
Quantum phases in mixtures of Fermionic atoms

C. Ates
Max-Planck-Institut für Physik Komplexer Systeme, D-01187 Dresden, Germany

K. Ziegler
Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany

sReceived 17 November 2004; published 22 June 2005d

A mixture of spin-polarized light- and heavy-Fermionic atoms on a finite-size two-dimensional optical
lattice is considered at various temperatures and values of the coupling between the two atomic species. In the
case where the heavy atoms are immobile in comparison to the light atoms, this system can be seen as a
correlated binary alloy related to the Falicov-Kimball model. The heavy atoms represent a scattering environ-
ment for the light atoms. The distributions of the binary alloy are discussed in terms of strong- and weak-
coupling expansions. We further present numerical results for the intermediate interaction regime and for the
density of states of the light particles. The numerical approach is based on a combination of a Monte Carlo
simulation and an exact diagonalization method. We find that the scattering by the correlated heavy atoms can
open a gap in the spectrum of the light atoms, either for strong interaction or small temperatures.
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I. INTRODUCTION

Recent experimental progress in preparing and measuring
clouds of ultracold atoms in magnetic traps has opened a
different way of studying Bosonic and Fermionic many-
particle quantum states. Among them are condensed and
Mott-insulating states of bosons in optical latticesssee, e.g.,
Refs.f1–4gd. In comparison with similar studies in solid-state
physics, atomic clouds enable us to design interesting many-
particle systems by mixing different types of atomsf5–7g.
These mixtures can form different quantum states due to the
competition between the different types of atoms. In this
paper we propose a mixture of light Fermionicse.g., 6Li d
atoms and heavy Fermionicse.g., 40Kd atoms, and study its
low-temperature behavior in asfinited optical lattice. We as-
sume that the cloud of this mixture is prepared in a magnetic
trap such that the atoms are spin polarized.

The difference of the masses of the two types of atoms
implies two different and well-separated time scales for their
tunneling processes through the optical lattice. The relatively
fast tunneling processes of the light atoms sets the relevant
scale for the dynamics of the mixture. In contrast, the rela-
tively slow tunneling processes of the heavy atoms are dy-
namically irrelevant and lead only to statistical fluctuations
which drive the system towards equilibrium. The latter will
be discussed by the fact that the heavy particles form Ising-
like spara-, ferro-, and antiferromagneticd states. They pro-
vide a scattering environment for the light atoms. Formally,
this physical picture leads to the Falicov-Kimball model
which has been used to describe complex solid-state systems
f8–12g. A numerical study of the two-dimensional Falicov-
Kimball model, based on exact diagonalization, has revealed
the possibility of a discontinuous transition between ordered
and disordered phasesf10g. In the following we will use
analytic methods as well as a combination of exact diagonal-
ization and Monte Carlo simulations to study large two-
dimensional clusters for a better understanding of the under-
lying physics.

The paper is organized as follows: In Sec. II the model is
briefly discussed, based on a functional-integral representa-
tion. A mapping to a binary-alloy model is described in Sec.
III. This gives the foundation for our analytic treatment,
based on weak- and strong-coupling expansions, and for the
construction of our numerical method. The numerical ap-
proach is used to evaluate the distribution of the heavy atoms
and the density of states of the light atoms.

II. MODEL

The atomic degrees of freedom are given in second quan-
tization by local creation and annihilation operators. In the
case of spin-polarized Fermionic atoms we usecr

†scrd and
f r
†sf rd as the creationsannihilationd operators for the light and

the heavy Fermionic atoms, respectively, wherer denotes the
coordinates of the site in the optical lattice. The light atoms
can tunnel with tunneling ratet̄, and we assume that the
tunneling rate of the heavy atoms is so small that we can
neglect it. Moreover, there is only a local interaction between
the atoms in the optical lattice, i.e., only atoms in the same
potential well notice each other. Since the atoms are spin-
polarized fermions, there can be at most one atom per sort in
each potential well, thanks to Pauli’s principle. The interac-
tion strength between light and heavy atoms isU. This al-
lows us to write the many-particle Hamiltonian as

H = − t̄ o
kr,r8l

cr
†cr8 + o

r

f− mscr
†cr + f r

†f rd + Ufr
†f rcr

†crg, s1d

wherekr ,r8l means pairs of nearest-neighbor lattice sites. We
have assumed the same chemical potentialm for both types
of atoms. This may not be very general but will serve for the
purpose of studying competing quantum phases in the atomic
mixture. The model defined in Eq.s1d is also known as the
spinless Falicov-Kimball modelf8–12g. It is known to de-
scribe ordered phases and phase transitions for correlated
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electronic systems and was recently investigated intensively
in the limit of infinite dimensionsf9g. We will study this
model in the following for a finite lattice, using a correlated
binary-alloy sCBAd approach.

Functional-integral representation

A grand-canonical ensemble of a mixture of light and
heavy Fermionic atoms at the inverse temperatureb
=1/kBT can be defined by the partition function

Z = Tr e−bH,

where Tr is the trace with respect to all many-particle states
in the optical lattice. The Green’s function for the propaga-
tion of a light particle in the background formed by the
heavy atoms in imaginary timet is

Gsr,t;r8,0d =
1

Z
Trfe−sb−tdHcre

−tHcr8
† g.

These expressions can also be written in terms of a func-
tional integral on a Grassmann algebraf13g. For the latter the
integration over a Grassmann fieldCssr ,td and its conjugate

C̄ssr ,td ss=c,fd is given as a linear mapping from a Grass-
mann algebra to the complex numbers. At a space-time point
sr ,td we have for integersk, l ù0

E fC̄ssr,tdgkfCssr,tdgldCssr,tddC̄ssr,td = dk,1dl,1.

The partition functionZ of the grand-canonical ensemble
then reads

Z =E exps− SdDfC f,Ccg s2d

with the action

S= o
r,t,s

C̄ssr,tdfCssr,td − Cssr,t − Ddg

+ Do
t

HfC̄ssr,td,Cssr,t − Ddg s3d

and the product measure

DfC f,Ccg = p
r,t,s

dCssr,tddC̄ssr,td.

The Green’s function of light atoms is

Gsr,t;r8,t8d = kCcsr,tdC̄csr8,t8dl. s4d

The discrete time is used witht=D ,2D ,… ,b, implying that
the limit D→0 has to be taken in the end andb8=b /D is the

number of time steps.C̄ssr ,td andCssr ,td are independent
Grassmann fields which satisfy antiperiodic boundary condi-

tions in time Cssr ,b+Dd=−Cssr ,Dd and C̄ssr ,b+Dd=

−C̄ssr ,Dd. For the subsequent calculations it is convenient to
renameCssr ,td→Cssr ,t+Dd because then the Grassmann
field appears with the same time in the Hamiltonian of the
action s3d.

III. CORRELATED BINARY ALLOY

The functional integration inZ andG can be performed in
several steps, beginning with the integration of the heavy
atomic fieldC f, introducing the Ising spins and finally inte-
grating the light atomic fieldCc f15g. The details of this
procedure are described in the Appendix. As a result we ob-
tain for the partition function

Z = o
hSsrdj

ZshSrjd

with

ZshSrjd = m̄b8o
r

f1+Ssrdg/2 detf− ]t + m̄ + t̂ − sU8/2m̄ds1 + Sdg.

s5d

The parameters areU8=DU, m̄=1+Dm, and t̂ is the tunnel-
ing term multiplied byD. Moreover,]t is the time-shift op-
erator. The Ising spinSsrd corresponds with a local occupa-
tion numbernfsrd of the heavy atoms as

nfsrd = f1 + Ssrdg/2.

The Green’s function is now an averaged resolvent

G = kf− ]t + m̄ + t̂ − sU8/2m̄ds1 + Sdg−1lIsing, s6d

where the averagek¯lIsing is taken with respect to the dis-
tribution

P„hSsrdj… =
ZshSrjd

o
hSsrdj

ZshSrjd
. s7d

The partition function can also be written as

Z = o
hSsrdj

m̄b8o
r

f1+Ssrdg/2 deth1 + fm̄ + t̂ − sU8/2m̄ds1 + Sdgb8j.

s8d

The distribution is notZ2 invariant fi.e., invariant under a
changeSsrd→−Ssrdg, except for a half filled latticesi.e., m
=U /2d.

The representation of the Green’s function in Eq.s6d is
our main analytic result. It means that the light particles tun-
nel through the optical lattice where they are scattered by the
heavy particles. The distribution of the heavy particles is
given by the distribution shown in Eq.s7d. The latter depends
on the temperature but also on the parameters of the light
particles liket̄ and the couplingU between the light and the
heavy particles. This reflects the intimate relationship be-
tween the two types of particles. In other words, the light
particles move in a random potential formed by the heavy
particles. This randomness, formally expressed by the Ising
spins, is correlated and can be called correlated binary alloy
sCBAd. There is a correlation length which diverges at the
phase transitions of the Ising system. In the subsequent in-
vestigation we will study these phases and their implications
for the properties of the light particles.

The symmetric matrixm̄− t̂+sU8 /2m̄ds1+Sd can be diago-
nalized with eigenvalues 1−Dl j. Then the determinant in
Eq. s8d is for D,0,
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deth1 + fm̄ + t̂ − sU8/2m̄ds1 + Sdgb8j , p
j

s1 + e−bl jd.

Since the matrix depends on the fluctuating Ising spins, it is
difficult to determine the eigenvalues. One way to get an idea
about the physics of this model is to study the asymptotic
regimes of strong and weak coupling; another one is to use a
numerical diagonalization procedure. Both approaches shall
be applied subsequently.

A. Approximations of the CBA distribution

The distribution was studied in the case of strong cou-
pling fi.e., the tunnelingsor U−1d expansiong in a number of
papersf14,15g. It leads at half filling to an Ising model with
Z2 symmetry. In the following we study the CBA distribution
in weak- and strong-coupling approximations as well as nu-
merically by a Monte Carlo simulation. The density of states
of the light atoms are evaluated by a numerical procedure.

1. System without tunneling

The absence of theZ2 symmetry can be observed already
in the absence of tunneling. Then we have in the limitD
→0

P0„hSsrdj… = p
r

ebmf1+Ssrdg/2 + ebhm+sm−Udf1+Ssrdg/2j

1 + 2ebm + ebs2m−Ud

which is Z2 invariant only form=U /2. The average spin is
shown in Fig. 1 and its asymptotic low-temperature behavior
is

kSl =
ebs2m−Ud − 1

1 + 2ebm + ebs2m−Ud , 5
− 1 m , 0

0 0 ø m , U

1/3 m = U

1 U , m
6.

Thus only for 0,m,U the Ising state is paramagnetic. The
other regimes are ferromagnetic. In terms of the configura-
tions of the heavy atoms there are no heavy atoms form
,0 and a heavy atom at each site form.U. In the interme-
diate regime 0,m,U we anticipate that the coupling of

neighboring Ising spins, caused by a nonzero tunneling ratet̄,
will lead to ordered Ising spins at low temperatures.

2. Tunneling expansion

The effect of a weak tunneling rate can be evaluated in
terms of a perturbation theory with respect tot̄. Moreover,
we take the limitD→0 and consider the asymptotic regime
of low temperaturessi.e., b,`d. If we include tunneling
terms up to orderOst̄2d we get form=U /2 the Ising model
with nearest-neighbor spin interaction:

Ps„hSsrdj… =

expF− b t̄2

2U o
kr,r8l

SsrdSsr8d + ost̄3dG
o

hSsrd=±1j
expF− b t̄2

2U o
kr,r8l

SsrdSsr8d + ost̄3dG .

s9d

This model has an antiferromagnetic low-temperature phase.
The spin-spin coupling is exponentially small inb for m

,0 andm.U but of ordert̄2/U for 0,m,U. In particular,
we can distinguish three different regimes:

m , 0:PsshSjd ~ expS− b
umu
2 o

r

Ssrd + ost̄3dD ,

0 , m , U:PsshSjd ~ expSb2t̄2

8
e−bU/2 sinhfbsm

− U/2dgo
r

Ssrd − b
t̄2

4U o
kr,r8l

SsrdSsr8d + ost̄3dD
and

U , m:PsshSjd ~ expSb
m − U

2 o
r

Ssrd + ost̄3dD .

Besides the two ferromagnetic regimes form,0 andm.U
we have the intermediate regime 0,m,U with antiferro-
magnetic ordering. There is an exponentially small magnetic
field for mÞU /2 which breaks theZ2 symmetry. As we ap-
proach m=0 or m=U the magnetic field becomes larger.
There is a first-order transition from the antiferro- to a ferro-
magnetic phase when the magnetic field starts to dominate
the spin-spin interaction. This can be seen in a simple mean-
field approximation.

3. Weak-coupling limit

In the case of weak coupling we can perform an expan-
sion in terms of the coupling parameterU. This gives in
leading order an uncorrelated binary alloy:

Pw„hSsrdj… = p
r

ebsm−UgdSsrd/2

o
Ssrd=±1

ebsm−UgdSsrd/2
,

whereeskd is the dispersion of the tunneling term and

FIG. 1. Average spin for a system without tunneling:U=1 and
b=10.
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gsmd =E Qfeskd + mg
ddk

s2pdd ,

i.e., 0øgø1. Thus the Ising groundstate for weak coupling
is ferromagnetic. In particular,

kSl = tanhfbsm − Ugsmdg/2d.

B. Density of states

The density of statessDOSd for the light particles can be
obtained from the diagonal elements of the Green’s function
in Eq. s6d. Its qualitative behavior depends strongly on the
state of the heavy particles: In the case of a ferromagnetic
state the DOS shows a single band, for the antiferromagnetic
state it has a gap. For a paramagnetic state of the heavy
particles the form of the DOS is less obvious. We have cal-
culated the DOS numerically for an 18318 square lattice
with open boundaries. For this purpose we have generated
configurations of the Ising spins according to the distribution
function in Eq.s7d, using the Metropolis algorithm. Typical
configurations with large statistical weight are shown in Figs.
2–5 for different values of the physical parametersU, m, and
b.

For a given configurationhSsrdj of Ising spins the Hamil-
tonian

h = t̂ −
U

2
S

is diagonalized. From the eigenvalueslk(hSsrdj) the DOS of
h is calculated as

D„E,hSsrdj… =
1

Np
o
k=1

N

dsE − lk„hSsrdj…d, s10d

where N is the number of lattice sites. Finally, the DOS
related to the Green’s function in Eq.s6d is determined by
averaging overL=100 spin configurations:

DsEd =
1

L
o

hSsrdj
D„E,hSsrdj…. s11d

In the following the hopping rate is set tot̄=1.

FIG. 2. Paramagnetic Ising-spin configuration fort̄=1, U=3,
m=U /2, andb=3. Whitesblackd squares refer to sitessundoccupied
with a heavy atom.

FIG. 3. Mixture of para- and antiferromagnetic Ising-spin tex-
tures for t̄=1, U=3, m=U /2, andb=7.

FIG. 4. Antiferromagnetic Ising-spin configuration fort̄=1, U
=3, m=U /2, andb=14.
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Figure 6 shows the DOS of the light particles forU=3
and half filling si.e., m=U /2d at different temperatures. For
small b, i.e., high temperatures, the system shows a gapless
metallic band, which is symmetric around the Fermi level,
and the Ising spins form a paramagnetic state. The DOS is
slightly suppressed at the band center due to the interaction
between the light and the heavy atoms. When the tempera-
ture is decreased, the Ising spins start to order antiferromag-
netically, i.e., the heavy atoms create a chessboardlike phase
with empty sites. This is accompanied by the formation of a
gap around the Fermi level and a strong enhancement of the
DOS at the inner band edges. Very similar results were found
in a dynamical cluster approximation on an 838 cluster
f16g.

The high-temperature regime of the system at half filling
is depicted in Fig. 7 for various interaction strengthsU. For
small interaction the DOS shows a metallic band and is
peaked around the Fermi level. For increasingU this peak
gets suppressed and a band splitting to two symmetric bands
occurs. The spectral weight within these subbands is highest
at their center. A further increase ofU leads to a shift of the
lower and upper band to lower and higher energies, respec-
tively.

Figure 8 shows the DOS in the low-temperature regime
for two values of the interaction strengthsU=3, solid, and
U=8, dashedd and different values of the chemical potential.
For the latter the distributions7d has noZ2 symmetry, i.e., is
not invariant under a global spin flipS→−S. Near half filling
the heavy atoms order in a chessboard configuration. This
behavior is stablized for larger deviations fomm=U /2 when
the interaction strength is increased. Asm deviates even fur-
ther from U /2 the Ising spins start to order ferromagneti-
cally. The spectral weight locally shifts to the center of each
subband and globally shifts from the lower to the upper
band. For the completely ordered Ising spins the lower band
disappears and the system has only one band.

IV. CONCLUSIONS

A mixture of light and heavy Fermionic atoms is studied
as a system in which the light atoms live in a correlated
disordered environment. This environment is formed by the
heavy atoms. The disorder is given by fluctuating Ising spins
with a complex temperature-dependent distribution. This dis-
tribution is Z2 sspin-flipd invariant only at half fillingsi.e.,
m=U /2d but has a broken spin-flip symmetry formÞU /2.
This symmetry breaking favors an Ising spinSr =−1 at low
density si.e., m,0d and Sr =1 at high densitysi.e., m.Ud.
There is an intermediate regime where an antiferromagentic
sstaggeredd Ising-spin configuration is favored. Scattering on

FIG. 5. Ferromagnetic Ising-spin configuration fort̄=1, U=8,
m=0.8U, andb=14.

FIG. 6. DOS forU=3, m=U /2 shalf fillingd and different tem-
peratures. First row:b=3, b=7. Second row:b=10, b=14.

FIG. 7. DOS forb=3 at various values of the interactionU and
half filling sm=U /2d. First row: U=1, U=4. Second row:U=6,
U=8.

FIG. 8. DOS forb=14,U=3 ssolidd, U=8 sdashedd, and differ-
ent values of the chemical potential. First row:m=0.6U, m=0.7U.
Second row:m=0.8U, m=0.9U.
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these configurations opens a gap in the band of the light
atoms.
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APPENDIX

1. Integration of the heavy atoms

It is possible to integrate out the fieldC f of the heavy
atoms in Eqs.s2d and s4d, since it appears inS only as a
quadratic form:

S= Sc + Sf + SI

with

Sc = o
t
Ho

r

fC̄csr,tdCcsr,t + Dd − m̄C̄csr,tdCcsr,tdg

− t o
kr,r8l

C̄csr,tdCcsr8,tdJ
Sf = o

t
Ho

r

fC̄ fsr,tdC fsr,t + Dd − m̄C̄ fsr,tdC fsr,tdgJ .

The interaction between the two types of atoms is given by

SI = U8o
r,t

C̄ fsr,tdC fsr,tdC̄csr,tdCcsr,td.

The integration over the Grassmann fieldC f in Z gives a
space-diagonal determinant,

E e−Sf−SIp
r,t

dC fsr,tddC̄ fsr,td = dets− ]t + m̄ − U8C̄cCcd,

sA1d

where]t is the time-shift operator,

]tCsr,td = HCsr,t + Dd D ø t , b

− Csr,Dd t = b
J .

The second equation is a consequence of the antiperiodic
boundary condition of the Grassmann field.

2. Expansion with Ising spins

The partition function is now a functional integral of the
c–Grassmann field,

Z =E e−Scdets− ]t + m̄ − U8C̄cCcdDfCcg

=E e−Scp
r
F1 + p

t

„m̄ − U8C̄csr,tdCcsr,td…GDfCcg.

The product can be expanded in terms of Ising spins
hSsrd= ±1j f15g as

p
r
F1 + p

t

„m̄ − U8C̄csr,tdCcsr,td…G
= o

hSsrd=±1j
p

r
p

t

fm̄ − U8C̄csr,tdCcsr,tdgf1+Ssrdg/2.

This reads withI =s1+Sd /2 as

= o
hSsrd=±1j

p
r

m̄b8I srde−sU8/m̄dI srdo
t

C̄csr,tdCcsr,td.

Now the partition functionZ can be expressed by a summa-
tion over configurations of Ising spins as

Z = o
hSsrd=±1j

Z„hSsrdj…

with

Z„hSsrdj… =E e−Scp
r

m̄b8I srde−sU8/m̄dI srdo
t

C̄csr,tdCcsr,tdDfCcg.

sA2d

3. Integration of the light atoms

The c–Grassmann field appears only in a quadratic form
in the partition function:

Sc8 = Sc +
U8

m̄
o
r,t

I srdC̄csr,tdCcsr,td

; C̄cS]t − m̄ − t̂ +
U8

m̄
IDCc.

After performing theCc integration we obtain

ZshSrjd = m̄b8o
r

I srd detS− ]t + m̄ + t̂ −
U8

m̄
ID .

Following the same procedure for the Green’s function, we
obtain forG in Eq. s4d the matrix

G =

o
hSsrdj

f− ]t + m̄ + t̂ − sU8/m̄dI g−1m̄b8o
r

I srd dets− ]t + m̄ + t̂ − U8
m̄ I d

o
hSsrdj

m̄b8o
r

I srd dets− ]t + m̄ + t̂ − U8
m̄ I d

.
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