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Properties of fragmented repulsive condensates
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Repulsive Bose-Einstein condensates immersed into a double-well trap potential are studied within the
framework of the recently introduced mean-field approach which allows for bosons to reside in several differ-
ent orthonormal orbitals. In the case of a one-orbital mean-field thgamyss-Pitaevskiithe ground state of
the system reveals a bifurcation scenario at some critical values of the interparticle interaction and/or the
number of particles. At about the same values of the parameters the two-orbital mean field predicts that the
system becomes twofold fragmented. By applying the three-orbital mean field we verify numerically that for
the double-well external potential studied here the overall best mean field is achieved with two orbitals. The
variational principle minimizes the energy at a vanishing population of the third orbital. To discuss the energies
needed to remove a boson from and the energies gained by adding a boson to the condensate, we introduce
boson ionization potentials and boson affinities and relate them to the chemical potentials. The impact of the
finite number of bosons in the condensate on these quantities is analyzed. We recall that within the framework
of the multiorbital mean-field theory each fragment is characterized by its own chemical potential. Finally, the
stability of fragmented states is discussed in terms of the boson transfer energy which is the energy needed to
transfer a boson from one fragment to another.
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I. INTRODUCTION in space, a different occupation numbdthe number of
bosons residing in the orbijaland a different chemical po-
The experimental realization of Bose-Einstein condensatential. This multiorbital approach includes the Gross-
tion provides a unique opportunity to study macroscopicPitaevskii theory as a special case, namely when all bosons
guantum systems. One of the key properties of a quanturfeside in a single orbital. The multiorbital mean-field ap-
system is the formation of shell structures. For a systeid of Proach is based on a variational principle and hence the op-
identical fermions the formation of the shell structure is en-fimal orbitals and their occupation numbers are determined
forced by the Fermi statistic, which implies a restriction to Variationally such that the energy of the system is minimized.

the number of particles residing in a single quantum level. Ir}n practice this means that the question of whether a BEC

contrast, for Bosonic systems where the Bose statistic pe orms a fragmented sta(eh_ell structurko_r prefers to stay in
. . . a nonfragmented stat&P) is answered in the framework of
mits any occupation numbers, the formation of shell struc-

tures, also known as the fragmentation phenomejig one and the same method.
ures, w 9 ion p n By applying this multiorbital mean field to study a repul-
must be caused by other reasons.

- , ive BEC in multiwell external potentials we foupd5] that
Fragmentation can appear naturally in condensates maqsﬁe ground state may be many-fold fragmented, i.e., the mac-

of different kinds of bosons. Binary mixtures of trapped r5scopic occupation of several one-particle functions is en-
Bose-Einstein condensatéBEC) have been the subject of grgetically more favorable than the accumulation of all
numerous experimentdR,3] and theoretical investigations posons in a single orbital. The quantities determining the
[4-8]. These studies comprise binary mixtures made of tWGragmentation are the number of particles, the strength of the
different alkalis such a§’Rb-**Na [5,6], of two different interparticle interaction, and, of course, the specific shape of
isotopes of the same atofiRb-#*Rb [4,6], and of two dif-  the external potential. The influence of all these parameters
ferent hyperfine states of the same alkali such agfe2, on fragmentation has been investigated in some detail.
Mg=2) and(F=1, Mg=-1) states off’Rb [2]. In this paper we consider a systemMfidentical bosons

In contrast, the fragmentation phenomenon in BEC'swith positive scattering length immersed into a double-well
made of atoms of one kind and in the same internal state, i.eexternal potential. The Hamiltonian of this system is defined
made of an identical boson, is an open theoretical frontierin Sec. II. In Sec. lll we demonstrate that within the standard
Traditionally, a BEC is described at the Gross-Pitaevskiione-orbital mean-field theor§Gross-Pitaevskij the ground
(GP) mean-field leve[9,10], where all bosons are residing in state of the system reveals a bifurcation scenario starting
a single one-particle state. This one-orbital mean field hafom a critical value of the interparticle interaction strength
been a very successful approximation and can explain manyr of the number of particles. By applying two-orbital mean-
experiments; see, e.g., Refd&1,12 and references therein. field theory we show in Sec. IV that the ground state of the
However, this mean field intrinsically cannot describe frag-system made oN identical bosons can indeed be twofold
mentation. The best mean-field approach allowing for bosongagmented. The fragmentation phenomenon starts to take
to reside in several different orthonormal orbitals has beemlace in the vicinity of the bifurcation point obtained at the
formulated recently13,14). Each of the involved orbitals is GP mean-field level. In Sec. V we apply three-orbital mean-
characterized by a different spatial distributidacalization  field theory and demonstrate that for the external potential
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studied here the overall best mean field is achieved for twa 0.1 7
orbitals, i.e., the inclusion of a third orbital in the calculation ]
does not improve the mean-field description and the lowest! 3
energy is obtained if only two orbitals are occupied. 0 ]

Section VI opens a second part of the present investiga: 3
tion, where we introduce characteristic quantities which al- ]
low us to distinguish, at least in principle, between frag- & 0! 7
mented and nonfragmented states of the condensates. 3
particular, by comparing the systemsfandN+1 bosons ]
we adapt quantities relevant to Fermionic systems and defini 02 7
vertical and adiabatic ionization potentials and affinities for 3

Bosonic systems. Their relevance to an experimental obser ] Ay |

vation of fragmented states is also addressed. In Sec. VIl we 03 7 :

introduce a boson transfer energy as the energy needed f o s T,
transfer a boson from one orbital to another one and use it tc Ag(N-1)

analyze the stability of fragmented states. The discussion of _ _ ]
the largeN limit of the boson ionization potential, boson  FIG. 1. (Color onling Results of one-orbital mean-fielGP)
affinity, and boson transfer energy is presented in Sec. VI||theory. Shown are the energies per partielg,/N of the lowest

Finally, Sec. IX summarizes our results and conclusions energy solutions of the Gross-Pitaevskii equation as a function of
' N=No(N-1). The bifurcation point observed ax;=0.837 is

marked by a dashed line. In the insets the GP orbitals corresponding
to the uppell) and lower(Il) energy branches are depicted together
with the double-well trap potential. The values of the external trap
potential (for parameters, see tgxtave been scaled by 1/10. All
energies are given in units ef. All orbitals are dimensionless and
plotted as functions of the dimensionless coordinate

II. THE SYSTEM AND HAMILTONIAN

Our general intention is to consider a systenNaflenti-
cal bosons interacting via a@-function contact potential
WI(r;—F}) =\od(F;—T;), wherer; is the position of théth bo-
son and the nonlinear parameteyis related to thes-wave

scattering length of the bosoft2]. The Hamiltonian of this . o ) . _
system takes on the standard form conclusions and qualitative results discussed in this work
' also apply to other double-well external potentials like, for
N N ; ; ;
- %2 R o instance, that used in the experimental setup of R
H=E[——V§+V(ri)]+ > W —1). 1)
=L 2m 7 i>j=1
~ ) Ill. GROSS-PITAEVSKII MEAN-FIELD RESULTS
We denote ash(r)=T+V(r) the unperturbed one-particle . _ o _
Hamiltonian consisting of the kinetic operaﬁjrand the ex- The standard one-orbital mean-field description of the in-

; teracting system is obtained by assuming that the ground-
ternal potential(r). . . > X . .
In this work we specifically study bosons trapped in thestate wave functionV is a product of identical spatial orbit-

one-dimensional double-well external potential shown in the®'s ¢-¥ (1.2, - ’rN):"D(rl)qD(rZ)""{D(rN)‘ The energyE
insets of Fig. 1. Effectively the trap is obtained as an “inner’=(¥|H|¥), defined as the expectation value of tHereads

potential X
X2 20253 Ecp= N{f ehedi+ > f |<P|4dF}, (3)
Vinner(x) = w(? - 0.8)(3_0'0ZX +0.25¢*+6.1x) (2)

whereh=\y(N-1) is the interaction parameter. By minimiz-
and an “outer” trap/,er Which consists of an infinite wall at ing this energy the well-known Gross-Pitaevskii equation
x=9.57 where the inner potential has already died off. The[9,10] is obtained,
resulting combined potentidlV(X) =Vipnert Vouted has two )
well-separated nonequivalent wells. It should be mentioned {h(1) + No(N = 1)|@(N)|*}(F) = puipep(r). 4

that the results discussed here hardly depend on whether the The only parameter involved in the Gross-Pitaevskii mean
infinite wall of Voeris replaced by a smoothly growing po- field is A =\y(N-1). Therefore all systems which are charac-
tential wall [15]. The kinetic energy readS=—(w/2) terized by the sama have the same energy per particle as
X (621 9x?) implying that the coordinate is dimensionless well as the same orbitab() even if the systems have dif-
while all energies andly are now in units of the frequenay.  ferent numbers of bosons. Below, we will use this fact to
By choosing one well of the double-well potential slightly compare systems made of different numbers of bosons but
deeper and the other well quite broad, the bifurcation of thénave the same value af
solution of the Gross-Pitaevskii equation which is discussed We solved the Gross-Pitaevskii equation with the external
in the next section is numerically accessible. This is the mairpotential introduced in Sec. Il for different values »f In
reason for our choice of the double well. We stress, howevelrig. 1 we plot the energy per particle of the lowest energy
that the finding of twofold fragmentation discussed in Secssolutions as a function of. From this figure it can be in-
IV and V is by no means connected to this choice and thderred that the energy per particle of the ground state in-
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creases monotonically with up to some critical value of ny(ng— 1) -
Ae=0.837 and then the energy trajectory is split into two E=n1h11+?\oT || *dF + nohy,
branches. This critical value of is indicated in Fig. 1 by a

vertical dashed line. The single-particle wave function ny(n, — 1) . ol ) pas
bital) corresponding to the upper branch, marked as “I” in +)\OTJ |2l dr+2)\0nln2j | 1|?] ol dF.
Fig. 1, is depicted in the upper inset of Fig. 1. This wave

function is mainly localized in the left well. Fromy, on, the (6)

lowest energy branch, labeled “II” in Fig. 1, smoothly bifur-

cates from the “localized” solution and describes a delocalThe optimal orbitalsp; and ¢, which minimize this energy
ization of the BEC over the two wells. This delocalized so-functional are determined by solving the two coupled non-
lution is depicted in the right bottom inset of Fig. 1. For linear equations:

convenience, we also plot in both insets the rescaled double-

well potential V/10. The bifurcation scenario is a known h(F) + Aa(ns = Dl b (A2 + 2xan D)2 b (F
feature[17-23 of the Gross-Pitaevskii equation reflecting T+ Aoy = 1)l (0 onel ¢2(11()
the nonlinearity of the underlying mean-field approximation. = p111(1) + pao6ho(F), (7)

Bifurcations have been predicted for the ground
[17,19,21-23 and excited[18—20,22 states of repulsive ) )
[18—-22 and attractivg17,19,21-2Bcondensates confined in {h(7) + No(nz = 1) a(N)|* + 20Ny | 1 (N)[*} (1)
different trap potentials. = P + .

Within the Gross-Pitaevskii mean field we obtain the fol- #16ha(D) + pzaol7)
lowing physical picture of Bose-Einstein condensation of re- Obviously, the GP equation®) and (4) follow immedi-
pulsive bosons immersed into nonsymmetric double-well poately from the ME2) equations(6) and (7) by putting the
tentials. ForA <\, the BEC is localized in the deeper well occupation of one of the two orbitals to zero.
only. When\ is increased, the BEC may continue to be In contrast to the one-orbital mean-figl@P) description
localized in this well, but it is energetically more favorable wherex=\o(N-1) is the only parameter involved, the two-
for bosons to tunnel through the barrier and to populate alsgrhital mean-field( MF(2)] depends on two parameters
the other well. As we have mentioned abox&\o(N-1) IS andn, which are the occupation numbers of the one-particle
the only relevant parameter, and therefore both localizatiogypitals ¢, and ¢,, respectively. At fixed interaction strength
and delocalization phenomena can be observed.for sys;enp\% and number of bosonl, the MF energy[see Eq.(6)]
made of any number of particles by properly tuning the IN-gepends on the particular value wf(n,=N-n,). It should

terparticle interaction strengik, be noted that the occupation numbers are variational param-
IV. TWO-ORBITAL MEAN-FIELD RESULTS eters. In orcze)r to find their optimal \_/alue and that of the

. . energy, Eqs(7) are solved for all possible occupation num-

In the previous section we demonstrated that above so”\?ers, and the corresponding energies are evaluated by using

critical value of nonlinearity\, the ground state of the sys- : .
tem is described in the GP approach by a wave functionEq.(6).At the optimal values of the occupation numbers the

delocalized over both wells. The existence of a bifurcation i energye takgs on its minimum and the ME) becomes the
the GP results can be seen as a hint to go beyond the st wo-orbital mean field Wh'.Ch we denote by B
theory. The natural question arises whether it is possible to /& Solved the ME2) equations fora=0.8 and for\
improve the GP mean-field description by providing a more=0-9. These values of the nonlinear parameter h_ave been
flexible mean-field ansatz which would allow bosons to oc-chosen to be smaller and larger thep=0.837 which is the
cupy two different orbitals which, in principle, could be lo- bifurcation point of the GP energy trajectory discussed in
calized in different wells. Sec. Ill. In Figs. 2 and 3 we plot the MB energies per
Recently, a multiorbital mean-fieldMF) approach allow- particle forA=0.8 and forx=0.9, respectively, as a function
ing for bosons to reside in several different orthonormal oneof the relative occupation numbeg/N of the orbital local-
particle functions has been formulatgiB,14]. Usingm dif- ized in the deepe(left) well of the trap potential. The results
ferent orbitals, the approach is denoted (F In this  are shown foN=5, 10, 25, 18, 1¢°, and 16 bosons. The GP
section we discuss MB). In the next section we shall see energy is indicated by the horizontal line and labeled as
that for the double-well geometry of the external potential“GP.”
studied here, the overall best mean field is achieved within The common feature seen in Figs. 2 and 3 is that the
the two-orbital mean-field theory. Since the details of theenergies per particle of the systems of bosons which are
derivations have already been published elsewh&ggl4, characterized by the same=\yo(N-1) do depend on the
we present here only the final formulas. Assuming that number of boson®N and reveal a different dependence on
bosons occupy the orbitab, andn, bosons occupy the or- n;/N. In contrast to the GP approach, the multiorbital mean-
bital ¢, leads to the following many-body wave function: field theory distinguishes between systems with a different
. e A . . . number of bosons even if they are characterized by the same
W(ry, .. Tn) = Sa(My) -+ a(Fr ) oFr v1) Dol an), value of\. As seen in the figures, for;/N=1, i.e., when all
(5)  bosons reside in one orbital, the energies of all the curves
R coincide at the same value which is nothing but the corre-
where S is the symmetrizing operator. The N energy  sponding GP energy. We can obviously conclude that the GP
expression takes on the form approach is indeed a special case of the(BJfheory.
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Occupation of the deeper-well orbital n /N Occupation of the deeper-well orbital n;/N

FIG. 2. (Color onling Results of the two-orbital mean-field _ FIG. 3. (Color onling Results of the two-orbital mean-field
[MF(2)] theory for\=0.8<\. From bottom to top the energies [MF(2)] theory forA=0.9> . From bottom to top the energies
per particle for condensates madeNo#5, 10, 25, 18, 1%, and 1§  Per particle for condensates madeN#5, 10, 25, 18, 10%, and 16

bosons are shown as a function of the relative occupation numbdt0SOns are shown as a function of the relative occupation number
ny/N of the orbital localized in the deeper well. The horizontal solid N2/ N of the orbital localized in the deeper well. The horizontal solid
line labeled as “GP” shows the corresponding GP energy per pafin€ labeled as “GP” shows the corresponding GP energy per par-
ticle. In the inset the energy per particle for the systems With ticle. In the inset the energy per particle for the systems Wwith

=13, 14, and 15 bosons are plotted. All energies are given in units 100 000, 102000, and 105 000 bosons are plotted. All energies
of w. are given in units ofw.

In Fig. 2 and in particular in Fig. 3 it is seen that the localized in the different wells of the three-well external po-
optimal BMK2) energies may be lower than the correspond-tential [15].
ing GP one and in these cases B{@Fconstitutes the proper Figures 2 and 3 exhibit several interesting features. Let us
ground state of the system. These ground states with nonzefist discuss Fig. 2 wherk=0.8 is smaller tham,. Inspec-
occupation numbers areagmentedstates, because the re- tion of the inset shows that the MB energy curves as a
spective one-particle density matrix has several nonzero efunction of n;/N possess a minimum fdd< 14 bosons. At
genvalueq1,15,24. Therefore the fragmentation observed these minima the energy is below the GP energy which is at
before in three-well potentiall5] also persists in double- the maxima of the curves. For the systems which contain
well external potentials. The optimal orbitals obtained at themore than 14 particles, the M@ energy curves are mono-
minima of the energy for the systems haviNg5, 10, and tonically increasing and their lowest energy is at the GP en-
1000, bosons fora=0.8, and N=5, 1000, and 100 000 ergy. In this case one of the NI orbitals becomes identical
bosons fora =0.9 are depicted in the left and right panels ofto the GP solution and all bosons reside in this orhisale
Fig. 4, respectively. In this figure it is clearly seen that one ofthe left panel of Fig. #
the corresponding optimal orbitals is localized in the left well The situation changes drastically far=0.9 which is
and the other one in the right well of the trap potential. Thislarger than\. As seen in the inset of Fig. 3, the BNH
is in an agreement with the threefold fragmentation studiednergy is lower than the GP energy for condensates with up
before, where the optimal orbitals have also been found to b N,,,,~ 102 000 bosons. For all these systems the fragmen-
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A=0.8 <A A=0.9> A

FIG. 4. (Color online The optimal orbitals
$1(x) and ¢»(x) corresponding to the minimum
N=1000 /\ N=100000 of the MR2) energy [for convenience the

NPT LTI (ni/N)Y2¢5(x) are shown Left panel: The ME2)
solutions for the systems witk=5, 10, and 1000
bosons at\=0.8<\. Right panel: The MR)
solutions for the systems withl=5, 1000, and
100 000 bosons ax=0.9>\. The orbitals lo-
calized in the left(deeper and right wells are
marked by solid and dashed lines, respectively.
All orbitals are dimensionless and plotted as
functions of the dimensionless coordinate

Orbitals

T T T T T T T [ T T T T [ T T T T LIS N B B B N B BN B N B B B |
0 10 20 30 0 10 20 30
X X

tation of the ground state is evident and macroscopic. One nl(n1 1) .
should be aware that is kept fixed in Fig. 3 and therefore ~ E=mhy+Ag——— J || *dF + nohy,
the interparticle interaction strengily is small for the many-
particle systems shown there. 1) P
Finally, we would like to point out two additional features *Xo 2 f | ba|*dF + nghag
of Fig. 3. First, the GP energy is a local minimum for most of ( "
the energy curves and consequently there appears a maxi- NNz — 4y 2, 1242
mum which separates this energy from the global minimum, *ho f | f*dr + Zxonlnzf |4l 2l"dF
i.e., from the BMK2) energy. This may hint to an interesting
dynamics of fragmentation if the system is initially prepared + 2\oMyNs f | ba|?| 5| 20T + 2N onoN5 f ||| 5|27
in an nonfragmented state. Second, although there exists a
maximal number of particleN,,,, for which the ground state (9)
is fragmented, it should be stressed thatdthiN > N, the
energy gap between the BN and GP energies is ex- The optimal orbitals minimizing this energy functional are
tremely small. FoN=10° bosons, for instance, this energy obtained by solving the following system of three coupled
difference per particle is only=3x 1077 units of w. The  noneigenvalue equations],
coexistence of the fragmented and nonfragmented but del _ 2 2
calized states is of great interest by itself and might play 3h(F) +Nolny = D] ¢a(D] + 20Nz 421

role in particular in time-dependent experiments. + 20 gNg| 3(1)| 2 h1(F) = sa1pr(F) + paoha(F) + peazhs(F),
V. PROOF THAT BMF(2) IS THE BEST OVERALL MEAN {h(F) + No(Nz = 1] p(N)[? + 2\ oNy| by (N[
FIELD
+ 2\ o3| h3(1)] 2 (1) = 1216h1(F) + poodba(F) + ppachs(i),

From the previous section we learned that by allowing
bosons to reside in two orbitals, the mean-field description ofh(f) + Ag(ng — 1)|b3(F)|2 + 2\ony| 1 (F)|?
the repulsive BEC in the double-well potential has improved ) B
compared to the standard one-orbital description. The natural ~ +2\oN2l#2(N[ (1) = ua1¢ha(F) + pazdha(F) + pazcba().
guestion arises whether the inclusion of even more orbitals (10
can provide further improvement of the mean-field descrip-
tion of the BEC. To answer this question we apply the three-
orbital mean-field theoryMF(3)] [15].

The corresponding ansatz for the wave function assume
that three orbitalgh,, ¢, and @5 are now occupied by,,n,,
andn;=N-n;—n, bosons, respectively

For the numerical procedure to solve this system of equa-
tions and to obtain the self-consistent orbitals and the
%orrespondlng values of the Lagrange paramejg<i,j
=1,2,3, we refer to Ref[15].
In comparison with the ME) approach the ME)
method has one more variational parametgrWe solved

W(Fy, .o Fr) = Shy(Fr) -+ Dy(Fo YboFrysn)  ++ DoFrar) the above system of three coupled equatid} for several
! N P2(0) = Galln) SlTngsd) - ellnyan, values ofA andN and different fixed values ofi;. As an
X (T snyv1) ** PalTn snyny) (8)  example, we show in Fig. 5 the results obtained Xer0.9

and N=1000 for different occupation patterns. Keeping the
where S is the symmetrizing operator. The three-orbital value of the third occupation numbag/N fixed at 0.0001,
mean-field energy read45] 0.001, 0.005, and also at zero, we plot the three-orbital
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fragmented states studied in the previous sections motivates
us to make use of some Fermionic observables such as the
ionization potential and electron affinity, and introduce re-
lated quantities for Bosonic systems. Indeed, at the multior-
bital mean-field level of description the Fermionic system is
described by antisymmetrized single-determinant wave func-
tion [32], while the symmetrized ansdtzee Eqs(5) and(8)]

is proposed for Bosonic systems. The variationally optimal
orbitals and the corresponding orbital energies are obtained
by solving the well-known Hartree-FodklF) equationg 32]

for fermions and the BMF equations for bosons. The total
energies of these systems are evaluated by computing the

-0.13100 -

-0.13105 n4/N=0.005
] 1/N=0.001

14/N=0.0001

Energy per particle

-0.13110
] n3/N=0.0

-0.13115 -

013120 e expectation values of the full many-body Hamiltonians with
091 092 093 0.94 095 0.96 097 the (antjsymmetrized ansatz of the wave function.
Occupation of the deeper-well orbital n,/N The electron ionization potentidlP) is defined as the

difference in total energies between the reference system
with N electrons and the ionized system with- 1 electrons
f32]. Because of this definition, the ionization potential is
=No(N-1)=0.9. Plotted are the energy per particle as a function of”‘lso referred tq as the b|nd|ng energy of a.” electroh in the
the relative occupation number/N for fixed values of the third §ystem. We define thigoson ionization potentiar the bind-
relative occupation numbeg/N. The curves shown from bottom to ing energy of a boson as the energy needed to remove a

top correspond to/N=0.0, 0.0001,0.001, and 0.005. All energies P0SON from & Bosonic system with bosons. Another very
are given in units ofo. important physical characteristic is the electron affinity de-

fined as the energy gained by adding one electron to the atom
or molecule[32]. In analogy, we define thiroson affinityas

Ghe energy gained by attaching one boson to the Bosonic
system under consideration.

FIG. 5. (Color online Demonstration that BM@) provides the
overall best mean field. Shown are the results obtained with th
three-orbital mean-fieldMF(3)] theory forN=1000 bosons ana

mean-field energy per particle as a function of the relativ
occupation numben;/N. The occupation of the second or-

bital n,=N-n, N3 1S, of course, determmed_ by, an(_j Ns. The boson ionization potentials and affinities can be cal-
The three-orbital mean-field method obviously includes . . o .

i . culated straightforwardly based on their definitions as differ-
MF(2) as a special case, namely, when the occupation of the

third orbital vanishes. We see from Fig. 5 that increasing th&1¢es between total energies. In principle, these total ener-

value ofny/N leads to a gradual increase of the (@Fen gies may be evaluated within the framework of any suitable
3 -

. . . N-body method, but in the present study we restrict ourselves
ergy per particle. Clearly, in the present case of repulsw%r consistency to the two-orbital mean-field approach. To

condensates in the double-well potential, the overall best. ..~~~ ;
SO . o : istinguish between the total energies of the condensates
mean field is obtained within the two-orbital BNI theory. . ;
made of a different number of bosons we introduce super-

The enforced inclusion of more orbitals only enhances thescript indices. In this notation the MB total energies of the
energy of the condensate.

Several consequences should be mentioned. First, frasystem WithN -1, N, andN+1 bosons take on the following

= N-1 N N+1 -
mentation is a general physical phenomenon which takegﬂsOrm Eny,ny), "E(ny,n), ™ E(ng,np), where the super

place in repulsive BECs trapped in multiwell external poten_scnpt refers to the condensates made of the corresponding

tials. Second, the number of the fragments and their occupa?HumlaerZOf bosonsr.] :ere tretc?ll that W'tfht'rr: the I;ramgwo;k of
tion numbers are defined variationally, by minimizing the e MH2) approach the total energy of the system is a func-

total-energy functionals in Eq$6) and(9). If more orbitals tion of the. occupation numbet,(n,=N-n,) anq the mini-
are included in the mean-field ansatz than needed, the occ{Y™M of this energy is callgd the best mean f'WF(Z).]'
pation of the superfluous orbitals becomes zero. bviously, the MF2) energies of the systems with a differ-
ent number of bosons achieve their minimal valLBS8IF(2)

energies at different values of the occupation numbers. We
denote these BMR) energies and corresponding occupation

Usually, to distinguish fragmented and nonfragmentedhumbers as‘E, and (nf,ny) where the superscript refers
states a phase difference between wave functions of the dife the system wittK bosons.
ferent fragments is consider¢d5-27. Dynamical stability
[28,29 of the relative phase between the condensates local-
ized in the different wells and related questions on the evo-
lution of the fragmented sta{80,31] has been a subject of The general definition of the boson ionization potential
several discussions. involves the total energies of condensates mad& @ind

In contrast to these time-dependent studies on fragmentdN—1 bosons. Usually, the reference system wWithosons is
tion, we concentrate in the second part of our work on time-considered to be in its ground equilibrium state while the
independent properties of the stationary fragmented statégnized system witiN—1 bosons can be either in an equilib-
themselves. The analogy between shell struct(agsns and  rium or in a some transitional state. In the following section
molecule$ formed in the Fermionic world and the Bosonic we verify that only the BMI2) energy[the minimum of the

VI. SOME PROPERTIES OF FRAGMENTED STATES

A. Adiabatic and vertical boson ionization potentials
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FIG. 6. (Color online Schematic diagram de-
fining the vertical and adiabatic boson ionization
potentials(ly,l) and vertical and adiabatic bo-
son affinities(Ay,A,). Total energies of conden-
sates withN-1, N, and N+1 bosons obtained
within the framework of the MR) theory are
plotted in the left figurga) as a function of the
occupation numben; and in the right figurgb)
as a function of the occupation numbes=N
-n;. The minima of the energy curves are de-
noted by"*E,, NE,, and™*'E,, and are indicated
on the energy axis. The reference condensate for
which the boson ionization potentials and boson
affinities are defined is that witN particles. The
optimal occupation numbers of this condensate
aren) andn}. Vertical and adiabatic boson ion-
ization potentials and boson affinities are shown
(see text for more detajls

Total Energy

N N-
n;-2 n;-1 ny(=n}) np+l ny+2 m+l  ny(=ny) 0yl
Occupation number n, Occupation number n,

MF(2) energy curvécorresponds to the equilibrium state of estimate of the latter time is given by the quotient of the size

the condensate, while all other N& energies can be attrib- and velocity.

uted to some transitionghonequilibrium states of the con- In Fig. 6(a) we present a schematic diagram of the adia-

densate. batic and vertical ionization potentials together with the
The difference between the groueduilibrium state en- MF(2) total energies of the systems with+1, N, andN-1

ergies of the ionized system withi— 1 bosons and the refer- bosons plotted as functions of the numipgrof bosons re-

ence system withl bosons is calleddiabatic boson ioniza- siding in the first orbital. In Fig. @) we plot these quantities
tion potential(l ,): as functions of the complementary parametgrN-n, (the

number of bosons residing in the second orhitalhe
Ia=""1E, - NE,. (11) BMF(2) energies of the systems with+1, N, and N-1
I . o . , bosons are indicated on the energy axis. The optimal occu-
Thg qulllbnum in Fhe ionized state might be achieved bypation numberslT andng‘ corresponding to the minimum of
adiabatically removing a boson from the condensate. the MR(2) energy of the referends-boson system are indi-
In contrast, if a boson is suddenly removed from the syS¢ated on thex axes of Figs. @) and &b), respectively.
tem, then the state created is not an equilibrium state of the The difference between the ground-state energy of the
ionized _s_ys_tem and the difference between the energy of thignized systerﬁ\“lEo and that of the reference systé\‘Eo,
nonequilibrium state and that of the ground state of the ref; o | the adiabatic ionization potential, is marked in Fita)6
erence system is palleabrtmal boson ionization pot_entlal asl,. The vertical boson ionization potentig)(2) is shown
(Iy). If the Bosonic system under consideration is frag-in Fig. 6a) as avertical line connecting the minimum of the
mented, then the sudden ionization of a boson from differenN_partide energy curve and the energy curve of the system
orbitals of the fragmented state requires different energiesyith N—1 bosons. Let us explain this construction. When a
The twofold fragmented states are characterized by two difyggon is suddenly removed from the second orhtabf the
ferent vertical boson ionization potentials, reference system, the occupation numbgrof the other
(1) = N—lE(n?_ l,ng) _ NEO(HT,ng), (fir§t) orbital remgins the same also in the ioni;ec_i system,
while the occupation of the sNecond orbital in the ionized state
_ N-1/.N N N N N is obviously reduced by 1 to; - 1. Therefore this ionization
IV(2) = "B(ng,nz = 1) = TEo(ng n2), (12) process is indicated by thgzvertical line in ttg,n,) dia-
where VE,="NEy(n),n)) is the BMR?2) energy of the refer- gram.
ence system withN bosons obtained at the optimal occupa- The vertical boson ionization potentig/(1) is also shown
tion numbersn) andn of the two fragments, anti™*E(n)}  as a vertical line connecting the minimum of tNeparticle
-1,n)) and M1E(n),ni-1) are the MR2) energies of the energy curve and the energy curve of the system Withl
ionized states where a boson has been removed from the firg@sons, but in the complementa(,n,=N-n,) diagram
and second fragment, respectively. The values of the verticabee Fig. @)]. In this case the occupation number of the first
boson ionization potentialéor vertical boson affinities dis- orbital is reduced by 1 ta}-1 in the ionized state, while the
cussed in the next subsectjaare particularly relevant when occupation number of the second orbitgiremains the same
the time needed to remove a boson fréar add t9 the as in the reference state. For completeness,l{f® and
condensate is shorter than the time the condensate needsl{¢2) are plotted in both panels of Fig. 6.
rearrange itself. The former time depends on the experimen- Removing a single boson from the system will not cause a
tal setup and the latter time should depend on the mean vetrong change of the orbitals of the other bosons and these
locity of the bosons and the size of the condensate. A naiverbitals can be assumed fixed. In Fermionic systems this as-
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sumption is known as thigozen orbital approximatiof32]. We conclude that the process of sudden ionization of a
This observation allows us to evaluas@proximatelythe  boson from the nonfragmented GP state is characterized by a
vertical ionization potentials and hence the total energies ofingle ionization potential while different ionization poten-
the ionized systems. tials characterize a twofold fragmented state of the conden-
In the frozen orbital approximation we assume that thesate. We recall that in the thermodynamic limit the change in
orbitals of the referencB-Bosonic systemp; and ¢, do not  the energy of a system obtained by removing a patrticle is
change upon the sudden removal of a boson, i.e., the ionizezhlled chemical potential The condensates studied here are
system is described by the same orbitals as well. The enemade of identical bosons, and therefore a single chemical
gies of the corresponding ionized states where the boson hastential is expected to characterize these condensates at
been suddenly removed from tkig or the ¢, orbital take on  equilibrium. This seems to contradict the results obtained
the form here for the twofold fragmented states, where two, in general
different, chemical potentials exist. This apparent contradic-
N1 (n, - 1,n,) = (ny - Dhyy + )\OWJ | by |*dF tion _is. resolved by remembering that the present results are
for finite systems. Indeed, we demonstrate in Sec. VIII that
in the limit of a large number of particles these different
nz(nz - 1) 442 . . : ) . _
+nohy, + )\O—f || *dIF chemical potentials become identical at the optimal occupa
2 tions restoring thereby the thermodynamic picture of a con-
densate.

+2\o(Ny — 1)”2] | 12| o dF, (13a
B. Adiabatic and vertical boson affinities

-1(n, -2 . o .
NE(ng,ny,— 1) = (= Dhyy+ A (N~ Dz~ 2) || *dF The main purpose of the present section is to consider a
1,12 2 22T Ao 2 2 )
process where a boson is added to the reference systdim of
ny(n, - 1) ) bosons. We definadiabatic boson affinityA,) as the differ-
+ nlhu“\on |p|*dF ence between the grouretuilibrium state energies of this
reference system and of the system which results by attach-

. ing a boson to the reference system,
e [ [gflgar,  aab

—N N+1,
respectively. An="Eg~ " Ep. (16)
According to the definitions in Eq$12), the vertical ion-
ization potentials are obtained by substructing the BMF enThe adiabatic boson affinity is shown schematically in Fig.

ergy “E, of the reference-particle state from the energies 6(a). It describes the energy gained by the attachment of a
of the ionized states in Eq$138 and (13b) at n,=n,. We  poson.

easily find for the boson vertical ionization potentials in the  gimjlarly to the sudden ionization process used to intro-
frozen orbital approximation the appealing relations duce the vertical ionization potentials in the previous subsec-
tion, we consider the sudden attachment of a boson to the

WD) == g, twofold fragmented state and define twertical boson af-
B finities comprising the sudden attachment of a boson to the
W(2) = = pa2, (14) ¢, and ¢, fragments, respectively:
i.e., they are given by the negative of the respective
Lagrange multipliers which we call chemical potentials. A1) = VE5(n,nb) - NIEMY + 1,0,

It is worthwhile to recall that at the level of the standard
GP theory(see Sec. l)ithe energy needed to remove a boson
from the nonfragmentel-boson condensate without chang-
ing the corresponding orbita is given by the GP chemical
potential:

A(2) = NEo(nf,nd) = NE(NY, nY + 1), (17)

NI NE =~ e (15) Here, "‘Eo='\‘E%(n'1“,n§'2l is the BMH2) energy of the refer-
ence systemn); andn, are the corresponding optimal occu-
The relations between orbital energies and ionization popation numbers,**E(n}'+1,n}) and**E(n},n}+1) are the
tentials in the Fermionic case are the subject of the wellMF(2) energies of the states where a boson has been attached
known Koopmans'’ theore82,33. Within the Hartree-Fock to the first and to the second fragment, respectively. In Figs.
mean field this theorem states that the vertical ionizatiorb(a) and &b) we schematically plot the vertical boson affini-
potential is the negative of the energy of the orbital fromties A,(2) andA,(1) as the vertical lines connecting the cor-
which the electron has been removed. Attributing the diagoresponding points on the energy curves.
nal Lagrange multiplierschemical potentia)su;; to the or- In the frozen orbital approximation the energies of the
bital energies of the fragmented state, the formal results fostates to which the boson has been suddenly attached to the
Fermionic and Bosonic systems are absolutely identical. ¢, or ¢, orbital take on the form
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TABLE |. The adiabatic and vertical boson ionization potentlalsndl(k) and boson affinities\, and
Ay(k) for condensates withl=5,10,25,100, and 1000 bosons. Shown are quantities evaluated according to
their definitions in Eqs(11), (12), (16), and(17) as differences of total energies and compared with those
computed using the frozen orbital approximation in Ead) and(19). These approximate numbers are given
in parentheses\ =0.9 is used throughout.

lonization Affinity
N Ia V(1) (2 An A1) Av(2)
5 -0.007508 0.025694 -0.006132 -0.020167 -0.052911 -0.021267
(0.027242 (-0.006248 (-0.055309 (-0.021819
10 -0.010946 0.003733 -0.010390 -0.016514 -0.031100 -0.017021
(10.004460 (-0.010387 (-0.031993 (-0.017142
25 -0.012613 -0.007123 -0.012412 -0.014692 -0.020167 -0.014886
(-0.006844 (-0.012405% (-0.020470 (-0.014910
100 -0.013361 -0.012032 -0.013314 -0.013865 -0.015193 -0.013912
(-0.011964 (-0.013311 (-0.015262 (-0.013916
1000 -0.013576 -0.013445 -0.013572 -0.013626 -0.013758 -0.013631
(-0.0134383 (-0.013571 (-0.013764 (-0.013631

uep=0.013599

o1 ~ (n;+1)(n,—0) - _ It is informative to notice that the energy gained by add-
E(ny+1,ny) =(ng+ hyy + N || *dF ing a boson to the nonfragmented condensate without chang-
ing the corresponding orbita for a finite number of bosons
ny(n,—1 . reads
+Nohyy + )\o%f | o/ *dF
NEge""Egp=— top= 7\0J || *dF. (20)

+2No(Ny + 1)”2J EAREARC (183
Hence even at the level of the standard GP theory, the energy
needed to remove a boson from a nonfragmented condensate
_ differs from that gained by adding a boson to this conden-
NIE(n, N, + 1) = (ny + Dhyy+ )\ow f |go|*dF  sate.

2 The above findings reveal differences between Bosonic
n,(n, — 1) e and Fermionic systems. In contrast to the electron affinity
+nghyy + )\on || *dF which in the framework of the Hartree-Fock mean-field ap-
proach is given by the negative of the virtual orbital's energy,

2 ) 12e the boson affinity does not depend on the virtual orbital and,
+ 20 ny(N+ 1) | o] ol dF. (18b) in addition, is subject to a correction term proportionako

By substructing these energies from the BMF energy of the
referenceN-particle statd'E,, we obtain the vertical boson
affinities Ay(1) and A\(2) in the frozen orbital approxima- For illustration purposes we evaluate all the above intro-
tion: duced adiabatic and vertical boson ionization potentials and
boson affinities for several reference systems made of
N=5,10,25,100, and 1000 bosons, keeping0.9 fixed
Ay(D) =—pgi- )\Of || *dF, throughout. In the GP theory all these systems are character-
ized by the same chemical potential. Table | summarizes the
computational results on the vertical boson ionization poten-
tials and vertical boson affinities obtained within the frame-
Ay(2) = — op— )\Of || *dIF. (19)  work of the direct scheme in Eqél2) and(17), respectively.
For comparison we also evaluate all these quantities using
the frozen orbital approximation as given in E¢$4) and
Interestingly, the vertical boson affinities in the frozen orbital (19). In Table | these approximate numbers are given in pa-
approximation are not fully determined by the chemical po-rentheses. By comparing all these quantities we conclude
tentials in contrast to our finding for the vertical boson ion-that the frozen orbital approximation provides very accurate
ization potentials discussed in the preceding subsection. results for the systems with a large number of bosons and

C. Numerical examples
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surprisingly accurate results for the system with a small It is quite natural to suppose that at equilibrium an ex-
number of bosons. change of the particles between different orbitdlagments

The main physical conclusion derived is that the twofoldmust be suppressed in the fragmented state. In other words,
fragmented states are characterized by two different verticahe energy needed to transfer a boson from the first orbital to
ionization potentials and by two different vertical boson af-the second one is equal to the energy needed for the inverse
finities. In contrast, the nonfragmented GP state is characteprocess—a transition of the boson from the second orbital to
ized by a single ionization potential and single affinity. At the first one. Therefore the difference between both boson
least in principle, this difference might be used to distinguishtransfer energies,
fragmented and nonfragmented states. The values of the vari-
ous vertical boson ionization potentials and vertical boson Q=(Ty2-T1 9)/2, (23
affinities differ from each other clearly for the systems made

- may serve as a criterion of how far we are from the equilib-
of a small number of bosons. As the number of bosons in-. y q

- rium. Substituting the respective transition energies from
creases, all these values become more similar to each othEr s.(22) provides a useful approximation far:
and also to the negative of the GP chemical potential. as-: P bp '
Closing this section, we would like to mention that we A A
used the numerical MB) data obtained for the reference Q:,ull—,u22+—0f |¢1|4dF——°f|¢2|4dF. (24
system withN=25 and for theN+1 systems with 24 and 26 2 2

bosons to plolt the diagrams p.resented in Figs. 6. For all thesg, ake contact with the MB) energy curves and to get
systems_ we fixed the_ Interaction s_trengtm@tO.Q/(zs—q). deeper insight into the origin of the minima of these curves
The optimal occupations of the first and second orbitals afyhich determine the BME) energy, it is worthwhile to con-
the minimum of the ME2) energy curve of the reference siger the energy derivativeE/dn, with respect to the occu-
system with 25 bosons are found to b¥:2_3'08 andn;  nation numbem,. To evaluate the derivative we use again
=1.92, respectively. The noninteger occupation nUmbers apne frozen orbital approximation which has been found to
pear due to the underlying mean-field approximation. They,qyide accurate results for the boson ionization potentials
are to be considered as average values of the respectiVg, affinities. In this approximation we can assume that the
particle-number operators. We use these occupation numbegspitals &, do not depend explicitly on the, and the direct

as the reference scale for theaxes in Figs. @) and Gb). differentiation of the energy in Eq6) with respect ton;
VIl. BOSON TRANSFER ENERGIES AND THE ORIGIN gives
OF THE MINIMA OF MF ENERGIES
E — + M) 4d* ﬂ) 4d'> 25
We define theboson transfer energy,T., as the energy dn, M= M2, | ¢4l 2 |2l (25)

needed to transfer a boson from one orhita)) to the other

(¢,). In the framework of the M) theory we start with the By comparing this derivative with the previous equation for
system which has the ener§(n;,n,) and evaluate the bo- Q one finds that they are identical.

son transfer energgT; ,) as the energy difference between At the optimal orbitals and occupation numbers the(RJF
this energy and the energy of the “final” state where the€N€rgy takes on its minimum awdE/dn, =0 (see Figs. 2and
occupation number of the first orbital is reduced by Injo - Consequently, our physical assumption that at the equi-
-1 and the occupation number of the second orbital is inlibrium the .boso.n 'transfer_energles are equal is fully sup-
creased by 1 tay,+1. In principle, the energy needed to Ported by identifyingQ with dE/dn,. Moreover, if the
move a boson from the first orbital to the second 6Re.,) Bosonic system is not at equilibrium, then due to the differ-
differs from the energy of the inverse procéSs. ,) where a  €NC€ betweer,_, andT, , a flow of bosons between the

boson is transferred from the second orbital to the first oneﬁjr;n?snirggjcﬁgg t_?ﬁ‘é’?e?ﬁgifg:g isslo%rgocz?etgeu(gbillzsr?grigs-
The boson transfer energié: andT are given b . . ) .
gi8e-2 1-28r¢ g y curve given in Eq(25) can be viewed as the “driving force”

Ti—p="E(n; ¥ 1,n+ 1)-NE(ny,n,). (21)  for the flow of bosons between the two boson subsystems.

. S To verify these physically appealing results we investigate
In the frozen orbital approximation the boson transfer enery, ore detail condensates witi=25 andN=1000 bosons

gies can be straightforwardly evaluated using these definiz; y =0 9 The lower panels of Fig. 7 show values@ffor
tions and the MR2) expressions for the energies. The reSU|tSdifferent values ofn,/N evaluated via Eq(24) using the

take on the following form: frozen orbital approximation. Also showndé&/dn, obtained
A by numerically differentiating the M) energy curve in Fig.
Ti 0= oo — pqg+ —Of | | *dF - 2)\of |1|?| )20, 3 with respect tan;/N for the same systems. On both pic-
2 tures the values of the optimal occupation numberAN
where the MI2) energy curves take on their minima are
_ Ao 44> 2 4 1242 marked by vertical dashed lines. From these figures it is
TlHZ_’““_“ZﬁEJ‘ 4 dr_ZAOJ‘ |6l 2" clearly seen that indeed, at the minimum of the (R)Fen-
22) ergy, the flow of the particles between the fragments is com-
pletely suppressed, i.e., at the best mean-field state the driv-
These results will be used in the discussion below. ing force is equal to zero.
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FIG. 7. (Color onling The upper two panels show the chemical potenfidiagonal Lagrange multipliersz1; and u,, for condensates
with N=25 andN=1000 bosons as a function of the relative occupation numj@. For comparison, the horizontal solid line shows the
value of the corresponding chemical potenjig)p obtained in the GP theory. The inset shows the same curves on a(xaéf) enlarged
scale. The lower two panels depict the derivatil&/ dn; (solid line) of the total energy with respect tg and the difference between the
boson transfer energi€3 (pointy for the same systems as in the upper pami#gdn, is obtained by numerical differentiation of the K&
energy curves an@ is evaluated using E@24). The vertical dashed lines mark the values of the optimal occupation nump@é&tsbtained
at the minima of the corresponding energy curwes0.9 is used throughout. The energy derivatives and all chemical potentials are given
in units of w.

VIIl. LARGE- N LIMIT dE
o an. D BT B2 (28)
In the largeN limit, N as well asn; and n, are much M
larger than 1 and we may replabe-1 by N. Repeating the \yhich has been derived before in REE4].
calculations of the preceding sections one finds that all terms 14 j|justrate the impact of the growing number of bosons
proportional tohg X 1 and not to\gX N or Ao X m;, i=1, 2, i condensates we plot the diagonal Lagrange multipfiggs
vanish in the largeN limit. Accordingly, we find that in the and u,, as a function of the relative occupation numbetN
largeN limit not only are the vertical boson ionization po- fq, systems withN=25 andN=1000 bosons in the upper
tentials given by the chemical poten.tials as found. ir)_Sec. Vbanels of Fig. 7. In these panels the values of the optimal
[see Eqgs(14)], but that also the vertical boson affinities are occupation numbers,/N obtained at the minima of the
MF(2) energy curve€(n,) are marked by vertical dashed
AvK) = - e k=1,2. (26) lines and the value of the chemical potenjig)s obtained in
the GP theory by a horizontal solid line.

Obviously, also the boson affinity in the framework of the One can see that for the systems whti25 bosondsee

GP theory is determined by the corresponding GP chemicdft upper panel of Fig_. Jahe crossing poin_t of thﬁ.ﬂ(nllN)
potential uap in the largeN limit. and u,5(n1/N) curves is located substantially aside from the

In the largeN limit the boson transfer energy, ., be- vertical dashed line. In contrast, the corresponding curves
comes identical to F,._,. The energy needed to t?ansfer a Cross the vertical dashed line at almost the same value of
boson in a condensate wibh particles from one fragment to M/N for the system witiN=1000 bosonssee right upper

the other one is just given by the difference of the correpanel of Fig. 7. However, on an enlarged scale as seen in the
sponding potentials: inset, the exact crossing point of thg;;(n;/N) and

uoo(n1/N) curves lies aside from the vertical dashed line
marking the value of the optimal occupation numhetN.
Tinj = myj ~ K- (27) To better understand these results let us analyzd 2.
The systems witiN=25 andN=1000 bosons at=0.9 are
This quantity is then nothing but(i)—Ay(j) which is very  characterized by different values ®§=\/(N-1). Therefore
appealing for large systems. the contributions of the terms which are proportionakgan
In the largeN limit the quantityQ introduced in Eq(23) Eq. (25 are much smaller for the system with=1000 than
and the energy derivative with respect to the occupatiomwith N=25 bosons where they play an important role. In
numbern; become identical and are just determined by theother words, in the largt limit the flow of the bosons is
difference of the chemical potentials of the fragments. Indetermined by the differences of the chemical potentials
particular, we find M11— Moo ONly. Interestingly,dE/dn;=0 holds at the best
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mean field and consequently the chemical potentials of the Inspired by similarities between fragmented states in
fragments are identical to each other in the ground state d8osonic systems and shell structures in the Fermionic world,

the condensate in the largetimit. we introduce vertical and adiabatic boson ionization poten-
tials and boson affinities. In this respect we discuss the
IX. CONCLUSIONS chemical potentials of the fragments and their relation to

boson ionization and attachment measurements. The energy

bosons immersed into a double-well external potential hav plitting between the values corresp.ondlng to the different
ragments are small for systems with a large number of

been investigated at different levels of multiorbital mean-, = ns while thev miaht be distinauishable for svstems with
field theories where optimal orbitals and optimal occupation y mig 9 y

numbers are determined variationally. : SVrC: llilr;lér?r?t%dojct:e?jsgn;)son transfer energy as the ener
At the level of one-orbital mean-field theor§Gross- 9y gy

Pitaevski) the ground state of the system reveals a bifurca—needed to move a boson from fragment *1" to fragment "2.

tion scenario at a critical value of the nonlinear parameteK\éee drgg\;?)? t;réarn\?grlge atroecllggbxﬁge'z ::)ho{as;oiagetrfr?s?‘re%?e d
Aer=No(N-1)=0.837. From this\., on the delocalization of P

from fragment “2” to fragment “1.” It is argued that the

the bosons over the two wells of the trap potential beCor‘neaif'ference between both boson transfer energies may serve as

9nergetlcally more favorable than the localization of the BECa criterion of how far we are from equilibrium. This differ-
in the deeper well.

The two-orbital mean-field theory predicts the existenceeNce is easily evaluated at each point of the multiorbital en-
of twofold fragmented states, i.e., both orbitals of these stat grgy surface and may speed up the search of the energy

are occupied macroscopically. Depending upon the numbi%inimum_
of particles in the BEC and/or the strength of the interparticle Explicit expressions have been determined within the fro-

) : . zen orbital approximation for the boson ionization potentials,
interaction, this fragmented state can be the ground state %fca)son affinit?eps and boson transfer energies. Thgse expres-

the system. For condensates with a small number of particle . , "
the fragmented ground state is the only stable state, becaus%ons shed light on the physical content of the quantities. The

. f5zen orbital approximation is based on the assumption that
tsr;)%:gsnzga?hrger:;ex?;ﬁﬁeof{ﬁg'gt:éjrgt;yirghtﬁeetsvot_hoig%'alcggr:addlng or removing a single boson from_a system with
nario bosons will not strongly chz_inge the orbitals of the other
By. applying the three-orbital mean field we verify nu- bosons and hence_ these orbnal; can be assumed unchanged.
; ; .~ We present numerical results which demonstrate that this ap-
merically that for the double-well external potential studied

S . o . proximation is valid for the condensates studied here.
here the overall best mean field is achieved within two orbit Finally, we would like to stress that the present findings

als[BMF(2)]. The inclusion of third orbital does not improve are general and not at all restricted to the geometry of the

the mean-field description as .the var|at|o'nal p”nc'ple.mm"double—well trap potential discussed here. We find similar
mizes the energy at a vanishing population of the third or-

bital Hence the twofold fraamented state obtained is th results for_other dou_ble— and muIanII trap potentials includ-
physical state of the system.gOnlda Nmax WhereN,,,, de- ang potentials used in current experiments.

pends on the interparticle interaction strength, the energy dif- ACKNOWLEDGMENTS
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