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Repulsive Bose-Einstein condensates immersed into a double-well trap potential are studied within the
framework of the recently introduced mean-field approach which allows for bosons to reside in several differ-
ent orthonormal orbitals. In the case of a one-orbital mean-field theorysGross-Pitaevskiid the ground state of
the system reveals a bifurcation scenario at some critical values of the interparticle interaction and/or the
number of particles. At about the same values of the parameters the two-orbital mean field predicts that the
system becomes twofold fragmented. By applying the three-orbital mean field we verify numerically that for
the double-well external potential studied here the overall best mean field is achieved with two orbitals. The
variational principle minimizes the energy at a vanishing population of the third orbital. To discuss the energies
needed to remove a boson from and the energies gained by adding a boson to the condensate, we introduce
boson ionization potentials and boson affinities and relate them to the chemical potentials. The impact of the
finite number of bosons in the condensate on these quantities is analyzed. We recall that within the framework
of the multiorbital mean-field theory each fragment is characterized by its own chemical potential. Finally, the
stability of fragmented states is discussed in terms of the boson transfer energy which is the energy needed to
transfer a boson from one fragment to another.
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I. INTRODUCTION

The experimental realization of Bose-Einstein condensa-
tion provides a unique opportunity to study macroscopic
quantum systems. One of the key properties of a quantum
system is the formation of shell structures. For a system ofN
identical fermions the formation of the shell structure is en-
forced by the Fermi statistic, which implies a restriction to
the number of particles residing in a single quantum level. In
contrast, for Bosonic systems where the Bose statistic per-
mits any occupation numbers, the formation of shell struc-
tures, also known as the fragmentation phenomenonf1g,
must be caused by other reasons.

Fragmentation can appear naturally in condensates made
of different kinds of bosons. Binary mixtures of trapped
Bose-Einstein condensatessBECd have been the subject of
numerous experimentalf2,3g and theoretical investigations
f4–8g. These studies comprise binary mixtures made of two
different alkalis such as87Rb-23Na f5,6g, of two different
isotopes of the same atom87Rb-85Rb f4,6g, and of two dif-
ferent hyperfine states of the same alkali such as thesF=2,
MF=2d and sF=1, MF=−1d states of87Rb f2g.

In contrast, the fragmentation phenomenon in BEC’s
made of atoms of one kind and in the same internal state, i.e.,
made of an identical boson, is an open theoretical frontier.
Traditionally, a BEC is described at the Gross-Pitaevskii
sGPd mean-field levelf9,10g, where all bosons are residing in
a single one-particle state. This one-orbital mean field has
been a very successful approximation and can explain many
experiments; see, e.g., Refs.f11,12g and references therein.
However, this mean field intrinsically cannot describe frag-
mentation. The best mean-field approach allowing for bosons
to reside in several different orthonormal orbitals has been
formulated recentlyf13,14g. Each of the involved orbitals is
characterized by a different spatial distributionslocalization

in spaced, a different occupation numbersthe number of
bosons residing in the orbitald, and a different chemical po-
tential. This multiorbital approach includes the Gross-
Pitaevskii theory as a special case, namely when all bosons
reside in a single orbital. The multiorbital mean-field ap-
proach is based on a variational principle and hence the op-
timal orbitals and their occupation numbers are determined
variationally such that the energy of the system is minimized.
In practice this means that the question of whether a BEC
forms a fragmented statesshell structured or prefers to stay in
a nonfragmented statesGPd is answered in the framework of
one and the same method.

By applying this multiorbital mean field to study a repul-
sive BEC in multiwell external potentials we foundf15g that
the ground state may be many-fold fragmented, i.e., the mac-
roscopic occupation of several one-particle functions is en-
ergetically more favorable than the accumulation of all
bosons in a single orbital. The quantities determining the
fragmentation are the number of particles, the strength of the
interparticle interaction, and, of course, the specific shape of
the external potential. The influence of all these parameters
on fragmentation has been investigated in some detail.

In this paper we consider a system ofN identical bosons
with positive scattering length immersed into a double-well
external potential. The Hamiltonian of this system is defined
in Sec. II. In Sec. III we demonstrate that within the standard
one-orbital mean-field theorysGross-Pitaevskiid, the ground
state of the system reveals a bifurcation scenario starting
from a critical value of the interparticle interaction strength
or of the number of particles. By applying two-orbital mean-
field theory we show in Sec. IV that the ground state of the
system made ofN identical bosons can indeed be twofold
fragmented. The fragmentation phenomenon starts to take
place in the vicinity of the bifurcation point obtained at the
GP mean-field level. In Sec. V we apply three-orbital mean-
field theory and demonstrate that for the external potential
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studied here the overall best mean field is achieved for two
orbitals, i.e., the inclusion of a third orbital in the calculation
does not improve the mean-field description and the lowest
energy is obtained if only two orbitals are occupied.

Section VI opens a second part of the present investiga-
tion, where we introduce characteristic quantities which al-
low us to distinguish, at least in principle, between frag-
mented and nonfragmented states of the condensates. In
particular, by comparing the systems ofN andN±1 bosons
we adapt quantities relevant to Fermionic systems and define
vertical and adiabatic ionization potentials and affinities for
Bosonic systems. Their relevance to an experimental obser-
vation of fragmented states is also addressed. In Sec. VII we
introduce a boson transfer energy as the energy needed to
transfer a boson from one orbital to another one and use it to
analyze the stability of fragmented states. The discussion of
the large-N limit of the boson ionization potential, boson
affinity, and boson transfer energy is presented in Sec. VIII.
Finally, Sec. IX summarizes our results and conclusions.

II. THE SYSTEM AND HAMILTONIAN

Our general intention is to consider a system ofN identi-
cal bosons interacting via ad-function contact potential
WsrWi −rW jd=l0dsrWi −rW jd, whererWi is the position of theith bo-
son and the nonlinear parameterl0 is related to thes-wave
scattering length of the bosonsf12g. The Hamiltonian of this
system takes on the standard form,

Ĥ = o
i=1

N F−
"2

2m
¹rWi

2 + VsrWidG + o
i. j=1

N

WsrWi − rW jd. s1d

We denote ashsrWd=T̂+VsrWd the unperturbed one-particle

Hamiltonian consisting of the kinetic operatorT̂ and the ex-
ternal potentialVsrWd.

In this work we specifically study bosons trapped in the
one-dimensional double-well external potential shown in the
insets of Fig. 1. Effectively the trap is obtained as an “inner”
potential

Vinnersxd = vSx2

2
− 0.8De−0.02sx2+0.25x3+6.1xd s2d

and an “outer” trapVouterwhich consists of an infinite wall at
x=9.5p where the inner potential has already died off. The
resulting combined potentialfVsxd=Vinner+Vouterg has two
well-separated nonequivalent wells. It should be mentioned
that the results discussed here hardly depend on whether the
infinite wall of Vouter is replaced by a smoothly growing po-

tential wall f15g. The kinetic energy readsT̂=−sv /2d
3s]2/]x2d implying that the coordinatex is dimensionless
while all energies andl0 are now in units of the frequencyv.

By choosing one well of the double-well potential slightly
deeper and the other well quite broad, the bifurcation of the
solution of the Gross-Pitaevskii equation which is discussed
in the next section is numerically accessible. This is the main
reason for our choice of the double well. We stress, however,
that the finding of twofold fragmentation discussed in Secs.
IV and V is by no means connected to this choice and the

conclusions and qualitative results discussed in this work
also apply to other double-well external potentials like, for
instance, that used in the experimental setup of Ref.f16g.

III. GROSS-PITAEVSKII MEAN-FIELD RESULTS

The standard one-orbital mean-field description of the in-
teracting system is obtained by assuming that the ground-
state wave functionC is a product of identical spatial orbit-
als w :CsrW1,rW2,… ,rWNd=wsrW1dwsrW2d¯wsrWNd. The energyE

;kCuĤuCl, defined as the expectation value of theĤ, reads

EGP= NHE w*h w drW +
l

2
E uwu4drWJ , s3d

wherel=l0sN−1d is the interaction parameter. By minimiz-
ing this energy the well-known Gross-Pitaevskii equation
f9,10g is obtained,

hhsrWd + l0sN − 1duwsrWdu2jwsrWd = mGPwsrWd. s4d

The only parameter involved in the Gross-Pitaevskii mean
field is l=l0sN−1d. Therefore all systems which are charac-
terized by the samel have the same energy per particle as
well as the same orbitalwsrWd even if the systems have dif-
ferent numbers of bosons. Below, we will use this fact to
compare systems made of different numbers of bosons but
have the same value ofl.

We solved the Gross-Pitaevskii equation with the external
potential introduced in Sec. II for different values ofl. In
Fig. 1 we plot the energy per particle of the lowest energy
solutions as a function ofl. From this figure it can be in-
ferred that the energy per particle of the ground state in-

FIG. 1. sColor onlined Results of one-orbital mean-fieldsGPd
theory. Shown are the energies per particleEGP/N of the lowest
energy solutions of the Gross-Pitaevskii equation as a function of
l=l0sN−1d. The bifurcation point observed atlcr=0.837 is
marked by a dashed line. In the insets the GP orbitals corresponding
to the uppersId and lowersII d energy branches are depicted together
with the double-well trap potential. The values of the external trap
potential sfor parameters, see textd have been scaled by 1/10. All
energies are given in units ofv. All orbitals are dimensionless and
plotted as functions of the dimensionless coordinatex.
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creases monotonically withl up to some critical value of
lcr=0.837 and then the energy trajectory is split into two
branches. This critical value ofl is indicated in Fig. 1 by a
vertical dashed line. The single-particle wave functionsor-
bitald corresponding to the upper branch, marked as “I” in
Fig. 1, is depicted in the upper inset of Fig. 1. This wave
function is mainly localized in the left well. Fromlcr on, the
lowest energy branch, labeled “II” in Fig. 1, smoothly bifur-
cates from the “localized” solution and describes a delocal-
ization of the BEC over the two wells. This delocalized so-
lution is depicted in the right bottom inset of Fig. 1. For
convenience, we also plot in both insets the rescaled double-
well potential V/10. The bifurcation scenario is a known
feature f17–23g of the Gross-Pitaevskii equation reflecting
the nonlinearity of the underlying mean-field approximation.
Bifurcations have been predicted for the ground
f17,19,21–23g and excitedf18–20,22g states of repulsive
f18–22g and attractivef17,19,21–23g condensates confined in
different trap potentials.

Within the Gross-Pitaevskii mean field we obtain the fol-
lowing physical picture of Bose-Einstein condensation of re-
pulsive bosons immersed into nonsymmetric double-well po-
tentials. Forl,lcr the BEC is localized in the deeper well
only. When l is increased, the BEC may continue to be
localized in this well, but it is energetically more favorable
for bosons to tunnel through the barrier and to populate also
the other well. As we have mentioned above,l=l0sN−1d is
the only relevant parameter, and therefore both localization
and delocalization phenomena can be observed for systems
made of any number of particles by properly tuning the in-
terparticle interaction strengthl0.

IV. TWO-ORBITAL MEAN-FIELD RESULTS

In the previous section we demonstrated that above some
critical value of nonlinearitylcr the ground state of the sys-
tem is described in the GP approach by a wave function
delocalized over both wells. The existence of a bifurcation in
the GP results can be seen as a hint to go beyond the GP
theory. The natural question arises whether it is possible to
improve the GP mean-field description by providing a more
flexible mean-field ansatz which would allow bosons to oc-
cupy two different orbitals which, in principle, could be lo-
calized in different wells.

Recently, a multiorbital mean-fieldsMFd approach allow-
ing for bosons to reside in several different orthonormal one-
particle functions has been formulatedf13,14g. Usingm dif-
ferent orbitals, the approach is denoted MFsmd. In this
section we discuss MFs2d. In the next section we shall see
that for the double-well geometry of the external potential
studied here, the overall best mean field is achieved within
the two-orbital mean-field theory. Since the details of the
derivations have already been published elsewheref13,14g,
we present here only the final formulas. Assuming thatn1
bosons occupy the orbitalf1 and n2 bosons occupy the or-
bital f2 leads to the following many-body wave function:

CsrW1,…,rWNd = Ŝf1srW1d ¯ f1srWn1
df2srWn1+1d ¯ f2srWn1+n2

d,

s5d

where Ŝ is the symmetrizing operator. The MFs2d energy
expression takes on the form

E = n1h11 + l0
n1sn1 − 1d

2
E uf1u4drW + n2h22

+ l0
n2sn2 − 1d

2
E uf2u4drW + 2l0n1n2E uf1u2uf2u2drW.

s6d

The optimal orbitalsf1 andf2 which minimize this energy
functional are determined by solving the two coupled non-
linear equations:

hhsrWd + l0sn1 − 1duf1srWdu2 + 2l0n2uf2srWdu2jf1srWd

= m11f1srWd + m12f2srWd, s7d

hhsrWd + l0sn2 − 1duf2srWdu2 + 2l0n1uf1srWdu2jf2srWd

= m21f1srWd + m22f2srWd.

Obviously, the GP equationss3d and s4d follow immedi-
ately from the MFs2d equationss6d and s7d by putting the
occupation of one of the two orbitals to zero.

In contrast to the one-orbital mean-fieldsGPd description
wherel=l0sN−1d is the only parameter involved, the two-
orbital mean-fieldfMFs2dg depends on two parametersn1
andn2 which are the occupation numbers of the one-particle
orbitalsf1 andf2, respectively. At fixed interaction strength
l0 and number of bosonsN, the MF energyfsee Eq.s6dg
depends on the particular value ofn1sn2=N−n1d. It should
be noted that the occupation numbers are variational param-
eters. In order to find their optimal value and that of the
energy, Eqs.s7d are solved for all possible occupation num-
bers, and the corresponding energies are evaluated by using
Eq. s6d. At the optimal values of the occupation numbers the
energyE takes on its minimum and the MFs2d becomes the
best two-orbital mean field which we denote by BMFs2d.

We solved the MFs2d equations forl=0.8 and for l
=0.9. These values of the nonlinear parameter have been
chosen to be smaller and larger thanlcr=0.837 which is the
bifurcation point of the GP energy trajectory discussed in
Sec. III. In Figs. 2 and 3 we plot the MFs2d energies per
particle forl=0.8 and forl=0.9, respectively, as a function
of the relative occupation numbern1/N of the orbital local-
ized in the deepersleftd well of the trap potential. The results
are shown forN=5, 10, 25, 102, 103, and 106 bosons. The GP
energy is indicated by the horizontal line and labeled as
“GP.”

The common feature seen in Figs. 2 and 3 is that the
energies per particle of the systems of bosons which are
characterized by the samel=l0sN−1d do depend on the
number of bosonsN and reveal a different dependence on
n1/N. In contrast to the GP approach, the multiorbital mean-
field theory distinguishes between systems with a different
number of bosons even if they are characterized by the same
value ofl. As seen in the figures, forn1/N=1, i.e., when all
bosons reside in one orbital, the energies of all the curves
coincide at the same value which is nothing but the corre-
sponding GP energy. We can obviously conclude that the GP
approach is indeed a special case of the MFs2d theory.
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In Fig. 2 and in particular in Fig. 3 it is seen that the
optimal BMFs2d energies may be lower than the correspond-
ing GP one and in these cases BMFs2d constitutes the proper
ground state of the system. These ground states with nonzero
occupation numbers arefragmentedstates, because the re-
spective one-particle density matrix has several nonzero ei-
genvaluesf1,15,24g. Therefore the fragmentation observed
before in three-well potentialsf15g also persists in double-
well external potentials. The optimal orbitals obtained at the
minima of the energy for the systems havingN=5, 10, and
1000, bosons forl=0.8, and N=5, 1000, and 100 000
bosons forl=0.9 are depicted in the left and right panels of
Fig. 4, respectively. In this figure it is clearly seen that one of
the corresponding optimal orbitals is localized in the left well
and the other one in the right well of the trap potential. This
is in an agreement with the threefold fragmentation studied
before, where the optimal orbitals have also been found to be

localized in the different wells of the three-well external po-
tential f15g.

Figures 2 and 3 exhibit several interesting features. Let us
first discuss Fig. 2 wherel=0.8 is smaller thanlcr. Inspec-
tion of the inset shows that the MFs2d energy curves as a
function of n1/N possess a minimum forNø14 bosons. At
these minima the energy is below the GP energy which is at
the maxima of the curves. For the systems which contain
more than 14 particles, the MFs2d energy curves are mono-
tonically increasing and their lowest energy is at the GP en-
ergy. In this case one of the MFs2d orbitals becomes identical
to the GP solution and all bosons reside in this orbitalssee
the left panel of Fig. 4d.

The situation changes drastically forl=0.9 which is
larger thanlcr. As seen in the inset of Fig. 3, the BMFs2d
energy is lower than the GP energy for condensates with up
to Nmax<102 000 bosons. For all these systems the fragmen-

FIG. 2. sColor onlined Results of the two-orbital mean-field
fMFs2dg theory for l=0.8,lcr. From bottom to top the energies
per particle for condensates made ofN=5, 10, 25, 102, 103, and 106

bosons are shown as a function of the relative occupation number
n1/N of the orbital localized in the deeper well. The horizontal solid
line labeled as “GP” shows the corresponding GP energy per par-
ticle. In the inset the energy per particle for the systems withN
=13, 14, and 15 bosons are plotted. All energies are given in units
of v.

FIG. 3. sColor onlined Results of the two-orbital mean-field
fMFs2dg theory for l=0.9.lcr. From bottom to top the energies
per particle for condensates made ofN=5, 10, 25, 102, 103, and 106

bosons are shown as a function of the relative occupation number
n1/N of the orbital localized in the deeper well. The horizontal solid
line labeled as “GP” shows the corresponding GP energy per par-
ticle. In the inset the energy per particle for the systems withN
=100 000, 102 000, and 105 000 bosons are plotted. All energies
are given in units ofv.
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tation of the ground state is evident and macroscopic. One
should be aware thatl is kept fixed in Fig. 3 and therefore
the interparticle interaction strengthl0 is small for the many-
particle systems shown there.

Finally, we would like to point out two additional features
of Fig. 3. First, the GP energy is a local minimum for most of
the energy curves and consequently there appears a maxi-
mum which separates this energy from the global minimum,
i.e., from the BMFs2d energy. This may hint to an interesting
dynamics of fragmentation if the system is initially prepared
in an nonfragmented state. Second, although there exists a
maximal number of particlesNmax for which the ground state
is fragmented, it should be stressed that forall N.Nmax the
energy gap between the BMFs2d and GP energies is ex-
tremely small. ForN=106 bosons, for instance, this energy
difference per particle is only<3310−7 units of v. The
coexistence of the fragmented and nonfragmented but delo-
calized states is of great interest by itself and might play a
role in particular in time-dependent experiments.

V. PROOF THAT BMF(2) IS THE BEST OVERALL MEAN
FIELD

From the previous section we learned that by allowing
bosons to reside in two orbitals, the mean-field description of
the repulsive BEC in the double-well potential has improved
compared to the standard one-orbital description. The natural
question arises whether the inclusion of even more orbitals
can provide further improvement of the mean-field descrip-
tion of the BEC. To answer this question we apply the three-
orbital mean-field theoryfMFs3dg f15g.

The corresponding ansatz for the wave function assumes
that three orbitalsf1, f2, andf3 are now occupied byn1,n2,
andn3=N−n1−n2 bosons, respectively

CsrW1,…,rWNd = Ŝf1srW1d ¯ f1srWn1
df2srWn1+1d ¯ f2srWn1+n2

d

3f3srWn1+n2+1d ¯ f3srWn1+n2+n3
d, s8d

where Ŝ is the symmetrizing operator. The three-orbital
mean-field energy readsf15g

E = n1h11 + l0
n1sn1 − 1d

2
E uf1u4drW + n2h22

+ l0
n2sn2 − 1d

2
E uf2u4drW + n3h33

+ l0
n3sn3 − 1d

2
E uf3u4drW + 2l0n1n2E uf1u2uf2u2drW

+ 2l0n1n3E uf1u2uf3u2drW + 2l0n2n3E uf2u2uf3u2drW.

s9d

The optimal orbitals minimizing this energy functional are
obtained by solving the following system of three coupled
noneigenvalue equationsf15g,

hhsrWd + l0sn1 − 1duf1srWdu2 + 2l0n2uf2srWdu2

+ 2l0n3uf3srWdu2jf1srWd = m11f1srWd + m12f2srWd + m13f3srWd,

hhsrWd + l0sn2 − 1duf2srWdu2 + 2l0n1uf1srWdu2

+ 2l0n3uf3srWdu2jf2srWd = m21f1srWd + m22f2srWd + m23f3srWd,

hhsrWd + l0sn3 − 1duf3srWdu2 + 2l0n1uf1srWdu2

+ 2l0n2uf2srWdu2jf3srWd = m31f1srWd + m32f2srWd + m33f3srWd.

s10d

For the numerical procedure to solve this system of equa-
tions and to obtain the self-consistent orbitalsfi and the
corresponding values of the Lagrange parametersmi j si , j
=1,2,3d, we refer to Ref.f15g.

In comparison with the MFs2d approach the MFs3d
method has one more variational parametern3. We solved
the above system of three coupled equationss10d for several
values ofl and N and different fixed values ofn3. As an
example, we show in Fig. 5 the results obtained forl=0.9
and N=1000 for different occupation patterns. Keeping the
value of the third occupation numbern3/N fixed at 0.0001,
0.001, 0.005, and also at zero, we plot the three-orbital

FIG. 4. sColor onlined The optimal orbitals
f1sxd and f2sxd corresponding to the minimum
of the MFs2d energy ffor convenience the
sni /Nd1/2fisxd are showng. Left panel: The MFs2d
solutions for the systems withN=5, 10, and 1000
bosons atl=0.8,lcr. Right panel: The MFs2d
solutions for the systems withN=5, 1000, and
100 000 bosons atl=0.9.lcr. The orbitals lo-
calized in the leftsdeeperd and right wells are
marked by solid and dashed lines, respectively.
All orbitals are dimensionless and plotted as
functions of the dimensionless coordinatex.
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mean-field energy per particle as a function of the relative
occupation numbern1/N. The occupation of the second or-
bital n2=N−n1−n3 is, of course, determined byn1 and n3.
The three-orbital mean-field method obviously includes
MFs2d as a special case, namely, when the occupation of the
third orbital vanishes. We see from Fig. 5 that increasing the
value of n3/N leads to a gradual increase of the MFs3d en-
ergy per particle. Clearly, in the present case of repulsive
condensates in the double-well potential, the overall best
mean field is obtained within the two-orbital BMFs2d theory.
The enforced inclusion of more orbitals only enhances the
energy of the condensate.

Several consequences should be mentioned. First, frag-
mentation is a general physical phenomenon which takes
place in repulsive BECs trapped in multiwell external poten-
tials. Second, the number of the fragments and their occupa-
tion numbers are defined variationally, by minimizing the
total-energy functionals in Eqs.s6d and s9d. If more orbitals
are included in the mean-field ansatz than needed, the occu-
pation of the superfluous orbitals becomes zero.

VI. SOME PROPERTIES OF FRAGMENTED STATES

Usually, to distinguish fragmented and nonfragmented
states a phase difference between wave functions of the dif-
ferent fragments is consideredf25–27g. Dynamical stability
f28,29g of the relative phase between the condensates local-
ized in the different wells and related questions on the evo-
lution of the fragmented statef30,31g has been a subject of
several discussions.

In contrast to these time-dependent studies on fragmenta-
tion, we concentrate in the second part of our work on time-
independent properties of the stationary fragmented states
themselves. The analogy between shell structuressatoms and
moleculesd formed in the Fermionic world and the Bosonic

fragmented states studied in the previous sections motivates
us to make use of some Fermionic observables such as the
ionization potential and electron affinity, and introduce re-
lated quantities for Bosonic systems. Indeed, at the multior-
bital mean-field level of description the Fermionic system is
described by antisymmetrized single-determinant wave func-
tion f32g, while the symmetrized ansatzfsee Eqs.s5d ands8dg
is proposed for Bosonic systems. The variationally optimal
orbitals and the corresponding orbital energies are obtained
by solving the well-known Hartree-FocksHFd equationsf32g
for fermions and the BMF equations for bosons. The total
energies of these systems are evaluated by computing the
expectation values of the full many-body Hamiltonians with
the santidsymmetrized ansatz of the wave function.

The electron ionization potentialsIPd is defined as the
difference in total energies between the reference system
with N electrons and the ionized system withN−1 electrons
f32g. Because of this definition, the ionization potential is
also referred to as the binding energy of an electron in the
system. We define theboson ionization potentialor the bind-
ing energy of a boson as the energy needed to remove a
boson from a Bosonic system withN bosons. Another very
important physical characteristic is the electron affinity de-
fined as the energy gained by adding one electron to the atom
or moleculef32g. In analogy, we define theboson affinityas
the energy gained by attaching one boson to the Bosonic
system under consideration.

The boson ionization potentials and affinities can be cal-
culated straightforwardly based on their definitions as differ-
ences between total energies. In principle, these total ener-
gies may be evaluated within the framework of any suitable
N-body method, but in the present study we restrict ourselves
for consistency to the two-orbital mean-field approach. To
distinguish between the total energies of the condensates
made of a different number of bosons we introduce super-
script indices. In this notation the MFs2d total energies of the
system withN−1, N, andN+1 bosons take on the following
form N−1Esn1,n2d, NEsn1,n2d, N+1Esn1,n2d, where the super-
script refers to the condensates made of the corresponding
number of bosons. We recall that within the framework of
the MFs2d approach the total energy of the system is a func-
tion of the occupation numbern1sn2=N−n1d and the mini-
mum of this energy is called the best mean fieldfBMFs2dg.
Obviously, the MFs2d energies of the systems with a differ-
ent number of bosons achieve their minimal valuesfBMFs2d
energiesg at different values of the occupation numbers. We
denote these BMFs2d energies and corresponding occupation
numbers asKE0 and sn1

K ,n2
Kd where the superscriptK refers

to the system withK bosons.

A. Adiabatic and vertical boson ionization potentials

The general definition of the boson ionization potential
involves the total energies of condensates made ofN and
N−1 bosons. Usually, the reference system withN bosons is
considered to be in its ground equilibrium state while the
ionized system withN−1 bosons can be either in an equilib-
rium or in a some transitional state. In the following section
we verify that only the BMFs2d energyfthe minimum of the

FIG. 5. sColor onlined Demonstration that BMFs2d provides the
overall best mean field. Shown are the results obtained with the
three-orbital mean-fieldfMFs3dg theory forN=1000 bosons andl
=l0sN−1d=0.9. Plotted are the energy per particle as a function of
the relative occupation numbern1/N for fixed values of the third
relative occupation numbern3/N. The curves shown from bottom to
top correspond ton3/N=0.0, 0.0001,0.001, and 0.005. All energies
are given in units ofv.
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MFs2d energy curveg corresponds to the equilibrium state of
the condensate, while all other MFs2d energies can be attrib-
uted to some transitionalsnonequilibriumd states of the con-
densate.

The difference between the groundequilibrium state en-
ergies of the ionized system withN−1 bosons and the refer-
ence system withN bosons is calledadiabatic boson ioniza-
tion potentialsIAd:

IA = N−1E0 − NE0. s11d

The equilibrium in the ionized state might be achieved by
adiabatically removing a boson from the condensate.

In contrast, if a boson is suddenly removed from the sys-
tem, then the state created is not an equilibrium state of the
ionized system and the difference between the energy of this
nonequilibrium state and that of the ground state of the ref-
erence system is calledvertical boson ionization potential
sIVd. If the Bosonic system under consideration is frag-
mented, then the sudden ionization of a boson from different
orbitals of the fragmented state requires different energies.
The twofold fragmented states are characterized by two dif-
ferent vertical boson ionization potentials,

IVs1d = N−1Esn1
N − 1,n2

Nd − NE0sn1
N,n2

Nd,

IVs2d = N−1Esn1
N,n2

N − 1d − NE0sn1
N,n2

Nd, s12d

where NE0= NE0sn1
N,n2

Nd is the BMFs2d energy of the refer-
ence system withN bosons obtained at the optimal occupa-
tion numbersn1

N andn2
N of the two fragments, andN−1Esn1

N

−1,n2
Nd and N−1Esn1

N,n2
N−1d are the MFs2d energies of the

ionized states where a boson has been removed from the first
and second fragment, respectively. The values of the vertical
boson ionization potentialssor vertical boson affinities dis-
cussed in the next subsectiond are particularly relevant when
the time needed to remove a boson fromsor add tod the
condensate is shorter than the time the condensate needs to
rearrange itself. The former time depends on the experimen-
tal setup and the latter time should depend on the mean ve-
locity of the bosons and the size of the condensate. A naive

estimate of the latter time is given by the quotient of the size
and velocity.

In Fig. 6sad we present a schematic diagram of the adia-
batic and vertical ionization potentials together with the
MFs2d total energies of the systems withN+1, N, andN−1
bosons plotted as functions of the numbern1 of bosons re-
siding in the first orbital. In Fig. 6sbd we plot these quantities
as functions of the complementary parametern2=N−n1 sthe
number of bosons residing in the second orbitald. The
BMFs2d energies of the systems withN+1, N, and N−1
bosons are indicated on the energy axis. The optimal occu-
pation numbersn1

N andn2
N corresponding to the minimum of

the MFs2d energy of the referenceN-boson system are indi-
cated on thex axes of Figs. 6sad and 6sbd, respectively.

The difference between the ground-state energy of the
ionized systemN−1E0 and that of the reference systemNE0,
i.e., the adiabatic ionization potential, is marked in Fig. 6sad
as IA. The vertical boson ionization potentialIVs2d is shown
in Fig. 6sad as avertical line connecting the minimum of the
N-particle energy curve and the energy curve of the system
with N−1 bosons. Let us explain this construction. When a
boson is suddenly removed from the second orbitalf2 of the
reference system, the occupation numbern1

N of the other
sfirstd orbital remains the same also in the ionized system,
while the occupation of the second orbital in the ionized state
is obviously reduced by 1 ton2

N−1. Therefore this ionization
process is indicated by the vertical line in thesE,n1d dia-
gram.

The vertical boson ionization potentialIVs1d is also shown
as a vertical line connecting the minimum of theN-particle
energy curve and the energy curve of the system withN−1
bosons, but in the complementarysE,n2=N−n1d diagram
fsee Fig. 6sbdg. In this case the occupation number of the first
orbital is reduced by 1 ton1

N−1 in the ionized state, while the
occupation number of the second orbitaln2

N remains the same
as in the reference state. For completeness, theIVs1d and
IVs2d are plotted in both panels of Fig. 6.

Removing a single boson from the system will not cause a
strong change of the orbitals of the other bosons and these
orbitals can be assumed fixed. In Fermionic systems this as-

FIG. 6. sColor onlined Schematic diagram de-
fining the vertical and adiabatic boson ionization
potentialssIV,IAd and vertical and adiabatic bo-
son affinitiessAV,AAd. Total energies of conden-
sates withN−1, N, and N+1 bosons obtained
within the framework of the MFs2d theory are
plotted in the left figuresad as a function of the
occupation numbern1 and in the right figuresbd
as a function of the occupation numbern2=N
−n1. The minima of the energy curves are de-
noted byN−1E0,

NE0, andN+1E0, and are indicated
on the energy axis. The reference condensate for
which the boson ionization potentials and boson
affinities are defined is that withN particles. The
optimal occupation numbers of this condensate
are n1

N and n2
N. Vertical and adiabatic boson ion-

ization potentials and boson affinities are shown
ssee text for more detailsd.
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sumption is known as thefrozen orbital approximationf32g.
This observation allows us to evaluateapproximatelythe
vertical ionization potentials and hence the total energies of
the ionized systems.

In the frozen orbital approximation we assume that the
orbitals of the referenceN-Bosonic systemf1 andf2 do not
change upon the sudden removal of a boson, i.e., the ionized
system is described by the same orbitals as well. The ener-
gies of the corresponding ionized states where the boson has
been suddenly removed from thef1 or thef2 orbital take on
the form

N−1Esn1 − 1,n2d = sn1 − 1dh11 + l0
sn1 − 1dsn1 − 2d

2
E uf1u4drW

+ n2h22 + l0
n2sn2 − 1d

2
E uf2u4drW

+ 2l0sn1 − 1dn2E uf1u2uf2u2drW, s13ad

N−1Esn1,n2 − 1d = sn2 − 1dh22 + l0
sn2 − 1dsn2 − 2d

2
E uf2u4drW

+ n1h11 + l0
n1sn1 − 1d

2
E uf1u4drW

+ 2l0n1sn2 − 1d E uf1u2uf2u2drW, s13bd

respectively.
According to the definitions in Eqs.s12d, the vertical ion-

ization potentials are obtained by substructing the BMF en-
ergy NE0 of the referenceN-particle state from the energies
of the ionized states in Eqs.s13ad and s13bd at n2=n2

N. We
easily find for the boson vertical ionization potentials in the
frozen orbital approximation the appealing relations

IVs1d = − m11,

IVs2d = − m22, s14d

i.e., they are given by the negative of the respective
Lagrange multipliers which we call chemical potentials.

It is worthwhile to recall that at the level of the standard
GP theoryssee Sec. IIId the energy needed to remove a boson
from the nonfragmentedN-boson condensate without chang-
ing the corresponding orbitalw is given by the GP chemical
potential:

N−1EGP− NEGP= − mGP. s15d

The relations between orbital energies and ionization po-
tentials in the Fermionic case are the subject of the well-
known Koopmans’ theoremf32,33g. Within the Hartree-Fock
mean field this theorem states that the vertical ionization
potential is the negative of the energy of the orbital from
which the electron has been removed. Attributing the diago-
nal Lagrange multipliersschemical potentialsd mii to the or-
bital energies of the fragmented state, the formal results for
Fermionic and Bosonic systems are absolutely identical.

We conclude that the process of sudden ionization of a
boson from the nonfragmented GP state is characterized by a
single ionization potential while different ionization poten-
tials characterize a twofold fragmented state of the conden-
sate. We recall that in the thermodynamic limit the change in
the energy of a system obtained by removing a particle is
called chemical potential. The condensates studied here are
made of identical bosons, and therefore a single chemical
potential is expected to characterize these condensates at
equilibrium. This seems to contradict the results obtained
here for the twofold fragmented states, where two, in general
different, chemical potentials exist. This apparent contradic-
tion is resolved by remembering that the present results are
for finite systems. Indeed, we demonstrate in Sec. VIII that
in the limit of a large number of particles these different
chemical potentials become identical at the optimal occupa-
tions restoring thereby the thermodynamic picture of a con-
densate.

B. Adiabatic and vertical boson affinities

The main purpose of the present section is to consider a
process where a boson is added to the reference system ofN
bosons. We defineadiabatic boson affinitysAAd as the differ-
ence between the groundequilibrium state energies of this
reference system and of the system which results by attach-
ing a boson to the reference system,

AA = NE0 − N+1E0. s16d

The adiabatic boson affinity is shown schematically in Fig.
6sad. It describes the energy gained by the attachment of a
boson.

Similarly to the sudden ionization process used to intro-
duce the vertical ionization potentials in the previous subsec-
tion, we consider the sudden attachment of a boson to the
twofold fragmented state and define twovertical boson af-
finities comprising the sudden attachment of a boson to the
f1 andf2 fragments, respectively:

AVs1d = NE0sn1
N,n2

Nd − N+1Esn1
N + 1,n2

Nd,

AVs2d = NE0sn1
N,n2

Nd − N+1Esn1
N,n2

N + 1d. s17d

Here, NE0= NE0sn1
N,n2

Nd is the BMFs2d energy of the refer-
ence system,n1

N andn2
N are the corresponding optimal occu-

pation numbers,N+1Esn1
N+1,n2

Nd andN+1Esn1
N,n2

N+1d are the
MFs2d energies of the states where a boson has been attached
to the first and to the second fragment, respectively. In Figs.
6sad and 6sbd we schematically plot the vertical boson affini-
tiesAVs2d andAVs1d as the vertical lines connecting the cor-
responding points on the energy curves.

In the frozen orbital approximation the energies of the
states to which the boson has been suddenly attached to the
f1 or f2 orbital take on the form
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N+1Esn1 + 1,n2d = sn1 + 1dh11 + l0
sn1 + 1dsn1 − 0d

2
E uf1u4drW

+ n2h22 + l0
n2sn2 − 1d

2
E uf2u4drW

+ 2l0sn1 + 1dn2E uf1u2uf2u2drW, s18ad

N+1Esn1,n2 + 1d = sn2 + 1dh22 + l0
sn2 + 1dsn2 − 0d

2
E uf2u4drW

+ n1h11 + l0
n1sn1 − 1d

2
E uf1u4drW

+ 2l0n1sn2 + 1d E uf1u2uf2u2drW. s18bd

By substructing these energies from the BMF energy of the
referenceN-particle stateNE0, we obtain the vertical boson
affinities AVs1d and AVs2d in the frozen orbital approxima-
tion:

AVs1d = − m11 − l0E uf1u4drW,

AVs2d = − m22 − l0E uf2u4drW. s19d

Interestingly, the vertical boson affinities in the frozen orbital
approximation are not fully determined by the chemical po-
tentials in contrast to our finding for the vertical boson ion-
ization potentials discussed in the preceding subsection.

It is informative to notice that the energy gained by add-
ing a boson to the nonfragmented condensate without chang-
ing the corresponding orbitalw for a finite number of bosons
reads

NEGP−
N+1EGP= − mGP− l0E uwu4drW. s20d

Hence even at the level of the standard GP theory, the energy
needed to remove a boson from a nonfragmented condensate
differs from that gained by adding a boson to this conden-
sate.

The above findings reveal differences between Bosonic
and Fermionic systems. In contrast to the electron affinity
which in the framework of the Hartree-Fock mean-field ap-
proach is given by the negative of the virtual orbital’s energy,
the boson affinity does not depend on the virtual orbital and,
in addition, is subject to a correction term proportional tol0.

C. Numerical examples

For illustration purposes we evaluate all the above intro-
duced adiabatic and vertical boson ionization potentials and
boson affinities for several reference systems made of
N=5,10,25,100, and 1000 bosons, keepingl=0.9 fixed
throughout. In the GP theory all these systems are character-
ized by the same chemical potential. Table I summarizes the
computational results on the vertical boson ionization poten-
tials and vertical boson affinities obtained within the frame-
work of the direct scheme in Eqs.s12d ands17d, respectively.
For comparison we also evaluate all these quantities using
the frozen orbital approximation as given in Eqs.s14d and
s19d. In Table I these approximate numbers are given in pa-
rentheses. By comparing all these quantities we conclude
that the frozen orbital approximation provides very accurate
results for the systems with a large number of bosons and

TABLE I. The adiabatic and vertical boson ionization potentialsIA andIVskd and boson affinitiesAA and
AVskd for condensates withN=5,10,25,100, and 1000 bosons. Shown are quantities evaluated according to
their definitions in Eqs.s11d, s12d, s16d, and s17d as differences of total energies and compared with those
computed using the frozen orbital approximation in Eqs.s14d ands19d. These approximate numbers are given
in parentheses.l=0.9 is used throughout.

Ionization Affinity

N IA IVs1d IVs2d AA AVs1d AVs2d

5 −0.007508 0.025694 −0.006132 −0.020167 −0.052911 −0.021267

s0.027242d s−0.006248d s−0.055309d s−0.021819d
10 −0.010946 0.003733 −0.010390 −0.016514 −0.031100 −0.017021

s 0.004460d s−0.010387d s−0.031993d s−0.017142d
25 −0.012613 −0.007123 −0.012412 −0.014692 −0.020167 −0.014886

s−0.006844d s−0.012405d s−0.020470d s−0.014910d
100 −0.013361 −0.012032 −0.013314 −0.013865 −0.015193 −0.013912

s−0.011964d s−0.013311d s−0.015262d s−0.013916d
1000 −0.013576 −0.013445 −0.013572 −0.013626 −0.013758 −0.013631

s−0.013438d s−0.013571d s−0.013764d s−0.013631d
mGP=0.013599

PROPERTIES OF FRAGMENTED REPULSIVE CONDENSATES PHYSICAL REVIEW A71, 063612s2005d

063612-9



surprisingly accurate results for the system with a small
number of bosons.

The main physical conclusion derived is that the twofold
fragmented states are characterized by two different vertical
ionization potentials and by two different vertical boson af-
finities. In contrast, the nonfragmented GP state is character-
ized by a single ionization potential and single affinity. At
least in principle, this difference might be used to distinguish
fragmented and nonfragmented states. The values of the vari-
ous vertical boson ionization potentials and vertical boson
affinities differ from each other clearly for the systems made
of a small number of bosons. As the number of bosons in-
creases, all these values become more similar to each other
and also to the negative of the GP chemical potential.

Closing this section, we would like to mention that we
used the numerical MFs2d data obtained for the reference
system withN=25 and for theN±1 systems with 24 and 26
bosons to plot the diagrams presented in Figs. 6. For all these
systems we fixed the interaction strength atl0=0.9/s25−1d.
The optimal occupations of the first and second orbitals at
the minimum of the MFs2d energy curve of the reference
system with 25 bosons are found to ben1

N=23.08 andn2
N

=1.92, respectively. The noninteger occupation numbers ap-
pear due to the underlying mean-field approximation. They
are to be considered as average values of the respective
particle-number operators. We use these occupation numbers
as the reference scale for thex axes in Figs. 6sad and 6sbd.

VII. BOSON TRANSFER ENERGIES AND THE ORIGIN
OF THE MINIMA OF MF ENERGIES

We define theboson transfer energy T1→2 as the energy
needed to transfer a boson from one orbitalsf1d to the other
sf2d. In the framework of the MFs2d theory we start with the
system which has the energyNEsn1,n2d and evaluate the bo-
son transfer energysT1→2d as the energy difference between
this energy and the energy of the “final” state where the
occupation number of the first orbital is reduced by 1 ton1
−1 and the occupation number of the second orbital is in-
creased by 1 ton2+1. In principle, the energy needed to
move a boson from the first orbital to the second onesT1→2d
differs from the energy of the inverse processsT1←2d where a
boson is transferred from the second orbital to the first one.
The boson transfer energiesT1→2 andT1←2 are given by

T1
2 = NEsn1 7 1,n2 ± 1d−NEsn1,n2d. s21d

In the frozen orbital approximation the boson transfer ener-
gies can be straightforwardly evaluated using these defini-
tions and the MFs2d expressions for the energies. The results
take on the following form:

T1→2 = m22 − m11 +
l0

2
E uf2u4drW − 2 l0E uf1u2uf2u2drW,

T1←2 = m11 − m22 +
l0

2
E uf1u4drW − 2 l0E uf1u2uf2u2drW.

s22d

These results will be used in the discussion below.

It is quite natural to suppose that at equilibrium an ex-
change of the particles between different orbitalssfragmentsd
must be suppressed in the fragmented state. In other words,
the energy needed to transfer a boson from the first orbital to
the second one is equal to the energy needed for the inverse
process—a transition of the boson from the second orbital to
the first one. Therefore the difference between both boson
transfer energies,

Q = sT1←2 − T1→2d/2, s23d

may serve as a criterion of how far we are from the equilib-
rium. Substituting the respective transition energies from
Eqs.s22d provides a useful approximation forQ:

Q = m11 − m22 +
l0

2
E uf1u4drW −

l0

2
E uf2u4drW. s24d

To make contact with the MFs2d energy curves and to get
deeper insight into the origin of the minima of these curves
which determine the BMFs2d energy, it is worthwhile to con-
sider the energy derivativedE/dn1 with respect to the occu-
pation numbern1. To evaluate the derivative we use again
the frozen orbital approximation which has been found to
provide accurate results for the boson ionization potentials
and affinities. In this approximation we can assume that the
orbitalsfi do not depend explicitly on theni and the direct
differentiation of the energy in Eq.s6d with respect ton1
gives

dE

dn1
= m11 − m22 +

l0

2
E uf1u4drW −

l0

2
E uf2u4drW. s25d

By comparing this derivative with the previous equation for
Q one finds that they are identical.

At the optimal orbitals and occupation numbers the MFs2d
energy takes on its minimum anddE/dn1=0 ssee Figs. 2 and
3d. Consequently, our physical assumption that at the equi-
librium the boson transfer energies are equal is fully sup-
ported by identifying Q with dE/dn1. Moreover, if the
Bosonic system is not at equilibrium, then due to the differ-
ence betweenT1←2 andT1→2 a flow of bosons between the
f1 manifold and thef2 manifold is enforced until equilib-
rium is reached. Therefore the slope of the MFs2d energy
curve given in Eq.s25d can be viewed as the “driving force”
for the flow of bosons between the two boson subsystems.

To verify these physically appealing results we investigate
in more detail condensates withN=25 andN=1000 bosons
at l=0.9. The lower panels of Fig. 7 show values ofQ for
different values ofn1/N evaluated via Eq.s24d using the
frozen orbital approximation. Also shown isdE/dn1 obtained
by numerically differentiating the MFs2d energy curve in Fig.
3 with respect ton1/N for the same systems. On both pic-
tures the values of the optimal occupation numbersn1/N
where the MFs2d energy curves take on their minima are
marked by vertical dashed lines. From these figures it is
clearly seen that indeed, at the minimum of the MFs2d en-
ergy, the flow of the particles between the fragments is com-
pletely suppressed, i.e., at the best mean-field state the driv-
ing force is equal to zero.
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VIII. LARGE- N LIMIT

In the large-N limit, N as well asn1 and n2 are much
larger than 1 and we may replaceN−1 by N. Repeating the
calculations of the preceding sections one finds that all terms
proportional tol031 and not tol03N or l03ni, i =1, 2,
vanish in the large-N limit. Accordingly, we find that in the
large-N limit not only are the vertical boson ionization po-
tentials given by the chemical potentials as found in Sec. VI
fsee Eqs.s14dg, but that also the vertical boson affinities are

AVskd = − mkk, k = 1,2. s26d

Obviously, also the boson affinity in the framework of the
GP theory is determined by the corresponding GP chemical
potentialmGP in the large-N limit.

In the large-N limit the boson transfer energyT1→2 be-
comes identical to −T1←2. The energy needed to transfer a
boson in a condensate withN particles from one fragment to
the other one is just given by the difference of the corre-
sponding potentials:

Ti→ j = m j j − mii . s27d

This quantity is then nothing butIVsid−AVs jd which is very
appealing for large systems.

In the large-N limit the quantityQ introduced in Eq.s23d
and the energy derivative with respect to the occupation
numbern1 become identical and are just determined by the
difference of the chemical potentials of the fragments. In
particular, we find

dE

dn1
= m11 − m22 s28d

which has been derived before in Ref.f14g.
To illustrate the impact of the growing number of bosons

in condensates we plot the diagonal Lagrange multipliersm11
andm22 as a function of the relative occupation numbern1/N
for systems withN=25 andN=1000 bosons in the upper
panels of Fig. 7. In these panels the values of the optimal
occupation numbersn1/N obtained at the minima of the
MFs2d energy curvesEsn1d are marked by vertical dashed
lines and the value of the chemical potentialmGP obtained in
the GP theory by a horizontal solid line.

One can see that for the systems withN=25 bosonsssee
left upper panel of Fig. 7d the crossing point of them11sn1/Nd
andm22sn1/Nd curves is located substantially aside from the
vertical dashed line. In contrast, the corresponding curves
cross the vertical dashed line at almost the same value of
n1/N for the system withN=1000 bosonsssee right upper
panel of Fig. 7d. However, on an enlarged scale as seen in the
inset, the exact crossing point of them11sn1/Nd and
m22sn1/Nd curves lies aside from the vertical dashed line
marking the value of the optimal occupation numbern1/N.

To better understand these results let us analyze Eq.s25d.
The systems withN=25 andN=1000 bosons atl=0.9 are
characterized by different values ofl0=l / sN−1d. Therefore
the contributions of the terms which are proportional tol0 in
Eq. s25d are much smaller for the system withN=1000 than
with N=25 bosons where they play an important role. In
other words, in the large-N limit the flow of the bosons is
determined by the differences of the chemical potentials
m11−m22 only. Interestingly,dE/dn1=0 holds at the best

FIG. 7. sColor onlined The upper two panels show the chemical potentialssdiagonal Lagrange multipliersd m11 andm22 for condensates
with N=25 andN=1000 bosons as a function of the relative occupation numbern1/N. For comparison, the horizontal solid line shows the
value of the corresponding chemical potentialmGP obtained in the GP theory. The inset shows the same curves on a muchs3102d enlarged
scale. The lower two panels depict the derivativedE/dn1 ssolid lined of the total energy with respect ton1 and the difference between the
boson transfer energiesQ spointsd for the same systems as in the upper panels.dE/dn1 is obtained by numerical differentiation of the MFs2d
energy curves andQ is evaluated using Eq.s24d. The vertical dashed lines mark the values of the optimal occupation numbersn1/N obtained
at the minima of the corresponding energy curves.l=0.9 is used throughout. The energy derivatives and all chemical potentials are given
in units of v.
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mean field and consequently the chemical potentials of the
fragments are identical to each other in the ground state of
the condensate in the large-N limit.

IX. CONCLUSIONS

In this paper condensates withN identical repulsive
bosons immersed into a double-well external potential have
been investigated at different levels of multiorbital mean-
field theories where optimal orbitals and optimal occupation
numbers are determined variationally.

At the level of one-orbital mean-field theorysGross-
Pitaevskiid the ground state of the system reveals a bifurca-
tion scenario at a critical value of the nonlinear parameter
lcr=l0sN−1d=0.837. From thislcr on the delocalization of
the bosons over the two wells of the trap potential becomes
energetically more favorable than the localization of the BEC
in the deeper well.

The two-orbital mean-field theory predicts the existence
of twofold fragmented states, i.e., both orbitals of these states
are occupied macroscopically. Depending upon the number
of particles in the BEC and/or the strength of the interparticle
interaction, this fragmented state can be the ground state of
the system. For condensates with a small number of particles
the fragmented ground state is the only stable state, because
the nonfragmented state predicted by the GP theory corre-
sponds to the maximum of the energy in the two-orbital sce-
nario.

By applying the three-orbital mean field we verify nu-
merically that for the double-well external potential studied
here the overall best mean field is achieved within two orbit-
alsfBMFs2dg. The inclusion of third orbital does not improve
the mean-field description as the variational principle mini-
mizes the energy at a vanishing population of the third or-
bital. Hence the twofold fragmented state obtained is the
physical state of the system. OnceNùNmax, whereNmax de-
pends on the interparticle interaction strength, the energy dif-
ference between the fragmented and the nonfragmented state
may be very small, indicating that in these cases two physi-
cally different states may coexist.

Inspired by similarities between fragmented states in
Bosonic systems and shell structures in the Fermionic world,
we introduce vertical and adiabatic boson ionization poten-
tials and boson affinities. In this respect we discuss the
chemical potentials of the fragments and their relation to
boson ionization and attachment measurements. The energy
splitting between the values corresponding to the different
fragments are small for systems with a large number of
bosons while they might be distinguishable for systems with
a small number of bosons.

We also introduced a boson transfer energy as the energy
needed to move a boson from fragment “1” to fragment “2.”
We proved that only at equilibrium is the same energy
needed for the inverse process where a boson is transferred
from fragment “2” to fragment “1.” It is argued that the
difference between both boson transfer energies may serve as
a criterion of how far we are from equilibrium. This differ-
ence is easily evaluated at each point of the multiorbital en-
ergy surface and may speed up the search of the energy
minimum.

Explicit expressions have been determined within the fro-
zen orbital approximation for the boson ionization potentials,
boson affinities and boson transfer energies. These expres-
sions shed light on the physical content of the quantities. The
frozen orbital approximation is based on the assumption that
adding or removing a single boson from a system withN
bosons will not strongly change the orbitals of the other
bosons and hence these orbitals can be assumed unchanged.
We present numerical results which demonstrate that this ap-
proximation is valid for the condensates studied here.

Finally, we would like to stress that the present findings
are general and not at all restricted to the geometry of the
double-well trap potential discussed here. We find similar
results for other double- and multiwell trap potentials includ-
ing potentials used in current experiments.
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