decays when
the instability is reached, i.e., when & 2= & ;2=3p2, at which
point the energy per site is

JNS ,
de=——p".

106
2d?2 (106)

Thus the energy released following decay via the instability
at phase gradient p is «p*. Using Eg. (103) and the sound
velocity near the transition c=2JN+2d we get the increase of
entropy per site:

4d/(d+1)

(107)

d+1 5
p

T da, \42a)"

In three dimensions, this gives S;;,~0.16p>. With such a
small increase of entropy we anticipate that the irreversibil-
ity, as manifest in the unrecovered condensate fraction,
would also be small for low initial currents. Perhaps the sim-
plest way to see this is to slowly reduce the lattice intensity
until the atoms are very weakly interacting before releasing
to measure the momentum distribution. In this case the el-
ementary excitations have a quadratic dispersion w,=ak?. In
general this assumption is not necessary and one can use the
full Bogoliubov spectrum. However, qualitatively the result
remains the same. A nice feature of the quadratic dispersion
is that the thermal depletion is simply related to the entropy,
which is given by

dr2
S=(d+2)l_f Q, (d+2)<£) L (108)

)d/(d+l)

d )Tt 2w\ 4
where
® xd+1
1= dx— . (109)
o e -1
The thermal depletion, on the other hand, is
1 1 d \S [~ 1
nT=—2 T = (—)—f dxx ' ——,
Vg e !T-1 2+d) 1), & -1
(110)

where x, depends on the small momentum cutoff determined
by the system size (i.e., xo~ L\ a/T). In three dimensions the
last integral is convergent and we get

30 28(312)

- S~ 0.78S.
"= 5450

(111)
Thus in three dimensions the number of excited quasiparti-
cles, or condensate depletion, is a direct measure of the en-
tropy.

In one and two dimensions, on the other hand, the integral
has an infrared divergence. Of course this is simply a restate-
ment of the well-known fact that a true condensate in free
space at finite temperature does not exist below three dimen-
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sions. In practice, the divergence is cut off by the system size
and one can define the notion of a quasicondensate. In two
dimensions where the divergence is only logarithmic,

6 =
n%d ~ —S1In(LVS),

112
- (112)
and finally in one dimension

nyd = 0.048°L. (113)

Instead of the system size the cutoff may come from the
finite momentum resolution (Ap) of the experimental appa-
ratus. In general the momentum cutoff will be determined by
the minimum of L and 1/Ap. We see that below three dimen-
sions condensate depletion due to thermal decay at small
currents is more pronounced and easier to detect than at
d=3.

The situation is different if the current decays at smaller
interaction strengths (smaller lattice intensity) at large cur-
rents. The energy of the current state may then be calculated
from the Gross-Pitaevskii energy functional:

x x Y
E=—J2 g+ )+ 2wl (114)

(i) i
Substituting \Ne'™i for i; we find Se=4JN sin*(p/2). To-
gether with Eq. (103) and using the sound velocity ¢
=v2UJN we get the entropy increase per site:

NV p
S, ~24( =) sinZ, 115
1d ( U) 91112 ( )
N 1/3
Syy =2 2(—) sin4/3§, (116)
JN 3/8 p
Sy, =220 — in¥2= 117
3 (U) S (117)

Evidently the irreversibility is stronger and easier to detect if
the current decays at smaller interaction strengths.

VII. EXACT RESULTS IN SMALL SYSTEMS

In this section we present results of exact dynamics in
small one-dimensional systems. We will assume that we have
a periodic one-dimensional array of M sites containing N
particles. At t=0 we assume that interactions are absent and
the system is placed in the uniform current state, described
by the wave function,

M-1 N
E aj-eipj
1 j=0
M:W T |0), (118)

where |0) is the no-particle vacuum. This state is an exact
eigenstate of the noninteracting system. Now we slowly turn
on interactions driving the system closer to the insulating
regime and then gradually turn them off. The latter step is
necessary to check whether we have reversible dynamics or
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FIG. 12. First one-hundred energy levels of the spectrum in a
periodic array of six sites containing six particles (top) and zoom of
the energy spectrum around the current carrying state with p
=/6 (bottom). It is clear that while the ground state is well sepa-
rated from the continuum for all interaction strengths, the excited
many-body states are completely mixed. So it is nearly impossible
to be in the adiabatic regime unless the system is initially in the
ground state.

irreversible current decay. Although in real experiments it is
rather tunneling not the interaction which is changed in time,
this does not make any qualitative difference in uniform sys-
tems. If the interaction is ramped up infinitesimally slowly,
then any finite system will remain within a particular energy
eigenstate and the evolution will be always reversible. How-
ever, the energy splitting between the many body levels de-
creases exponentially with the system size and the number of
particles. So practically even in relatively small systems, one
can study dynamics, which is slow with respect to the char-
acteristic time scales (like period of Josephson oscillations),
but very fast with respect to the inverse many-body energy
spacing. To make this point more transparent we plot in Fig.
12 the energy spectrum versus U/J for a particular system of
a periodic array consisting of six sites and containing six
particles. The size of the Hilbert space here is already quite
big: N=11!/(6!51)=462. It is obvious from the figure that
while the ground state is well separated from the continuum
at all interaction strengths, the excited states experience
many level crossings. So it is nearly impossible to be in or
close to the adiabatic regime unless the system is in the
ground state.

Let us assume that the Hamitonian is described by Eq. (2),
where the interaction strength changes in time according to
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FIG. 13. Dependence of current on time for the system of eight
sites with two particles per site. The hopping amplitude is equal to
unity and is independent of time. The interaction changes in time
according to Eq. (119) with Uy=2, §=0.02, and T=200.

U(t) = Uy tanh &t tanh &(T - 1), (119)

where ¢ is the adiabaticity parameter, 7 is the duration of the
time evolution, and U, is a prefactor setting the energy scale.
We also assume that the hopping J is equal to unity and does
not change in time.

In Fig. 13 we plot the current versus time for the array of
eight sites with two particles per site. The two curves corre-
spond to initial phase gradient of 77/4 and /2 per bond. The
smaller current decays when the interaction becomes suffi-
ciently large, in agreement with that this state is metastable,
while the 7/2 state decays almost instantly since it is clas-
sically unstable. In both cases the decay is clearly completely
irreversible. To make the final point more transparent we also
plot momentum distribution as a function of time for the
same parameters in Fig. 14. The curve corresponding to a
zero current state shows reversible behavior, suggesting that
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FIG. 14. Occupation of momentum states as a function of time
for different current carrying states. Solid lines correspond to the
occupation of momentum p equal to the initial phase gradient in the
system. The dashed lines are the occupations of the zero-
momentum state. The parameters are the same as in Fig. 13.
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FIG. 15. Occupations of the k=0 and k= states for the state
with initial phase gradient p=7. Here the interaction changes in
time according to Eq. (119) with Uy=1, §=0.02, and 7=200.

the interaction indeed changes slowly enough so that the
system is in the adiabatic limit. Note that even at the peak
interaction strength, the system is still far from the insulating
state, as evident from the very small depletion of the p=0
state. Nevertheless, because the smallest phase difference per
site achievable in an array of size 8 is still quite large (p
=1/4), this interaction is sufficient to drive current decay.
Indeed the curve corresponding to initial phase gradient of
/4 clearly displays metastable behavior, with current de-
caying after some delay. In the new steady state reached,
occupation of zero momentum builds up suggesting that it
corresponds to a thermal distribution with no macroscopic
current, but with some residual phase coherence. The state
with phase gradient p=/2, by contrast, seems to decay into
a high-temperature state, without visible phase correlations.
Indeed, occupation of momenta zero and 7/2 are equal to
unity as expected if the phases were completely random. It is
peculiar that there are only very weak fluctuations of the
momentum distribution in this state. This should be con-
trasted with the rather large fluctuations seen following de-
cay of the m/4 current state.

Finally, condensates sustaining phase gradients p> /2
are classically unstable, and are expected to decay rapidly,
resulting in even higher temperature than for the /2 state.
The p=r state is an interesting exception to this rule. As
argued in Refs. [35,41], this state evolves into a maximally
entangled Schrodinger-cat-like state, which is robust to weak
perturbations in small systems. Physically this happens be-
cause the 7 state in the noninteracting case is the most ex-
cited state in the system. In the absence of energy relaxation
the system remains in the most excited state under slow per-
turbations in the same way as it does in the ground state. And
therefore we can expect reversible behavior of the phase co-
herence. We plot the corresponding momentum distribution
for this state in Fig. 15. Although for the intermediate times
the evolution looks completely chaotic, once the interaction
is reduced back to zero the momentum occupancy at k=7
reaches almost the maximum possible initial value suggest-
ing only a small amount of excitations in the system.

Unfortunately, doing exact numerical simulations we are
quite limited by the total system sizes and the number of
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particles. Also we can address only one-dimensional sys-
tems. Therefore we cannot directly test the phase diagram
and decay rates derived in the previous sections. Neverthe-
less, we would like to point out that the numerical results are
in excellent qualitative agreement with our predictions.

VIII. SUMMARY AND EXPERIMENTAL IMPLICATIONS

In summary we emphasize two important predictions of
this work. In Sec. III we derived a mean-field phase diagram
for the stability of a moving condensate. In Sec. IV we in-
vestigated the effect of quantum and thermal fluctuations,
which lead to broadening of the nonequilibrium transition.

We showed that the mean-field transition interpolates be-
tween the classical modulational instability, which occurs at
phase gradient p=m/2 deep in the superfluid regime and the
equilibrium (p=0) transition to the Mott insulating phase at
strong interactions. The dynamical transition is of first order
(i.e., irreversible) at any nonzero current, contrary to the
second-order transition at equilibrium. Thus if one starts
from a current state and slowly drives the system towards the
insulating regime, e.g., by ramping up the lattice potential,
then after crossing the transition boundary the current decays
irreversibly, releasing the energy of the coherent motion into
heat. Plotting the location of the nonequilibrium transition as
a function of the current and extrapolating the curve into the
static regime p=0 is a way to accurately determine the posi-
tion of the equilibrium SF-IN transition.

The mean-field theory does not take into account quantum
tunneling and thermal activation of phase slips. These induce
decay of supercurrent, even before the classical equations of
motion become unstable. We calculated the asymptotic decay
rates near the mean-field instability in two regimes: (i) deep
in the superfluid regime and (ii) close to the equilibrium
Mott transition.

In a three-dimensional optical lattice the broadening of
the transition due to these effects is found to be small in all
cases. In particular we find a discontinuity in the current
decay rate across the mean-field transition for small currents
at zero temperature (close to the equilibrium Mott transition).
Thus the dynamical transition survives the effect of quantum
fluctuations in this case. We predict that a sharp dynamical
superfluid-insulator transition would be seen at small cur-
rents at a critical interaction strength (or lattice depth).

In one and two dimensions, on the other hand, quantum
and thermal phase slips lead to substantial broadening of the
transition, especially when the average site occupation N
~ 1. Then we expect the current to decay well before the
dynamical instability is reached. Indeed, in a recent experi-
ment [24] strong damping was detected at currents much
smaller than that given by the Gross-Pitaevskii modulational
instability. In addition the observed dependence of the damp-
ing rate on the lattice depth potential was very smooth. This
is in line with our prediction of a the large broadening of the
mean-field transition by quantum fluctuations and should be
contrasted with the Gross-Pitaveskii predictions of a sharp
transition. It is also consistent with earlier numerical results
by one of us [22].

The experimental results [24] do not by themselves prove
that quantum rather than thermal fluctuations are responsible
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for the observed damping. Here we estimate the crossover
temperature from thermal to quantum dominated decay to be
of order the Josephson frequency T* = VJUN/kg. The experi-
ment is therefore likely to be dominated by quantum phase
slips. To verify this conclusion, one could measure, e.g., the
damping as a function of temperature and observe a satura-
tion of the rate around T*.

One perhaps surprising experimental observation was that
in the overdamped regime (i.e., at high optical lattice poten-
tial) the condensate was essentially localized in a tilted lat-
tice, while it still exhibited sharp coherence peaks [24]. A
possible explanation is the effect of the inhomogeneous den-
sity in a harmonic trap, which we discussed in Sec. V. In-
deed, in the overdamped regime one expects no suppression
of phase slip tunneling at the edges of the condensate, where
N=1. This implies that the phase at the edges fluctuates very
wildly and the edge atoms are localized. On the other hand,
in the middle of the condensate, where the mean number of
particles per site is larger, the system is far from the mean-
field transition and phase slips are relatively costly. As a
result, the edges of the condensate create an effective poten-
tial barrier stopping the motion of the rest of the system,
which retains phase coherence.

Our results are consistent with another recent experiment,
where the superfluid decay was measured as a function of the
condensate velocity in a one-dimensional optical lattice [53].
There the average number of bosons per site was large and
quantum fluctuations negligible. At low temperature a dy-
namical localization transition consistent with Gross-
Pitaveskii predictions was observed. However, at relatively
high temperatures, the motion became unstable at much
lower quasimomentum. This observation qualitatively agrees
with the decay mechanism due to thermal phase slips con-
sidered in the present work.

We also presented exact numerical simulation of small
one-dimensional systems. These were in qualitative agree-
ment with the physical picture discussed in the paper. For
example, we demonstrated that at nonzero current the transi-
tion is irreversible. We also find that in a periodic chain of
eight sites, the current state with p=/4 decays only at some
finite interaction strength, while at p=/2 the decay occurs
almost instantly. An important exception is the case with p
=17, where the evolution is reversible (see also Ref. [52]). A
quantitative comparison of the exact numerical results with
our predictions is not possible because of strong finite-size
effects in the exact simulations.

Note added. Recently, two preprints appeared [55,56]
which address the experiment by Fertig er al. [24]. There, the
damping was attributed to single-particle Bloch oscillations
in the free fermion representation of the bosons in the limit
of strong interactions. This effect can also be understood in
the Boson language. If the number of particles in the trap is
small, the system reaches the impenetrable boson regime
while not yet insulating. Indeed one can easily transfer a
boson from a filled to an empty site near the edge of the
system. If the tunneling amplitude (J) is larger than the
single-particle energy near the edge of the cloud J> ka/S
then the created hole is delocalized through the whole system
and the state is not insulating. Here kj2/2 is the confining
potential of the trap and N, is the total number of particles,
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which equals the system size in the Fermionized regime. The
hard-core constraint in turn requires that U>J. Therefore if
U> kle and we gradually decrease J then indeed the system
first goes to Fermionized delocalized regime U>J> thz and
only if J is decreased further it becomes localized. On the
other hand, if the total number of bosons is large U< thz,
which is the case close to the thermodynamic limit, then the
edge excitations in the Fermionized regime are always local-
ized and thus unimportant for the macroscopic properties of
the system.

We emphasize that if the first (i.e., small particle number
scenario) is realized, then after the trap minimum is dis-
placed, the particles will essentially undergo Bloch oscilla-
tions with different frequencies resulting in a damped center-
of-mass motion [55]. In this scenario there is no real energy
relaxation of the center of mass and it will saturate at a
displaced position [56]. In the second case U<kN the sys-
tem undergoes a Mott transition when the impenetrable re-
gime is reached and the edge Bosonic excitations can result
only in a tiny center-of-mass displacement vanishing in the
thermodynamic limit. The damping prior to the Mott transi-
tion in this case occurs via the mechanisms discussed in this
paper, i.e., the current decay is irreversible and results in
energy relaxation of the center-of-mass motion, which will
eventually slide to the minimum of the trap. This seems to be
the case realized in the experiment of Ref. [24].

We also mention that the single-particle Bloch physics
will dominate the decay mechanisms studied here if the
Bloch oscillation, which frequency is equal to the single-
particle energy separation between the nearest sites due to
external potential, is longer than the Josephson oscillation.
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APPENDIX A: DERIVATION OF A GINZBURG-LANDAU
ACTION NEAR THE SUPERFLUID-INSULATOR
TRANSITION

A derivation of a Ginzburg-Landau action near the
superfluid-insulator transition was outlined in Ref. [38]. For
convenience we present the full derivation in this appendix.

Let us choose the energy of a single site with integer N
atoms, as the zero of energy. Then the Hamiltonian of the
boson Hubbard model (1) assumes the form

H=-7J2, (ajaj+ He)+ D g(rz,-—N)2 — u(n;— N).
(ij) i
(A1)

Close to the superfluid-insulator transition, the particle num-
ber fluctuation is small. It is then possible to consider a sub-
space allowing only occupations of N—1, N, and N+1 atoms
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per site. This reduced Hilbert space is conveniently described
by a (overcomplete) basis of product states:

1) = [T {cos(6,/2)|N); + € sin(6;/2)[ "I sin(x/2)|N + 1)
J

+e % cos(x/2)|N - 1),1}. (A2)

We shall use these states to construct a path integral for the
evolution operator. The derivation can be carried out for ar-
bitrary N, but for simplicity of presentation we take N> 1.
The first step is to prove a resolution of identity:

T T 2 /2
f dﬁf d)(J d(pJ dpM(Q)|QXQ|=TZ. (A3)
0 0 0 —/2

We shall now find a suitable integration measure M(6),
which is a function of 6 only. Substituting M (6) in Eq. (A3),
we can integrate over 7, ¢, and y, which kills off the cross
terms so that Eq. (A3) reduces to

m 6 1 6
I= 2773f dﬂM(ﬁ){cosZE|N)(N| + Esin2§(|N+ XN+ 1]
0

+|N—1)(N—1|)}. (A4)

The measure M(6) must enforce the identity between the
diagonal matrix elements, so that

T 0 1 0
fo daM(e)(COSZE - Esinza) =0 (A5)
or equivalently
7 L MO +3
f dOM(0)(1 + 3 cos 6) :J dy(y)(—fzy)zo,
0 -1 Vi-y
(A6)

where y=cos 6. This requirement is satisfied by M/(6)
=C cos 6(3 cos H—1), since it ensures that the integrand is an
antisymmetric function of cos 6. The constant C=7"* is de-
termined from normalization. Since we are interested in the
vicinity of the transition at #=0, where the measure M
changes slowly, it is safe to replace it with a constant.

It is also straightforward to calculate the Berry phase,

<Q‘ %‘ Q> = i sin?(6/2) (7, cos x;) = = Y (1.
J
(A7)

Equations (A3) and (A7) are the necessary ingredients for
the path-integral representation of the evolution operator:

0

U@ = f D) exp{iJldt’[Y(t’) - H(t’)]} ,  (AS8)
(

where the classical Hamiltonian is given by
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U
H={(QH|Q)=> sinz(ﬂi/Z)(E — u cos Xi)

~2JNY, pipjleic cos(m;— 1+ ¢; = ¢))
(ij)

+5;5;€08(m; = M+ @;— @) +¢;5; cos(m; + 1+ @ — @)
+s;c;co8(m; + 7+ @ — @))]. (A9)

Here we introduced the notations c¢;=cos(x;/2), s;
=sin(y;/2), and p;=(1/2)sin 6. It is important to note that
the dynamics defined by Egs. (A7) and (A8), consists of two
pairs of conjugate variables. The average offset from integer
density is conjugate to the phase ¢, while the second moment
(i.e. the number fluctuation) is conjugate to 7.

At fillings close to integer, the minimum classical energy
is reached in a uniform state with y close to 7/2 and 7=0.
We therefore expand the action to leading order in o;=/2
—x; and #,. In addition we expand up to quartic order in p,
and anticipating a diverging length scale at the transition,
take the continuum limit of the action via a gradient expan-
sion

§= J di' d’x[p*a(¢ + w) — p*n— 2IN[(V p)* + p*(V ©)*]
+4JNd(1 —u)p® = 4JNd - up* = 2JNdp* 2 7* + 0°12)],
(A10)

where u=U/8JNd. We can now integrate over the gaussian
fields % and o to obtain a Ginzburg-Landau (GL) action:

1
_ ' d IR _ 2
S= f dt'd x(4JNd[p +p (@+ m)]-2JN[(Vp)
2 2 2 4
+p° (V)" ] —4JNd(1 — u)p* + 4JNd - up )

" 4JNd
+ (4JNd)*(1 — u)| g1 — (4JNd)*ulyf*],

di'dx{|(d, + ip) Yf* = (2IN)*2d| V yf?

(A11)

where = pe'®. Note that in Eq. (A10) we left out terms of
the form p?(V7)? and p*(Vo)?. After integrating over % and
o, these would lead to irrelevant high-order derivatives in the
GL action. We can identify a sound velocity c=2JNy2d,
where the lattice constant is set to /=1. If we now make the
transformation ¢— ct (i.e., measure time in units of //c¢), and
— wv’M, the GL action assumes the form

4
b

$=1 [ o+ iy |V o+ Aok~ Sl
(A12)

where r=2d(1-u) and a=2u(2d)**. In the superfluid phase
r=£72, where ¢ is the mean-field coherence length. Note that
the action is Lorentz invariant only at commensurate filling,
where by our choice of the zero of energy for Eq. (A1), u
=0. This is due to the particle-hole symmetry, which is
present only at commensurate filling.
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From the action (A12), we can find the deviation from
commensurate filling, given by the conserved charge:

oS 1
Q= 5_ = f ddx[‘/’*((?t"' iw) =, —ip) ']
w(t)  ai

(A13)

In Eq. (A1), we chose the zero of energy such that the chemi-
cal potential is =0 at commensurate filling N. Indeed, if we
substitute u=0 in Eq. (A13) and a time-independent order
parameter we get 0=0 as required. However, we note that
the time derivative always appears in a gauge invariant com-
bination with the chemical potential. Therefore the action
(A12) and the “charge” (A13) do not depend on the particu-
lar choice of the zero of energy. In particular, for calculating
the dynamics it would prove convenient to use a different
gauge, applying the transformation ¢— e'®?, p— u—d
with ¢=ut. This eliminates u from the action, at the expense
of imposing on the order parameter an additional time-
dependent phase. The two gauges coincide at the commen-
surate point where w=0 and there is no time-dependent
phase. At incommensurate filling, though the action seems
Lorentz invariant in the new gauge, the physics is clearly
not, due to the imposed time-dependent phase

We also note that in any gauge we can trace back the
density parameter o=m/2-Y, appearing in the Gutzwiller
states (A2). In mean-field theory, integrating out o in Eq.
(A10) simply enforces the identity o=v8/d(¢+ ). A small
incommensurate filling is then given by op”.

The Euler-Lagrange equations derived from the action in
the new gauge (where w is eliminated from the action) are
given by Eq. (11), which we reproduce here for complete-
ness:

VRN

Py (A14)

In this gauge the density offset from integer filling is set
exclusively by the initial conditions for ¢ and ¢ and given by

1 . .
0=— f AP = ). (A15)
It is easily verified that Eq. (A15) is a conserved quantity in
the equations of motion (A14). This gauge choice is thus
analogous to the canonical ensemble, where the particle
number is fixed and is automatically conserved by the dy-
namics at all later times.

Before concluding this appendix let us make several
notes. First, to obtain the action (70) from Eq. (A12), one has
to rotate to imaginary time t=ix, and rescale length x — &
(i.e., measure length in units of the coherence length) and the
order parameter ¢y— & . Then in the “canonical gauge” the
action assumes the form

S_ifddﬂ \v 2 B l 4 AL6
= 2u(2d)"? x| [V gy +2|w| , (A16)

which is identical to Eq. (70). Second, to obtain the classical
energy from Eq. (A12) in the original static gauge, we sim-
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ply set time-independent fields and multiply by the energy
unit ¢/1:

JN 1
=ﬁfddx{|V¢|2—[r+(ul/6)2]|¢|2+5|¢|4 ~
(A17)

The average density offset form integer filling is then given
by

E 2
(n=Ny=— "= "Z|yf, (A18)

I
which agrees with Eq. (A13) evaluated in the static gauge, as
it should.

Another note we should make is that for low filling fac-
tors N~ 1, the general form of the action remains the same,
in the vicinity of the Mott transition. However, in that case,
the expressions for &, ¢, and the prefactor of the action are
more complicated.

APPENDIX B: DERIVATION OF THE PREFACTOR OF
THE CURRENT DECAY IN A
ONE-DIMENSIONAL LATTICE

Following a general theory developed in Ref. [44], in the
one-dimensional case, we can find the transition rates per site
I'_ and I',. These can be written as

I.= _\/7|w0wL/2|H exp( i)’ (B1)

n=1 @,

where 7 is the phenomenological coupling to the bath de-
grees of freedom, defined in terms of dissipative Gross-
Pitaveskii equations:

g~ P L. (B2)

Here L£(z) is the Langevin noise term; w; and w_? are the
eigenvalues of the excitations of Eq. (53) around the saddle-
point and metastable states, respectively. Note that both
states have one zero eigenvalue due to global phase U(1)
symmetry and we ignore them. The saddle-point spectrum
also has one imaginary eigenvalue (w,) corresponding to an
unstable solution of the linearized equations of motion. An
extra prefactor ), comes because in the saddle-point con-
figuration the number of solutions with real w is smaller by 1
than in the metastable state. For simplicity we assume L to
be even. Because of the absence of continuous translational
symmetry, there is no second zero eigenvalue for the saddle
point (compare with Ref. [31]). The eigenfunctions of small
fluctuations around the metastable state are plain waves. The
corresponding spectrum thus reads

w, =2V2 cos p sink,/2, (B3)

where k,=2mn/L is the momentum, n=0,1,...L—1 is an
integer, and L is the size of the chain.

The saddle-point solution with a single phase slip has
scattering states and a bound state. The latter is described by

the eigenfunction
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—«(j=1) ji=1
5¢)j=AX ot i<o0. (B4)

Substituting Eq. (B4) into the linearized version of Eq. (53)
we find k=In3 and wy=4iV2/3 cos p, where we ignored a
small discrepancy between p and p'.
To find the scattering states we shall seek solutions in the
form
S¢pj=Ae™ + Be (B5)

for j=1,2,...L-1 and 0¢y= d¢y, where 6¢; is the small
deviation from the saddle-point solution (54). The system of
secular equations determining the wave vectors k, reads

Al +e* ™ —=2¢%) + B(1 + 7™ - 275 =0,  (B6)

Ae*(1 + e — 2¢MI-D) 4 Bemik(1 4 ¢k _ 2= KI-D) =,
(B7)
A nontrivial solution of the above system exists for k satis-
fying the following equation:
kL k

tan— =2 tan—. (B8)
2 2

Introducing the phase shift k,=2mn/L+6,/L we find

o, mm 0,
tan— =2 tan| — + — (B9)
2 L 2L

In the limit L— we get the approximate solutions for the
scattering phase shifts:

™
5,=2 arctan<2 tanf) ) (B10)
The energies of the scattering states are equal to
=22 (m 5”) (B11)
= in| —+ —
w,=2\2cosp's . T

Now it is straightforward to find the ratio of the products of
all eigenvalues at the saddle point and the metastable state in
the limit L— oe:

+tan p(7+2p/2)

1=

n n

(B12)

s|€

Substituting this into the general expression (B1) we derive
Eqgs. (59) and (60).

APPENDIX C: GROSS-PITAEVSKII DYNAMICS OF A
LATTICE CONDENSATE IN A PARABOLIC TRAP UNDER
SLOW CHANGE OF THE HOPPING AMPLITUDE

In the superfluid regime the most significant effect of the
optical trap on the motion of the system is the modification
of the effective mass of the particles. So, let us analyze a
condensate with a time-dependent mass, moving in a para-
bolic trap. Since we are considering a purely classical effect
we can use Gross-Pitaveskii equations (for simplicity we re-
strict the analysis to one dimension):
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HW__ 1Pk

=— —— + —x*¢+ Ul . Cl
l&t 2m x> 2)“’/, |¢2|l/[ (€1

In the optical lattice the underlying equations are

; k
2y )+ 5P U, (€

In the weak tunneling regime Eqgs. (C1) and (C2) are equiva-
lent provided that m=1/(2J), the lattice constant is equal to
unity, and the phase gradient is small. If the interaction
strength is not too small, i.e., the condensate is in the
quantum-rotor limit UN > J, then the effect of quantum pres-
sure is negligible and instead of (C1) one can use hydrody-
namic equations of motion [54]. The Bosonic field is then
represented as

l,[/(x,l) — \"p(x,l‘)eifxp(xl’t)dx’ ' (C3)

Keeping only the lowest orders of spatial derivatives of the
density p instead of Eq. (C1) we obtain

17 1 9 d
—p=—kx——p—p—U—p, (C4)
ot m Jx ax

ap 14

—=—-—— . C5

Py max(Pp) (C5)

The stationary solution of Egs. (C4) and (C5) yields an in-
verted parabola profile of the density,

m— %k)c2

P (Co)

po(x) =

where w is the chemical potential. Let us now assume that
the condensate undergoes small center-of-mass oscillations.
They can be excited by a small displacement of the trap
minimum. Then it is easy to check that one can seek a solu-
tion in the form

__
> f(t)—_ dt 5 (C7)

) = 5+ fl)x

p(x,1) N

with the initial conditions f(0)=kx,, p(0)=0, w(0)=pu,
—(1/2)kx, where x, is the initial displacement. Substituting
Eq. (C7) into Egs. (C4) and (C5) one finds

k k
S(2) = xpk cos \/jt, p(t)=- xo\r’% siny/—1, (C8)
m m
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o2

plx,1) = U

Note that the interaction U never enters Eq. (C8) except for a
trivial prefactor. This is so because the excited mode is re-
lated to the motion of the center of mass, while the shape of
the condensate cloud does not change in time. Moreover, the
existence of such a center of mass or Galilean mode is the
property of Eq. (C1) itself. Indeed, it is easy to check that if
o(x,1) is the solution of Eq. (C1) then

Px, 1) = hx = s(1), 1) %P0 (C9)
is also a solution given that
dsy _p(t) dp()
— =, — =—ksy(1). C10
dt  m dt (0 (C10)

Now let us assume that the mass increases in time. We will
use again the hydrodynamic equations (C4) and (C5), how-
ever, contrary to the stationary problem discussed above, the
hydrodynamic approximation is a crucial assumption for
having the center-of-mass mode independent of the interac-
tion strength. Strictly speaking, the Galilean invariance (C9)
is valid only if mass, curvature, and interaction remain con-
stant in time. In the hydrodynamic regime the shape of the
condensate does not depend on the mass, therefore we may
seek a solution in a form similar to Eq. (C7):

1)\2
i=5)

- (C11)

_KZ aw _ _
p(t) = s f@).

Substituting these formulas into Egs. (C4) and (C5) yields
d*p k
e ——p=0
drr  m()
which is to be supplied with the initial conditions p(0)=0,

p(0)=—xpk. In the adiabatic limit this equation has an ap-
proximate solution:

(C12)

(1) = — xg\k[m()m(0)] sin f t w(Ddr, (C13)
0
1/4 13
f(r) = xok(@> cosf w(ndT (C14)
m(l‘) 0

with w(7)=k/m(7). The first of these equations shows that
as the mass increases (or equivalently the tunneling constant
decreases) the momentum also increases.
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