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Quantum phases in mixtures of Fermionic atoms
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A mixture of spin-polarized light- and heavy-Fermionic atoms on a finite-size two-dimensional optical
lattice is considered at various temperatures and values of the coupling between the two atomic species. In the
case where the heavy atoms are immobile in comparison to the light atoms, this system can be seen as a
correlated binary alloy related to the Falicov-Kimball model. The heavy atoms represent a scattering environ-
ment for the light atoms. The distributions of the binary alloy are discussed in terms of strong- and weak-
coupling expansions. We further present numerical results for the intermediate interaction regime and for the
density of states of the light particles. The numerical approach is based on a combination of a Monte Carlo
simulation and an exact diagonalization method. We find that the scattering by the correlated heavy atoms can
open a gap in the spectrum of the light atoms, either for strong interaction or small temperatures.
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I. INTRODUCTION The paper is organized as follows: In Sec. Il the model is

Recent experimental progress in preparing and measurir@'ieﬂy discussed, basgd on a functiona.l—integra_l rep.resenta—
clouds of ultracold atoms in magnetic traps has opened H0N: A mapping to a binary-alloy model is described in Sec.
different Way Of Studying Bosonic and Fermionic many_l”. Th|S g|VeS the fOUndann f0r our anaIyUC treatment,
particle quantum states. Among them are condensed arftfsed on weak- and strong-coupling expansions, and for the
Mott-insulating states of bosons in optical lattidese, e.g., construction of our numerical method. The numerical ap-
Refs.[1-4]). In comparison with similar studies in solid-state proach is used to evaluate the distribution of the heavy atoms
physics, atomic clouds enable us to design interesting manyand the density of states of the light atoms.
particle systems by mixing different types of atofits-7].

These mixtures can form different quantum states due to the
competition between the different types of atoms. In this Il. MODEL

. . . . 6 .
paper we propose a mixture Otm“ght Fermior(ie.g., °Li) The atomic degrees of freedom are given in second quan-
atoms and heavy Fermionie.g.,’K) atoms, and study its  ization by local creation and annihilation operators. In the
low-temperature behavior in @inite) optical lattice. We as-  ~gqe of spin-polarized Fermionic atoms we lﬂ$¢r) and

sume that the cloud of this mixture is prepared in a magneticf;r(fr) as the creatiotannihilatior operators for the light and

trap such that the atoms are spin polarized. the heavy Fermionic atoms, respectively, whedenotes the

The difference of the masses of the wo types of atom_%oordinates of the site in the optical lattice. The light atoms

implies two different and well-separated time scales for theer(,jm tunnel with tunneling rate and we assume that the
tunneling processes through the optical lattice. The relativel)ﬂfnneling rate of the heéqu atoms is so small that we can
fast tunneling Processes of the I.|ght atoms sets the remv"’“ﬂeglect it. Moreover, there is only a local interaction between
scale for the dy”‘?‘m'cs of the mixture. In contrast, the reIa'the atoms in the optical lattice, i.e., only atoms in the same
tlvel)_/ SIOW. tunneling processes of the he_av_y atoms are d potential well notice each other. Since the atoms are spin-
namically irrelevant and lead only to statistical fluctuations olarized fermions. there can be at most one atom per sort in
which drive the system towards equilibrium. The latter will P ' P

) . ._each potential well, thanks to Pauli’'s principle. The interac-
be discussed by the fact that the heavy particles form Is'ngﬁon s?rength between light and heav;F/) atorFr)mJLsThis al-
like (para-, ferro-, and antiferromagnetistates. They pro-

vide a scattering environment for the light atoms. Formally,IOWS us to write the many-particle Hamiltonian as

this physical picture leads to the Falicov-Kimball model —_ fe, _ (At t te AT

which has been used to describe complex solid-state systems H ?> GG ¥ 2 [= mlere + £ f) + Uffficie ], (1)
[8-12. A numerical study of the two-dimensional Falicov-

Kimball model, based on exact diagonalization, has revealedhere(r,r’) means pairs of nearest-neighbor lattice sites. We
the possibility of a discontinuous transition between orderediave assumed the same chemical potentifdr both types

and disordered phas¢40]. In the following we will use of atoms. This may not be very general but will serve for the
analytic methods as well as a combination of exact diagonalpurpose of studying competing quantum phases in the atomic
ization and Monte Carlo simulations to study large two-mixture. The model defined in E@l) is also known as the
dimensional clusters for a better understanding of the undespinless Falicov-Kimball moddl8—12. It is known to de-
lying physics. scribe ordered phases and phase transitions for correlated
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electronic systems and was recently investigated intensively Ill. CORRELATED BINARY ALLOY
in the limit of infinite dimensiond9]. We will study this
model in the following for a finite lattice, using a correlated
binary-alloy (CBA) approach.

The functional integration i@ andG can be performed in
several steps, beginning with the integration of the heavy
atomic fieldWy, introducing the Ising spins and finally inte-

_ _ _ grating the light atomic fieldV; [15]. The details of this
Functional-integral representation procedure are described in the Appendix. As a result we ob-

A grand-canonical ensemble of a mixture of light andtain for the partition function

heavy Fermionic atoms at the inverse temperatyie

=1/kgT can be defined by the partition function Z= {S(Er)} Z{sh

Z=Tre#H , with
where Tr is the trace with respect to all many-particle states =S [14S1) )2 — ,
in the optical lattice. The Green’s function for the propaga- Z{shH =p” '[ SOV def- g+ p+ - (U201 +9)].
tion of a light particle in the background formed by the (5)
heavy atoms in imaginary timeis _ .
The parameters atg’ =AU, u=1+Au, andt is the tunnel-
ing term multiplied byA. Moreover,d, is the time-shift op-
erator. The Ising spis(r) corresponds with a local occupa-

) ] ] tion numbem;(r) of the heavy atoms as
These expressions can also be written in terms of a func-

tional integral on a Grassmann algebt&]. For the latter the n:(r)=[1+3(r)]/2.
integration over a Grassmann field,(r,t) and its conjugate

W (r,t) (o=c,f) is given as a linear mapping from a Grass- o o
mann algebra to the complex numbers. At a space-time point G=(-d+u+t- (U121 +9] Dising: (6)
(r,t) we have for integerg, |=0

1
G(r,t;r',0) = > Tr{eB-Hce™Mc]].

The Green'’s function is now an averaged resolvent

where the average - -)sing is taken with respect to the dis-

J (W, (r, )W, (r, 0] dW (1, H)dW,(r,1) = 515 tribution

o\l o\l o\l o\l k,1¢1,1- B Z({S})

iy . , PASNN ==— - (7
The partition functionZ of the grand-canonical ensemble > zZ4s)
then reads {sn}

The partition function can also be written as

z= > @PRS2 def1+ [w+t- (U120)(1+9)).
s}

z= f exp(- D[V, ] ()

with the action

(8

The distribution is notZ, invariant[i.e., invariant under a
- changeS(r) ——S(r)], except for a half filled latticdi.e., u
A H[W,(r,0),W,(r,t - A)] 3 =U/2).
t The representation of the Green’s function in KE@). is
our main analytic result. It means that the light particles tun-
nel through the optical lattice where they are scattered by the
— . heavy particles. The distribution of the heavy patrticles is
DLW W] = L] dWo(r,0av,(r.0). given by the distribution shown in E¢7). The latter depends
) ) ) on the temperature but also on the parameters of the light
The Green’s function of light atoms is particles liket and the coupling) between the light and the
Do =, heavy particles. This reflects the intimate relationship be-
G(rr',t") = (We(r, ) Welr',t'). (4) tween the two types of particles. In other words, the light
The discrete time is used wittrA,2A ..., B, implying that ~ particles move in a random potential formed by the heavy
the limit A— 0 has to be taken in the end agti=8/A is the  particles. This randomness, formally expressed by the Ising

number of time steps? (r,t) andW,(r,t) are independent spins, is correlated and can be called correlated binary alloy

Grassmann fields which satisfy antiperiodic boundary Condi-(CBA)' There is a correlation length which diverges at the

] o phase transitions of the Ising system. In the subsequent in-
tions in time W,(r,B+A)=-W,(r,A) and W,(r,f+A)=  \estigation we will study these phases and their implications
-W¥(r,A). For the subsequent calculations it is convenient tdfor the properties of the light particles.

renameW (r,t) — W (r,t+A) because then the Grassmann The symmetric matrix.—t+(U’/2x)(1+S) can be diago-
field appears with the same time in the Hamiltonian of thenalized with eigenvalues 1A\;. Then the determinant in
action(3). Eq. (8) is for A~0,

S= 3 W (r,0[W,(r,t) - ¥ (r,t—A)]

rto

and the product measure

rto
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1

neighboring Ising spins, caused by a nonzero tunnelingyate
will lead to ordered Ising spins at low temperatures.
051 7 2. Tunneling expansion
=}
- The effect of a weak tunneling rate can be evaluated in
S o = terms of a perturbation theory with respectttaMoreover,
& we take the limitA — 0 and consider the asymptotic regime
E of low temperaturedi.e., 8~). If we include tunneling
0.5 — terms up to ordeO(t?) we get foru=U/2 the Ising model
with nearest-neighbor spin interaction:
12
1 T exp[—ﬂ;—uz S<r)s<r'>+o(‘t3)]
chemical potential P{S(N}) = E <r,_iz>2 : .
FIG. 1. Average spin for a system without tunneling=1 and ~ exp ~ By S(NS(r') +o(t)
_ {Sn=+1} rr'y
B=10.
9
de{l+[u+i- (U201 +91F} ~ [] (1 +ePN). This model has an antiferromagnetic low-temperature phase.

i The spin-spin coupling is exponentially small ghfor u
Since the matrix depends on the fluctuating Ising spins, it is<0 andu>U but of ordert*/ U for 0< u<U. In particular,
difficult to determine the eigenvalues. One way to get an ide#Ve can distinguish three different regimes:
about the physics of this model is to study the asymptotic
regimes of strong and weak coupling; another one is to use a < 0:P({S)) exp(— BME S(r) + 0(13)),
numerical diagonalization procedure. Both approaches shall 27
be applied subsequently.
B
A. Approximations of the CBA distribution 0< u<U:P({S}) = ex ?e‘ﬁwz sind B(u
The distribution was studied in the case of strong cou-
pling [i.e., the tunnelingor U™Y) expansiofin a number of T -
paperg14,15. It leads at half filling to an Ising model with -UI2) ]2 S —Bm > SINS(r') +o(t)
Z, symmetry. In the following we study the CBA distribution r (rr’)
in weak- and strong-coupling approximations as well as nu- d
merically by a Monte Carlo simulation. The density of states?”
of the light atoms are evaluated by a numerical procedure.

-U
U< uP{S) = exp(,@'uTE Sr) + 0(73)>-

1. System without tunneling

_ The absence of the, symmetry can be observed already gggjges the two ferromagnetic regimes fox 0 andu>U
in the absence of tunneling. Then we have in the liMit ;o have the intermediate regime<Qu< U with antiferro-

—0 magnetic ordering. There is an exponentially small magnetic
Bul1+8NYV2 4 oB{u+(u-U)[1+S(r))/2} field for w+# U/2 which breaks th&, symmetry. As we ap-
Po({S(N}H) = 1:[ 1+ 26Pi 1 P2 V) proach =0 or u=U the magnetic field becomes larger.

There is a first-order transition from the antiferro- to a ferro-
which is Z, invariant only forx=U/2. The average spin is magngtic p_hase whe_n the r_‘nagnetic field ;tarts .to dominate
shown in Fig. 1 and its asymptotic low-temperature behaviofh® SPin-spin interaction. This can be seen in a simple mean-

is field approximation.
-1 u<O 3. Weak-coupling limit
(S = ezl J0 O=wu<U In the case of weak coupling we can perform an expan-
1 + 2eBH + gB2n-V) 1/3 u=U : sion in terms of the coupling parameter This gives in
1 U< leading order an uncorrelated binary alloy:
Thus only for 0< u<U the Ising state is paramagnetic. The P.sn =11 ghluUgsiniz
other regimes are ferromagnetic. In terms of the configura- w B . 2 eBlu-UgSini2’
tions of the heavy atoms there are no heavy atomsufor Sn=t1

<0 and a heavy atom at each site for-U. In the interme-
diate regime & u<U we anticipate that the coupling of wheree(k) is the dispersion of the tunneling term and
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FIG. 2. Paramagnetic Ising-spin configuration terl, U=3, FIG. 3. Mixture of para- and antiferromagnetic Ising-spin tex-
n=U/2, andB=3. White(black squares refer to sitéan)occupied tures fort=1, U=3, u=U/2, andB=7.
with a heavy atom.

N
o D(E.{SN)}) = leE SE-MSDD), (10
=1

g(w) = f Ofe(k) + M]w,

where N is the number of lattice sites. Finally, the DOS
related to the Green’s function in E() is determined by
averaging ovet.=100 spin configurations:

i.e., 0<g=<1. Thus the Ising groundstate for weak coupling
is ferromagnetic. In particular,

(9= tanf B(u -~ Ug(w)/2). 1

D(E)= - 2\ DE{SND. (11
{sin}

B. Density of states

) ) ] In the following the hopping rate is set te:1.
The density of state€DOS) for the light particles can be

obtained from the diagonal elements of the Green’s function
in Eq. (6). Its qualitative behavior depends strongly on the

I.l.l.l.l.l.l.l.l.
state of the heavy particles: In the case of a ferromagnetic

state the DOS shows a single band, for the antiferromagnetic A A EEEENE
state it has a gap. For a paramagnetic state of the heavy " H B E B EEEBE

particles the form of the DOS is less obvious. We have cal-
culated the DOS numerically for an ¥81l8 square lattice

with open boundaries. For this purpose we have generated "H BB B B EE B
configurations of the Ising spins according to the distribution BB BB EEREE R

function in Eq.(7), using the Metropolis algorithm. Typical
configurations with large statistical weight are shown in Figs.
2-5 for different values of the physical parametéisu, and

B

For a given configuratiofS(r)} of Ising spins the Hamil-
tonian

. U
h=t--s
2
is diagonalized. From the eigenvalugg{S(r)}) the DOS of FIG. 4. Antiferromagnetic Ising-spin configuration for1, U
h is calculated as =3, u=U/2, andp=14.
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FIG. 7. DOS forB=3 at various values of the interactithand
half filling (u=U/2). First row: U=1, U=4. Second rowU=6,

| u=s.

Figure 8 shows the DOS in the low-temperature regime
for two values of the interaction strengty=3, solid, and
. .:. U =8, dashegand different values of the chemical potential.
For the latter the distributiofi7) has noZ, symmetry, i.e., is
not invariant under a global spin fllg— —S. Near half filling
the heavy atoms order in a chessboard configuration. This

Figure 6 shows the DOS of the light particles 10=3 behgvior is_stablized forlla.rger deviations fqn‘-FU/Z when
and half filling (i.e., x=U/2) at different temperatures. For the interaction strength is mcreased.Asjewates even fur- '
small 3, i.e., high temperatures, the system shows a gapledfer fromU/2 the Ising spins start to order ferromagneti-
metallic band, which is symmetric around the Fermi level,cally. The spectral weight locally shifts to the center of each
and the Ising spins form a paramagnetic state. The DOS igsubband and globally shifts from the lower to the upper
slightly suppressed at the band center due to the interactiopand. For the completely ordered Ising spins the lower band
between the light and the heavy atoms. When the temperalisappears and the system has only one band.
ture is decreased, the Ising spins start to order antiferromag-
netically, i.e., the heavy atoms create a chesshoardlike phase
with empty sites. This is accompanied by the formation of a IV. CONCLUSIONS
gap around the Fermi level and a strong enhancement of the ; ; I : ;
DOS at the inner band edges. Very similar results were foungSA mixture of light and heavy Fermionic atoms is studied

: . A a system in which the light atoms live in a correlated
in a dynamical cluster approximation on an<8 cluster ; . . . .
[16]. disordered environment. This environment is formed by the

heavy atoms. The disorder is given by fluctuating Ising spins

The high-temperature regime of the system at half filling_ S S
is depicted in Fig. 7 for various interaction strengthsFor W.'th a cqmplex te.mpgrat.ure-d.ependent dIStI’Ibu.tI('Z)n. Thls dis-
tribution is Z, (spin-flip) invariant only at half filling(i.e.,

small interaction the DOS shows a metallic band and is ~U/2) but h brok in-fl trv fors U/ 2
peaked around the Fermi level. For increasihghis peak * u t aia kr_o e? SPIn-iip lsymme ry _‘Dir g '
gets suppressed and a band splitting to two symmetric banJ is symmetry breaking favors an Ising sg=-1 at low

occurs. The spectral weight within these subbands is highe ensny(Le., .’“<O) an_d S=1 at high densnw.e_., p>U). .
at their center. A further increase bfleads to a shift of the ere is an intermediate regime where an antiferromagentic

lower and upper band to lower and higher energies, respeé§taggereliIsing-spin configuration is favored. Scattering on
tively.

FIG. 5. Ferromagnetic Ising-spin configuration far1, U=8,
©=0.8U, and 8=14.

5 ! I 5
4 j i —~4
&) = o2l i o2
o ~ | o AN i A0S A A
1 1 ' ‘ L
-10-5 0 5 10 -10-5 0 5 10
-10-5 0 5 10 -10-5 0 5 10 E E
E E
5 5
—~4 ~ 4
4 4 I 3 K3
=3 ~3 =2 a2 3
25 =5 agl AN aZ N/\
Dl Ql A : 4 i L
-10-5 0 5 10 -10-5 0 5 10
-10-5 0 5 10 -10-5 0 5 10 E E
E E

FIG. 8. DOS forB=14,U=3 (solid), U=8 (dashegl and differ-
FIG. 6. DOS forU=3, u=U/2 (half filling) and different tem-  ent values of the chemical potential. First row=0.6U, ©=0.7U.
peratures. First row3=3, 3=7. Second rowB=10, =14. Second rowu=0.8U, ©=0.9U.
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these configurations opens a gap in the band of the light ~ _ —
atoms. z =J e %det(- o+ p— U W W )D[V ]
ACKNOWLEDGMENT _ —
_ = f &S] [1 11 (a- u'wc(r,t)qfc(r,t))]p[wc].
This work was supported by the Sonderforschungsbereich r t
484. The product can be expanded in terms of Ising spins
APPENDIX {S(=+1}[15] as
1. Integration of the heavy atoms 1:[ [1 + 1:[ (- U"Pc(r,t)\lfc(r,t))]
It is possible to integrate out the fieli; of the heavy
atoms in Eqgs(2) and (4), since it appears i only as a = > TII=- U’@(r YW (r, ) [0,
quadratic form: (Sheen) 1t e
S=S+S5+S This reads with =(1+S)/2 as
with = 3 [P 0g o VOV

{S(r)=#1} r
r Now the partition functiorZ can be expressed by a summa-

S=> {E [W(r,)W(r,t+A) = gW(r,HW(r,1)]
t

_ tion over configurations of Ising spins as
- wc<r,t>wc(r',t)}
e z= 3 z(sny
{s(r)=+1}
S=2 {E [W(r,)W(r,t+A) - ﬁxl_ff(r,t)xlff(r,t)]}_ with
t r

The interaction between the two types of atoms is given by Z({S(N}) = | e S wP' e MO Vr0Vroppy ],
r

S=U"D Wir, )W (r, ) W(r, W (r,b). (A2)
rt

The integration over the Grassmann field in Z gives a

space-diagonal determinant, 3. Integration of the light atoms

j e S S]] d‘l'f(r,t)d\?f(r,t) = def(- g+ - TR ), The c—Grassmann field appears only in a quadratic form
rt ©c in the partition function:

A =8+ 3 IOV )
= —_— r r, r,
whered, is the time-shift operator, Mort ‘ ‘
P(rt+A) A<t<p —( _ v )
oW(r,t) = . =V d-u—-t+—I |V,
WP (r,t) {—\I’(I’,A) t=p clor— M m c

The second equation is a consequence of the antiperiodisfter performing theW integration we obtain

boundary condition of the Grassmann field. ,
— B2 —. - U

Z{SH=p" 7 def - g+ ut+t-—I|.
72

The partition function is now a functional integral of the Following the same procedure for the Green'’s function, we
c—Grassmann field, obtain forG in Eq. (4) the matrix

2. Expansion with Ising spins

> [- g+ - (U TP 20 def- g+ w+ - U7I)

_A{sin}
S 730 def- s v~ 21)
{sin}

G
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