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We consider the ground state of vortices in a rotating Bose-Einstein condensate that is loaded in a corotating
two-dimensional optical lattice. Due to the competition between vortex interactions and their potential energy,
the vortices arrange themselves in various patterns, depending on the strength of the optical potential and the
vortex density. We outline a method to determine the phase diagram for arbitrary vortex filling factor. Using
this method, we discuss several filling factors explicitly. For increasing strength of the optical lattice, the
system exhibits a transition from the unpinned hexagonal lattice to a lattice structure where all the vortices are
pinned by the optical lattice. The geometry of this fully pinned vortex lattice depends on the filling factor and
is either square or triangular. For some filling factors there is an intermediate half-pinned phase where only half
of the vortices is pinned. We also consider the case of a two-component Bose-Einstein condensate, where the
possible coexistence of the above-mentioned phases further enriches the phase diagram. In addition, we
calculate the dispersion of the low-lying collective modes of the vortex lattice and find that, depending on the
structure of the ground state, they can be gapped or gapless. Moreover, in the half-pinned and fully pinned
phases, the collective mode dispersion is anisotropic. Possible experiments to probe the collective mode
spectrum, and in particular the gap, are suggested.
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I. INTRODUCTION

It has been known since the work of Onsagerf1g and
Feynmanf2g that a superfluid supports angular momentum
only through quantized vortices. Furthermore, following
Abrikosov’s prediction that vortices in type-II superconduct-
ors arrange themselves on a latticef3g, and its experimental
confirmationf4,5g, Tkachenko showed that vortex lines in a
rotating superfluid form a regular hexagonal lattice in the
absence of disorderf6g. Such an Abrikosov lattice, as it is
nowadays called, was indeed observed experimentallyf7,8g.
Tkachenko also predicted the vortex lattices to support
phonons, the so-called Tkachenko modesf9g.

With the first experimental realization of Bose-Einstein
condensation in ultracold dilute atomic gasesf10g, another
regime in the physics of neutral superfluids has become ac-
cessible, i.e., the weakly interacting regime. Following this
achievement, the same group created, for the first time, a
vortex in an atomic Bose-Einstein condensatef11g. Although
there has been some experimental interest in the equilibrium
and nonequilibrium behavior of a single vortex linef12–14g
since the observation of a Bose-Einstein condensate with
more than one vortexf15g, however, most of the experimen-
tal studies are focused on vortex latticesf16–18g. In particu-
lar, the dependence of the lowest Tkanchenko mode on the
rotation frequency has been measuredf19g, and is theoreti-
cally well understoodf20g.

One aspect that distinguishes the physics of vortices in
atomic Bose-Einstein condensates from superfluid helium

and superconductors is that in the latter systems the pinning
of vortices due to intrinsic disorder in the system plays an
important rolef21–27g. This, together with the discovery of
high-temperature superconductors, has led to many theoreti-
cal studies of the effects of pinning on the melting of the
vortex latticef28–31g. Furthermore, in the context of type-II
superconductivity, there has been a lot of interest in the ef-
fects of a periodic array of pinning centers on the ground
state of the vorticesf32–36g. In particular, it turns out that,
due to the competition between vortex interactions and pin-
ning, the system exhibits a rich ground state phase diagram,
as a function of the vortex density and the strength of the
pinning potentialf36g. However, since the pinning potential
in the case of vortices in type-II superconductors is known
only phenomenologically, a detailed comparison between
theory and experiment seems unfeasible.

Very recently, we have shown that a rotating Bose-
Einstein condensate in a so-called optical lattice is a very
attractive system to study the pinning of vortex lattices in a
superfluid f37g. Such an optical lattice is formed by laser
fields that trap the atoms using the dipole force. Recently, the
experimental control over the strength of the optical lattice
enabled Greineret al. f38g to experimentally explore the
Mott insulator to superfluid quantum phase transition
f39,40g. By rotating the optical lattice at the same frequency
of rotation as the Bose-Einstein condensate, the vortices ex-
perience a static pinning potential that is determined by the
optical lattice f37,41,42g. Such a corotating optical lattice
can be made by rotating holographic phase plates or ampli-
tude masksf43–46g. Since the strength of the optical lattice
determines the strength of the pinning potential, and the ro-
tation frequency controls the density of vortices, the phase
diagram can be studied in detail experimentally.

In Ref. f37g we have calculated the phase diagram for a
homogenous Bose-Einstein condensate with one vortex per
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unit cell of the optical lattice analytically, by means of a
variational method. It is the aim of this paper to extend these
calculations to other vortex filling factors and to the situation
of a two-component Bose-Einstein condensate. Furthermore,
we also study the collective modes of the pinned and un-
pinned vortex lattices. Complementary to our analytical
work, Puet al. f47g numerically studied a Bose-Einstein con-
densate in a corotating optical lattice with an additional har-
monic confining potential. The harmonic trapping potential
leads to finite-size effects which further enrich the phase dia-
gram of the system. Unfortunately, including an additional
harmonic potential in our variational calculations makes ana-
lytical results unfeasible. Therefore, we consider the homo-
geneous case, which brings out the physics of the competi-
tion between vortex interactions and pinning potential most
clearly. In Ref. f37g we studied both the case of a one-
dimensional optical lattice and the two-dimensional case. In
this paper we focus on the two-dimensional situation.

The paper is organized as follows. In Sec. II we derive the
pinning potential and vortex interaction energy. Using these
results, we calculate in Sec. III the energy of an arbitrary
vortex lattice in a periodic potential. This result is used to
determine the ground state phase diagram in Sec. IV for a
single-component Bose-Einstein condensate for various fill-
ing factors. The two-component case is discussed in Sec. V.
In Sec. VI we determine the dispersion of the low-lying col-
lective modes over the ground state. We end in Sec. VII with
our conclusions.

II. VORTEX INTERACTIONS AND POTENTIAL ENERGY

In this section we calculate the interaction energy of two
vortices, as well as the potential energy of a vortex in the
optical lattice, i.e., the pinning potential, by means of a varia-
tional ansatz. These results are needed later on to determine
the phase diagram.

A. Pinning potential

Since we assume the system to be at zero temperature
throughout the paper, the most convenient starting point is
the Hamiltonian functional which gives the total energy of
the system in terms of the macroscopic condensate wave
function Csxd, and reads

HfC* ,Cg =E dx C*sxdF−
"2¹2

2M
+

1

2
guCsxdu2

+ VOLsxd − mGCsxd. s1d

Here,M denotes the mass of one atom which interacts with
the other atoms via a two-body contact interaction of
strength g=4pas"

2/M, with as.0 the s-wave scattering
length. The two-dimensional optical lattice potential is given
by

VOLsxd = sERfsin2sqxd + sin2sqydg, s2d

with ER the recoil energy,q the wave number of the optical
lattice, and sù0 a dimensionless number indicating the

strength of the optical lattice. The chemical potential that
fixes the number of atoms in the condensate is given bym.

Throughout this paper we consider for simplicity a con-
densate with infinite extent in thex-y plane which is tightly
confined in thez direction by a harmonic trap with frequency
vz. This approach is motivated by the fact that a Bose-
Einstein condensate that is rotated around thez axis will
extend in thex-y plane due to the centrifugal force. Assum-
ing that modes in thez direction are frozen out, such that the
wave function is Gaussian in this direction, effectively leads
to a condensate thicknessdz;Îp" / sMvzd. These assump-
tions allow us to neglect the curvature of the vortex lines
along thez direction. Note also that we can safely omit the
term proportional to the external rotation frequency in Eq.
s1d, since we intend to work with a variational ansatz which
has a fixed vortex density, and, moreover, we assume that the
harmonic magnetic trapping potential approximately cancels
the centrifugal force.

We consider the system in the Thomas-Fermi limit where
the kinetic energy of the condensate atoms is neglected with
respect to their potential energy and mean-field interaction
energy. Minimizing the Hamiltonian of Eq.s1d in this limit,
the global density profile of the condensate without vortices
is given by

nTFsxd = uCsxdu2 = n − fVOLsxd − sERg/g, s3d

with n=fm−sERg /g the average density of the condensate.
As already mentioned, to find the potential energy of a

vortex in a Bose-Einstein condensate in an optical lattice, as
a function of its coordinatessux,uyd, we use a variational
ansatz for the condensate wave function. It is given by

Csxd = ÎnTFsxdQfux − uu/j − 1gexpfifsx,udg, s4d

with j=1/Î8pasn the healing length that sets the size of the
vortex core,fsx ,ud=arctanfsy−uyd / sx−uxdg the phase con-
figuration corresponding to one vortex, andQszd the unit
step function. For the above ansatz to be a good approxima-
tion, we have assumed that the vortex core is much smaller
then an optical lattice period,qj!1, and that the strength of
the potential is sufficiently weak,sER,m. The use of a unit
step function for the density profile of the vortices is justified
because the main contribution to the energy of the vortices is
due to the superfluid velocity pattern and not due to the
inhomogeneity of the condensate densityf48g.

Substituting the ansatz in Eq.s4d in the Hamiltonian in
Eq. s1d and integrating over the entirex-y plane gives the
total energy of the vortex in the optical lattice. This energy
diverges with the system size. However, we need to isolate
the finite, position-dependent contribution to the energy due
to the presence of the vortex, which is the only relevant
contribution for our purposes.

There are two position-dependent terms which contribute
significantly to the energy. The first one is largest and is
entirely due to the kinetic energy of the condensate. Neglect-
ing the effect of the Laplacian on the global density profile,
which is consistent with the Thomas-Fermi limit, we have
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Ukinsux,uyd = −
dzsER

8as
E dx dyF sin2sqxd + sin2sqyd

sx − uxd2 + sy − uyd2G .

s5d

The integral can be done by shifting the integration variables
to x=r cosu+ux andy=r sinu+uy. A little algebra yields

Ukinsux,uyd =
dzsER

8as
fcoss2quxd + coss2quydg

3E0
2pduE

j

` dr

2r
coss2qr cosud

−
dzsER

8as
fsins2quxd + sins2quydg

3E0
2pduE

j

` dr

2r
sins2qr sinud. s6d

When integrated over polar angle, the second part on the
right-hand side of this expression gives zero. The integral in
the remaining part can be further simplified by using a Jacobi
expansion and integrating out the polar angle

o
n=−`

`

s− 1dnE
j

` dr

2r
J2ns2qrdE

0

2p

du e2inu

= pE
j

` dr

r
J0s2rqd

; pQkinsqjd, s7d

whereJl is the lth-order Bessel function of the first kind.
The second vortex-position-dependent contribution to the

energy comes solely from the core. Let us consider the en-
ergy contribution

U = dzE d2x C*sxdFVOLsxd +
g

2
uCsxdu2 − mGCsxd. s8d

Alternatively, this term is written asU=E`−Ucoresud, where
E` is a divergent constant equal to the energy of the conden-
sate without a vortex andUcoresud the contribution of the
region excluded by the core of the vortex. Since the latter
depends on the vortex coordinates this contribution must be
taken into account, which gives

Ucoresud = − dzE
core

d2xFg

2
nTFsxdnTFsxd

+ fVOLsx − ud − mgnTFsxdG
=

dz

2g
E

core
d2xfm − VOLsx − udg2

. −
dzm

g
E

core
d2x VOLsx − ud + Oss2ER

2d. s9d

Performing the integral on a disk with radiusj we arrive at

the same form as in Eq.s6d. The only difference is the
prefactor, which depends onqj,

Qcoresqjd =
J1s2qjd

2qj
. s10d

Consistent with our previous remarks, this contribution of
the vortex core to the position-dependent energy is smaller
than the kinetic energy contribution. It adds to the latter
contribution given in Eq.s7d and hence we defineQ
;Qkin+Qcore. Putting things together, the potential energy of
a vortex described by the ansatz of Eq.s4d in a two-
dimensional optical lattice is given by1

Upinsud =
dz

8as
sERQsqjdfcoss2quxd + coss2quydg. s11d

It is clearly seen that the potential energy is minimal if the
vortices are located at the maxima of the optical potential.
This is expected, since at these maxima the condensate den-
sity, and hence the kinetic energy associated with the super-
fluid motion, is minimal. The expression in Eq.s11d is re-
garded as a pinning potential experienced by vortices in a
condensate loaded in a optical lattice.

B. Vortex interactions

The interaction energy of two vortices must be known
explicitly to calculate the ground-state structure of vortex
lattices. We calculate this interaction energy by using the
following ansatz for the condensate wave function:

Csxd = ÎnQsR− uxudQfux − uu/j − 1gQfux + uu/j − 1g

3expfifsx,ud + ifsx,− udg. s12d

This form is a generalization of the ansatz in Eq.s4d to the
case of two vortices in a disk-shaped condensate with radius
R and average densityn, oppositely displaced over a distance
uuu from the origin. The reason that we do not explicitly take
into account the spatial inhomogeneity of the condensate
density due to the optical lattice potential in the calculation
of the vortex interaction energy is that most of the vortices in
the vortex lattice are separated by more than one optical
lattice constant, such that the effect of a spatially varying
density profile on the vortex interactions is averaged out. In
the relevant limit where the healing length is small compared
to the system size, the only significant contribution comes
from the kinetic energy of the condensate. For simplicity we
place the vortices along thex axis, sux,uyd=sr /2 ,0d, which
leads for the energy of the system to

1See also Ref.f41g, which treats the limit of a small number of
condensate atoms, as opposed to the Thomas-Fermi regime we con-
sider here.
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Vsrd =
"2dzn

2M
E

0

2p

duE
0

R

dr r
− 64r2

r4 + 16r4 − 8r2r2 cos 2u

= 128p
"2dzn

2M
E

0

R

dr r
r2

16r4 − r4 sgns4r2 − r2d. s13d

Herer is the radial coordinate andu is the polar angle. The
effect of the condensate density profile is incorporated by
simply excluding the contribution of the vortex cores from
the expression in Eq.s13d such that

Vsrd =
64p"2dzn

M F−E
0

sr−jd/2

dr r
r2

16r4 − r4

+E
sr+jd/2

R

dr r
r2

16r4 − r4G
= −

p"2dzn

M
lim
R̃→`

lnF16r̃6 − 4r̃4 + 4r̃2 − 1

r̃4s16R̃4 − r̃4d
G , s14d

where we definedR̃;R/j andr̃ ; r /j and also took the limit

R̃→`. The latter result is divergent with increasing system
size. The finite, interaction energy of the two vortex configu-
ration is isolated by subtracting the divergent constant

sp"2dzn/MdlimR̃→` lnf1/R̃4g from the expression in Eq.s14d
and evaluating the limitR̃→`. The resulting expression
does not depend on the system size and behaves like

Vsrd = −
2p"2dzn

M
lnS r

j
D s15d

for r @j. This is the well-known long-range interaction po-
tential experienced by singly quantized vortices in two di-
mensionsf49g.

In the next section we will use the results for the vortex
pinning potential and the vortex interaction energy to calcu-
late the energy of a lattice of vortices.

III. ENERGY OF A VORTEX LATTICE IN A PERIODIC
POTENTIAL

In principle, to calculate the equilibrium positions of the
vortices, we have to minimize the total energy as a function
of the coordinates of the vortices. Clearly, for a large number
of vortices this is unfeasible. It is known, however, that in
the limit of strong pinning, the vortices form regular lattices
f32–36g. Therefore, to find the phase diagram of the system,
we minimize the energy of the system assuming that the
vortices form a regular lattice. This procedure neglects the
fact that for small pinning potential the hexagonal Abrikosov
vortex lattice is slightly distorted by the pinning potential
f36g.

To carry out the above minimization procedure, it is easi-
est to parametrize a unit cell of the vortex lattice for a given
filling factor n. The filling factor is defined as the number of
vortices per pinning center, i.e., per minima of the pinning
potential. In terms of the density of vortices it is equal ton
=nva

2, wherenv is the two-dimensional density of vortices
that is set by the rotation frequencyV asnv=MV / sp"d f48g,
anda=p /q is the optical lattice constant.

We consider commensurate filling factors smaller than 1,
i.e., n=1/k, with k a positive integer. All possible vortex
lattice unit cells corresponding to such commensurate vortex
lattices at a particular filling factor can be found by factoriz-
ing k in products lm, with l and m positive integers, and
arranging vortices on the sides of rectangles of size
la3ma, as shown in Fig. 1. Varying the vortex positions
along the sides of the rectangle, keeping the area of the unit
cell constant, gives all possible primitive commensurate lat-
tice structures for the vortex lattice. For a vortex lattice of
filling n this procedure is parametrized by

usa,b; l,md = aSÎ1 + albm al

bm Î1 + albm
DS lnx

mny
D ,

s16d

with ni PZ and 0øa, bø
1
2. Notice that the transformation

matrix in the above expression preserves the area of the unit
cell, since its determinant equals unity. This ensures that we
are considering lattice configurations with equal vortex den-
sity. The more familiar parameters of a unit cell of a two-
dimensional lattice, the anglew between the primitive lattice
vectors and the ratio of their lengths,k=L1/L2, are related to
a andb by

cosw

k
=

msal + bmdÎ1 + albm

lf1 + bmsal + bmdg
,

sinw

k
=

m

lf1 + bmsal + bmdg
. s17d

The interaction energyEint per unit cell as function ofw
andk for an infinite two-dimensional lattice of vortices sub-
ject to the logarithmic interaction potential of Eq.s15d was
calculated by Campbellet al. f50g. Cast in a dimensionless
form their result reads

FIG. 1. Two ways to parametrize the unit cell of a vortex lattice,
using parameterssal ,bmd and sw ,kd, with k=L1/L2. The relation
between those parametrizations is given by the expressions in Eq.
s17d. The grid indicates the pinning potential with lattice constanta.
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Ẽint ;
Eint

sp"2dzn/Md

=
p

6

sinw

k
− lnF2pSsinw

k
D1/2G − lnHP

j=1

` F1

− 2e−2p j usin wu/k cosS2p j
cosw

k
D + e−4p j usin wu/kGJ .

s18d

It is important to realize that the interaction energy per vor-
tex is divergent for an infinite vortex lattice, and that the
above expression gives the relative interaction energy for
configurations with equal vortex density. The absolute mini-
mum of the dimensionless interaction energy in Eq.s18d cor-
responds to a hexagonal vortex lattice structure, i.e., the
Abrikosov vortex lattice with l =m=Îk and al =bm
=Î1/Î3−1/2 or sw ,kd=sp /3 ,1d, and is equal to

Ẽint=−1.321 12. Note that this lattice is incommensurate with
the optical lattice.

The pinning energy per unit cell is found by substituting
Eq. s16d in Eq. s11d, summing over allnx andny, and divid-
ing the result by the number of unit cells,

Epinsa,b; l,md = lim
P→`

1

4P2 o
nx=−P

P

o
ny=−P

P

Upinfusa,b; l,mdg

= −
dz

8as
sERQsqjdfdbmPZ + dalPZg. s19d

This form of the pinning energy per unit cell is what we
expect on an infinite lattice. Only if the vortices form a lat-
tice that is commensurate with the optical lattice do they give
a nonzero contribution to the pinning energy. This is why we
consider only commensurate fillings, since we expect struc-
tural transitions at these fillings. Incommensurate vortex lat-
tices have zero potential energy per unit cell on average. For
nø1 there are three possible outcomes for the pinning en-
ergy in Eq. s19d: sid a phase in which all the vortices are
pinned by optical lattice maxima at Epin
=−sdz/4asdsERQsqjd, sii d a phase in which one-half of the
vortices are pinned atEpin=−sdz/8asdsERQsqjd, and siii d an
unpinned phase atEpin=0 for any vortex lattice that is in-
commensurate with the optical lattice. The precise geometry
of the unit cell of these vortex lattices is determined further
by minimization of the interaction energy in Eq.s18d. Of
course, the structure of the unpinned phase is always hexago-
nal, corresponding to the global minimum of the interaction
energy.

To end this section, we would like to point out that, since
the interaction energy of the vortex lattice is derived by sum-
ming the expression for the interaction energy of two vorti-
ces over all pairs of vortices, we have implicitly assumed
that the vortex density is so low that the vortex cores never
overlap, and that we are therefore allowed to neglect three-
vortex interactions, and interactions of higher order. A simi-
lar argument validates the derivation of the pinning energy of
the vortex lattice by summing the single-vortex pinning po-
tential over the number of vortices. In the numerical calcu-

lations of Puet al. f47g, these authors observed that for fill-
ing larger than 1 the vortices form pinned phases where pairs
of vortices are pinned, and hence two vortices get very close
together. Since our approximations break down in this case,
we study only phases with a filling factor smaller than 1.

IV. PHASE DIAGRAMS

The energy per unit cell of the vortex lattice, obtained by
adding the pinning energy of Eq.s19d and the interaction
energy of Eq. s18d, enables us to calculate the zero-
temperature phase diagram of the vortex lattice structure at a
certain filling. As already mentioned, we consider systems
with filling factor n=1/k with k a nonnegative integer larger
than 1.

The dimensionless energy per unit cell of the vortex lat-
tice reads

S 4as

mdz
DEsa,b; l,md = Ẽintsa,b; l,md −

1

2

sER

m
Qsqjd

3fdbmPZ + dalPZg, s20d

where we used thatm.gn. It is most convenient to mini-
mize this expression in the plane spanned by the dimension-
less parametersqj andsER/m. This leads to the three phases
discussed in the previous section. However, the presence of
the half-pinned vortex configuration depends on the filling
factor, implying different phase diagrams for even and oddk.
Since the structure of the lattice does not change continu-
ously, the phases are separated by a first-order transition.

In the case of evenk, the half-pinned lattice is absent,
since the pinning centers are distributed such that the mini-
mum energy configuration is always a fully pinned lattice.
The phase diagram thus contains two distinct phases: a fully
pinned vortex lattice and the hexagonal Abrikosov lattice.
The geometry of the fully pinned vortex lattice is determined
such that the interaction energy is minimalf32–36g.

If k is an odd integer, the half-pinned lattice is present in
the phase diagram if the pinning energy and the interaction
energy are of the same order. However, this phase exists only
if the intervortex distance and the optical lattice constant are
comparable in size.

In Ref. f37g we discussed the case of one vortex per op-
tical lattice unit cell, i.e.,n=1. We now discuss three distinct
examples in detail. The results are summarized in Fig. 2.

A. n= 1
2

For n= 1
2 the phase diagram contains two phases and is

depicted in Fig. 2sad. For weak pinning the vortices are not
pinned and form a hexagonal Abrikosov lattice. For strong
pinning all vortices are located on the minimum of the pin-
ning potential, and form a square lattice withsa ,bd= s0, 1

2
d

and sl ,md=s1,2d. Note that, as opposed to then=1 case
f37g, which also has a square and pinned vortex lattice in the
strong-pinning regime, in this case the vortex lattice is ro-
tated over an anglep /4 with respect to the optical lattice.
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B. n= 1
4

If there are four pinning centers per vortex, corresponding
to k=4, we find for large strength of the optical lattice a fully
pinned triangular vortex lattice2 with sa ,bd= s0, 1

4
d, l =2, and

m=2. The interaction energy per unit cell of the vortex lat-

tice of this configuration isẼint=−1.318 49. At small optical
lattice strength we find the hexagonal Abrikosov vortex lat-
tice. The phase boundary is given by

SsER

m
D

hexagonal pinned
=

0.010 57

Qsqjd
. s21d

It is important to note that, contrary to the cases ofn= 1
2 and

1 f37g, the geometry of the fully pinned vortex lattice is in
this case triangular. Since a fully pinned square lattice has
the same pinning energy as this triangular lattice, the inter-
action energy favors the latter. The phase diagram for this
filling is shown in Fig. 2sbd.

C. n= 1
5

At k=5 we find three phases. The result is depicted in Fig.
2scd. First, for large strength of the optical lattice we have a
fully pinned vortex lattice withsa ,bd= s 2

5 ,0d, l =5, m=1, and

interaction energyẼint=−1.310 55. At intermediate optical
lattice strengths we find a half-pinned phase withsa ,bd
= s 1

2 ,0d, l =5, andm=1. The interaction energy per unit cell

of this configuration equalsẼint=−1.318 49. At small lattice
strength we find again the hexagonal Abrikosov vortex lat-
tice. The boundaries between these phases are given by

SsER

m
D

hexagonal/half pinned
=

0.005 26

Qsqjd
,

s22d

SsER

m
D

half pinned/pinned
=

0.015 88

Qsqjd
.

Similar to then= 1
2 case, we find that the fully pinned vortex

lattice has a square geometry, and is now rotated over an
angle tan−1s 1

2
d with respect to the optical lattice. Generally, if

the fully pinned vortex lattice has a square geometry, then for
filling factor n=1/sk1

2+k2
2d, with k1 andk2 integer, the fully

pinned vortex lattice will be rotated over an angle
tan−1sk2/k1d with respect to the optical lattice.

Contrary to the above-mentioned filling factors, but simi-
lar to then=1 casef37g, there is an intermediate triangular
vortex lattice, where half of the vortices are pinned.

V. PINNING OF VORTICES IN TWO-COMPONENT
CONDENSATES

In this section we study the influence of a two-
dimensional optical potential on vortex lattices in a mixture
of Bose-Einstein condensates of two different species. Our
results also apply to a Bose-Einstein condensate that consists
of two hyperfine components, provided the number of atoms
in each component is conserved. Along the lines of Secs.
II–IV we calculate the ground-state phase diagram for two
coupled condensates each containing a vortex lattice at fill-
ing ni =1 with the optical potential. Note that the fact that we
take the filling factor to be the same in both species implies
that the masses of both species are approximately equal.

A system of two coupled Bose-Einstein condensates is
described by the following Hamiltonian:

2Apart from breaking the translational symmetry, such a triangular
vortex lattice also breaks a discrete symmetry, because there are
several distinct possibilities to form the triangular lattice configura-
tion. In this particular case the discrete symmetry isZ4. This addi-
tional symmetry breaking implies the existence of domain walls
between triangular vortex lattices that are oriented differently. We
do not consider such configurations here.

FIG. 2. Vortex phase diagram of a Bose-Einstein condensate in
a two-dimensional optical square lattice, for three different filling
factorsn= sad 1/2, sbd 1/4, andscd 1/5. For a weak pinning poten-
tial the vortex lattice structure is always the hexagonal Abrikosov
lattice sABd. The insets indicate the vortex lattice structure for
stronger pinning potential. The black dots indicate the vortices,
whereas the square grid indicates the pinning potential.
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H = o
i=1,2

E dx Ci
*F− "2¹2

2Mi
+ VOLsxd − miGCi

+E dxF1

2
g1uC1u4 +

1

2
g2uC2u4 + g12uC1u2uC2u2G ,

s23d

with gi =4p"2ai /Mi and g12=2p"2a12/Mij . Here a12 is the
scattering length between unlike species and the reduced
mass is given byMij =MiMj / sMi +Mjd.

In the absence of the optical potential, Mueller and Ho
f51g and Kasamatsuet al. f52g theoretically predicted smooth
transitions between hexagonal lattices in both components at
small sintraspeciesd interactions and interlaced square vortex
lattices at larger interaction. These square lattices where ob-
served very recently by Schweikhardet al. f53g. However,
the above-mentioned transition is caused by the fact that the
interaction energy is minimized if the overall density is as
smooth as possible. Since we take a step function for the
density profile of the vortex, this density effect is not in-
cluded in our calculations. Therefore our results only make
sense in the regime where this density effect is dominated by
the optical potential, i.e., in the strong-pinning limit. To en-
sure this, the requirementssER/midQsqjid@g12/gi must be
satisfied. This implies that we must have thatgi @g12, since
we assumed thatsER,mi. It must be stressed that this is
quite restricting as at the present day there is no experimental
atomic system known which meet these requirements. How-
ever, one might expect that near an interspecies Feshbach
resonance this regime of parameters is realizable. Therefore,
we study the fully pinned and half-pinned lattices and the
phase transition between them.

A nonrotating two-component condensate phase separates
if g12.Îg1g2 f54,55g. The condensates mutually exclude
each other, even in the absence of external potentialsf56g or
with rotation f52g. The vortex ground state in the latter case
will not be given by a regular lattice, in general. In our cal-
culations we restrict ourself to the regime where the system
does not phase separate. In this regime, the coupling param-
eters satisfygi .0 andg1g2.g12

2 , which falls safely within
the approximation discussed above. We define the dimen-

sionless parameterx2;g12
2 /g1g2, for which these criteria im-

ply 0,x2,1.
Solving the coupled equations for the condensate wave

functions, derived from the Hamiltonian of Eq.s23d in the
Thomas-Fermi approximation, leads to the following density
profile in componenti:

nTF
i sr d = uCiu2 =

1

gi

fmi − VOLsr dg
1 − x2 +

1

g12

fm j − VOLsr dg
1 − 1/x2 , j Þ i .

s24d

We use the variational ansatz for the condensate wave func-
tion containing a vortex in componenti,

Cisxd = ÎnTF
i sxdQfux − uu/ji − 1gexpfifisx,udg, s25d

with ji =1/Î8paini and ni =smi −sERd /gi. Furthermore, we
assume that vortices in different components do not interact.
As explained before, in particular we neglect the effect of the
density profile caused by a vortex in one component on the
vortices in the other component, which, in the absence of an
optical potential, leads to the structural transitions discussed
by Mueller and Hof51g and Kasamatsuet al. f52g. Within
each component, the vortex interactions are logarithmic, as
derived in Sec. II B.

The pinning potential which is experienced by the vortex
can be calculated along the lines of Sec. II A. The first con-
tribution, coming from the kinetic energy term of the Hamil-
tonian in Eq.s23d, is equal to

Ukin
i sud =

dz

8ai
sERQkinsqjidGisg1,g2,g12d

3fcoss2quxd + coss2quydg, s26d

with Qkin given by Eq.s7d. The difference with the single-
component case is the appearance of the factor

Gisg1,g2,g12d =
g12 − gix

2

g12s1 − x2d
. s27d

This factor is completely dependent on the various interac-
tion strengths. The other significantsposition-dependentd
contribution, coming from the vortex core, involves more
work,

Ucore
i sud = − dzE

core
d2xF1

2
giuCiu4 + sVOL − miduCiu2 +

1

2
g12uC1u2uC2u2G

= − dzE
core

d2xHgi

2
F smi − VOLd2

gi
2s1 − x2d2 +

sm j − VOLd2

g12
2 s1 − 1/x2d2 + 2

smi − VOLdsm j − VOLd
gig12s1 − x2ds1 − 1/x2dG

+ FVOL − mi +
g12

2
S sm j − VOLd

gjs1 − x2d
+

smi − VOLd
g12s1 − 1/x2dDG 3 F smi − VOLd

gis1 − x2d
+

sm j − VOLd
g12s1 − 1/x2dGJ

= −
dz

gi

1

x2 − 1
Fg12smi + m jd

2gj
− miGE

core
d2x VOLsx − ud + Oss2ER

2d. s28d
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If we assume thatmi <m j we find a contribution similar to
Eq. s26d. The prefactor in this case is given byQcoresqjd
which is defined in Eq.s10d. The total pinning potential ex-
perienced by a vortex in componenti due to the optical lat-
tice is equal to

Upin
i sud =

dz

8ai
sERfQkinsqjid + QcoresqjidgGisg1,g2,g12d

3fcoss2quxd + coss2quydg. s29d

This energy is dependent on the ratio of the coupling param-
eters. The pinning energy is minimized on lattice maxima in
both components in the regime where it is the dominant en-
ergy scale. Therefore, vortices in both components tend to be
on the same position.

In order to find the vortex phase diagram we minimize the
interaction and pinning energy in each component, as in Sec.
IV. We assumesagaind mi <m j =m. This impliesji <j j =j. As
mentioned before, we are only interested in lattice types
which are fully or half pinned. The phase boundary between
the fully and half pinned vortex latticesscommensurable
with the optical latticed in each component is given by

SsER

m
D

i
=

0.014 94

QsqjdGisg1,g2,g12d
. s30d

To find all possible lattice types in the two-component sys-
tem it is most convenient to parametrize the coupling param-
eters byg1=kg12 sinsgd and g2=kg12 cossgd. By varying g
one scans along a circle segment in thesg1,g2d plane. The
non-phase-separated regime in terms of the new parameters
is given byk.Î2 andg−,g,g+ with

g± = arccosFÎ1

2
S1 ±

Îk4 − 4

k2 DG . s31d

We find that the phase diagram contains four different vortex
lattices. In Fig. 3 the phase diagram and the lattice geometry
are displayed forqj=0.05 andk=100. Notice that the two-
component phase diagram has a straightforward interpreta-
tion in terms of coexistence of phases found in the single-
component case. For strong pinning the vortex lattices are
both fully pinned. For the filling under considerationsn=1d
the vortices in both components therefore form a square lat-
tice. Depending on the relative strength of the interaction,
determined by the parameterg, the vortex lattice in one of
the components will change first to the half-pinned triangular
geometry, as one lowers the strength of the optical potential.
For sufficiently weak pinning potential both vortex lattices
assume this structure.

VI. COLLECTIVE MODES

In this section we calculate the dispersion of the collective
modes of the pinned vortex lattices. In principle, this requires
the calculation of the energy of the system for small dis-
placementsusr id of the vortices from their equilibrium posi-
tions r i ; r ixx̂+r iyŷ. In first instance, the energy of the system
is then given by

Efug =
dzsERQsqjd

8as
o

i

„cosh2qfr ix + uxsr idgj + cosh2qfr iy

+ uysr idgj… −
p"2dzn

M
o
iÞ j

lnU r i + usr id − r j − usr jd
j

U .

s32d

We perform a Fourier transform

usr id =
1

ÎNxNy
o
k

uskdeik·r i , s33d

whereNa is the number of vortices along thea direction of
the vortex lattice, and the momentum sum is restricted over
valueska=2pna /La in the first Brillouin zone, wherena is
an integer andLa is the size of the vortex lattice in thea
direction. Note that throughout this section we use greek
symbols to indicate two-dimensional Cartesian components,
i.e., a ,bP hx,yj. We also sum over repeated greek indices.

We expect that after this Fourier transformation the en-
ergy of the vortex lattice for small displacements will, up to
an irrelevant constant, be given by

Efug =
1

2o
k

Dabskduas− kdubskd, s34d

where the so-called dynamical matrix is the sum of three
contributions

Dabskd = Dab
ELskd + Dab

LRskd + Dab
OLskd. s35d

The first contributionDab
ELskd takes into account the interac-

tion between neighboring vortices and follows from elastic-
ity theory. Although the elastic constants that will enter in the
expression forDab

ELskd can in principle be calculated from the
interaction energy in Eq.s32d, such a calculation is beyond

FIG. 3. Vortex phase diagram of a rotating two-component con-
densate in the presence of an optical lattice, at commensurate fill-
ing, ni =1. The phase diagram is plotted as a function of the dimen-
sionless parameterg=arctansg1/g2d. Black dots and circles
represent vortices in different components. The dashed lines repre-
sent the pinning potential. We tookk=100 andqj=0.05 which
implies Qs0.05d<3.612.
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the scope of this paper, and we will adopt a more phenom-
enological point of view and write down the most general
form for Dab

ELskd allowed by symmetry arguments, for each
lattice under considerationf57g. The second contribution

Dab
LRskd =

8p2"2dzn

AM

kakb

k2 + l−2 , s36d

whereA is the area of the unit cell of the vortex lattice, is
independent of the structure of the lattice and follows from
the long-range nature of the logarithmic interactions, which
has to be taken into account separatelyf58–60g. Note that we
have explicitly included a finite rangel of the logarithmic
interactions, to ensure thatDab

LR→0 ask→0. After taking the
long-wavelength limit, we can safely takel→0. The final
contributionDab

OLskd is due to the optical lattice.
The dispersion of the collective modes is determined by

putting the determinant of the matrix

Mabsk,vd = Dabskd − eab4pindz"v, s37d

equal to zero. Here,eab is the antisymmetric Levi-Cevità
tensor in two dimensions, which takes into account the Euler
dynamics of the vorticesf48,49g.

We will now calculate the dynamical matrix for each type
of vortex lattice considered in the previous section, i.e., for
the hexagonal, half-pinned, and fully pinned vortex lattices,
in the long-wavelength limit, and use these results to calcu-
late the phonon spectrum of the vortex lattice.

A. Hexagonal vortex lattice

For a hexagonal vortex lattice we have thatf57g

Dab
ELskd = KHkakb + mHdabk2, s38d

whereKH is the bulk modulus, andmH is the shear modulus
of the hexagonal vortex lattice. Using this result together
with Eq. s36d, we find for the frequency of the collective
modes in the absence of an optical lattice that

"vk =
k

4pndz
ÎmHF8p2"2dzn

av
2M

+ sKH + mHdk2G . s39d

For large wavelengths we have that"vk .cTk, where the
sound velocity of the so-called Tkachenko waves is given by

cT =
1

4pndz
Î8p2mH"2dzn

av
2M

. s40d

We could now fix the value for the shear modulus of the
vortex latticemH by demanding that the Tkachenko sound
velocity is equal toÎ"V / s4Md, the result known from the
hydrodynamic theory of a vortex latticef9,61g. This would,
however, not be consistent, since the value formH should
follow from the expression for the energy of the vortex lat-
tice in Eq. s32d, and may lead to a different sound velocity
due to the variational approximations we have made in the
description of the vortex lattice. Note that is crucial to take
into account the long-range interactions of the vortices by
means of the dynamical matrix in Eq.s36d to get a linear
dispersion at long wavelengths, since an omission of this part

in the dynamical matrix would lead to a quadratic dispersion.
Moreover, we would like to point out that due to the fact that
vortices are described by Euler dynamics we find only one
mode, instead of two modes for the case of a lattice of par-
ticles that obey Newtonian dynamics.

The polarization of the vortex lattice phonons is deter-
mined by the eigenvector of the matrix in Eq.s37d, corre-
sponding to the eigenfrequency in Eq.s39d. Generally, the
displacements are given byusr i ,td=uk,0e

ik·r i−ivkt, whereuk,0

is the eigenvector. For a wave in they direction we have that

uk,0 ~ 1 if8p2"2dzn/av
2M + ky

2g

ky
ÎmHf8p2"2dzn/av

2M + sKH + mHdk2g
1

2
< 1 i

mHky
Î8p2mH"2dzn

av
2M

1
2 , s41d

which shows that the vortices move on an ellipse with the
long axis perpendicular to the direction of propagation. In
the limit k →0, the wave is almost transverse.

The translation symmetry of the system is broken explic-
itly in the presence of an optical lattice. The collective modes
therefore acquire a gap, i.e., there is a minimum amount of
energy required to excite a phonon. Considering the part of
the energy of Eq.s32d which corresponds to the pinning
energy of the vortices and expanding it, we have, up to an
irrelevant constant,

EOLfug = − 2q2dzsERQsqjd
8as

o
k,k8

Huxskduxsk8do
j

cosf2qrjxg

3eisk+k8d·r j + uyskduysk8do
j

cosf2qrjygeisk+k8d·r jJ ,

s42d

with the positions of vortices in the hexagonal lattice given
by

r i = avÎ 2
Î3
FSix +

1

2
iyDx̂ +

1

2
Î3iyŷG . s43d

Summing over these lattice coordinates in Eq.s42d gives
zero. This is in contradiction with the fact, that on symmetry
grounds we expect a finite gap for the collective modes. To
overcome this problem we must take into account that the
real unpinned vortex ground state in a weak periodic pinning
potential is a slightly distorted hexagonal latticef36g. This
comes about because the periodic potential exerts a small net
force on the vortices arranged in the hexagonal lattice. The
small distortion of the vortex positions is a modulation
around the equilibrium of the hexagonal latticer i ° r i
+Rsr id. Following Pogosovet al. f36g we find for a square
two-dimensional periodic potential
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Rasr id =
sER

2qmHA

dz

8as
Qsqjdsinf2qriag. s44d

The modulation of the vortex coordinates around the posi-
tions of the regular hexagonal lattice involves a factorh
=sER/mHA. To keep the displacements small, the condition
h!1 must be satisfied.

Summing over the displaced hexagonal vortex lattice in
Eq. s42d indeed leads to a nonzero energy gap. Numerical
evaluation of Eq.s42d on a large lattice gives a contribution
to the dynamical matrix which is roughly linear inh,

Dab
OL < 0.5hsERFqdzQsqjd

4as
G2

dab, h ! 1. s45d

Including this in the calculation of the collective modes, we
find

"vk =
1

4pndz
F0.5hsERSqdzQsqjd

4as
D2

+ mHk2G1/2

3 F8p2"2dzn

av
2M

+ 0.5hsERSqdzQsqjd
4as

D2

+ sKH + mHdk2G1/2

. s46d

The gap takes the form

"v0 <
0.5hsER

4pndz
FqdzQsqjd

4as
G2

. s47d

B. Half-pinned vortex lattice

In the case of the half-pinned vortex lattice, which is al-
ways triangular, the dynamical matrix that follows from elas-
ticity theory is given byf57g

Dab
ELskd = KTkakb + mTdabk2 + kTs1 − dabdkakb + dmTtab

z kakb,

s48d

whereKT is the bulk modulus of the triangular vortex lattice,
andkT andmT denote the Lamé constants. For a square lat-
tice we have that the parameterdmT is equal to zero, as we
will see below. In the above expressiontab

z denotes the Pauli
matrix.

To find the contribution due to the optical lattice, we con-
sider specifically the half-pinned case at fillingn=1/5, as
shown in Fig. 2. We parametrize the equilibrium position of
the vortices as

r i =
5

2
ixax̂+ 2F1 − s− 1dix

4
Gaŷ+ 2iyaŷ. s49d

With the use of this parametrization we find that the energy
of the vortex lattice due to the pinning of the optical lattice
is, for small displacementsusr id from the equilibrium posi-
tions, given by

EOLfug =
dzsERQsqjd

8as
o

i

„cosh2qfr ix + uxsr idg + pj

+ cosh2qfr iy + uysr idg + pj…

.
dzsERq2Qsqjd

4as
Fo

i

s− 1dix+1ux
2sr id + uy

2sr idG ,

s50d

where we have omitted an irrelevant constant. Note that we
have translated the optical lattice potential to ensure that
there is a vortex at the origin, consistent with the parametri-
zation in Eq.s49d. Using that

o
i

eik·r i = NxNydk,0, s51d

we find after a Fourier transform in the first instance that

EOLfug =
dzsERq2Qsqjd

4as
o
k

3Fo
i

o
k8

s− 1dixeisk+k8d·r iuxskduxsk8d

+ uyskduys− kdG . s52d

The sumix in the second term of this equation is evaluated
by splitting it into a sum overix even andix odd. If we denote
k +k8=s2pnx/Lx,2pny/Lyd, we have that

o
i

s− 1dix+1eisk+k8d·r i

= − o
ix,iy

s− 1dixe2pinxix/Nx+2piny/Nyhf1−s− 1dixg/4+iyj

= − Nydny,0Fo
p

e2pinxs2pd/Nx − o
l

e2pinxs2p+1d/Nx−piny/NyG
= − Nxdnx,0

Nydny,0F1

2
−

1

2
e2pinx/Nx−piny/NyG . s53d

With the use of this result we have that

EOLfug =
dzsERq2Qsqjd

4as
o
k

uyskduys− kd

;
1

2o
k

Dab
OLskduaskdubs− kd, s54d

so that the contribution to the dynamical matrix due to the
optical lattice is given by3

Dab
OLskd =

dzsERq2Qsqjd
2as

da,ydab. s55d

With the above results, we find that the collective mode
dispersion is given by

3Note that if we rotate the vortex lattice over an anglep /4, we
would find that the dynamical matrix is proportional toda,x instead
of da,y. sSee also footnote 2.d
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s4pndz"vkd2

= mT
2k4 + mT

2k2SKTk2 +
8p2"2dzn

av
2M

D − kTF16p2"2dzn

av
2M

+ s2KT + kTdk2Gkx
2ky

2

k2 −
1

4
dmT

2kx
2ky

2 + mTdmTk2skx
2 − ky

2d

+
dzsERq2Qsqjd

2as
Fkx

2SKT + mT −
dmT

2
+

8p2"2dzn

av
2Mk2 D

+ mTky
2G . s56d

Interestingly, this dispersion is gapless, i.e.,"v0=0. The ei-
genvector corresponding to this eigenfrequency is given by
s1,0d, and so the displacement of the vortices is along thex
axis. Physically, this is understood because it does not cost
any energy to uniformly displace all the vortices in thex
direction when the vortices are forming a half-pinned lattice
with the geometry shown in Fig. 2.sSee again footnotes 2
and 3.d This comes about because under a uniform transla-
tion of the vortices in thex direction, half of the vortices
move away from an energy minimum and therefore increase
their energy, the other half moves downhill from an energy
saddle point, precisely compensating this increase.

C. Fully pinned vortex lattice

The structure of the fully pinned vortex lattice at certain
filling is triangular, in general. Therefore, the contribution to
the dynamical matrix due to the elasticity of the vortex lat-
tice takes the form of Eq.s48d with elastic constantsKP, mP,
kP, anddmP. In the special cases for which the fully pinned
vortex lattice has a square structure, we have thatdmP=0.
Since all the vortices are positioned at the minimum of the
pinning potential, the contribution of the optical lattice to the
dynamical matrix is constant and diagonal, and given by

Dab
OLskd =

dzsERq2Qsqjd
2as

dab. s57d

Hence, we find for the phonon dispersion

s4pndz"vkd2 = SmPk2 +
dzsERq2Qsqjd

2as
D2

+ SmPk2 +
dzsERq2Qsqjd

2as
D

3FKPk2 +
8p2"2dzn

av
2Mk2 +

dmP

2
skx

2 − ky
2dG

+ FdmP
2

4
− kP

2 − 2kPSKP +
8p2"2dzn

av
2Mk2 DGkx

2ky
2.

s58d

At zero momentum we find for the gap4

"v0 =
q2sERQsqjd

8nas
, s59d

corresponding to an eigenvector~s1,id. From this eigenvec-
tor we therefore conclude that the zero-momentum mode
physically corresponds to a precession of the vortices around
the maxima of the optical lattice potential, as expected.

D. The gap

If one tunes the strength of the periodic potential, the
vortex lattice changes, depending on the fillingn. The energy
gap of the collective modes is different in the three vortex
lattice phases. To summarize the results on the gap, we have

"v0

=50.5h
dz

8as
fqjQsqjdg2sER, hexagonal vortex lattice,

0, half-pinned vortex lattice,

sqjd2QsqjdsER/p, fully pinned vortex lattice.
6

s60d

It is clear that the gap in the hexagonal phase is much
smaller than the gap in the fully pinned vortex phase. This is
because in the hexagonal phase, the nonzero contribution
comes entirely from the displacements of the vortices from
the equilibrium positions of the hexagonal lattice. The gap is
then of second order insER, sinceh~sER.

For the half-pinned and fully pinned vortex lattices, there
is no second-order contribution to the gap. This is because in
these phases the vortices are located on minima and saddle
points of the pinning potential. The fact that the energy gap
in the half-pinned phases is zero relies on the fact that we
consider infinite vortex lattices. In a trapped system there
will be a gap to collective excitations, that becomes smaller
with increasing system size.

In Fig. 4 we display the gap as a function of the dimen-
sionless parametersER/m for the casesn=1/4 and 1/5
which we have considered in this paper. It is clearly seen that
the gap has a discontinuity ifsER/m is tuned through a phase
boundary.5 It must be emphasized that in the Abrikosov
phase only the qualitative features of the behavior of the gap
can be deduced from Fig. 4. This is because the gap then
depends on the shear modulusmH which is a phenomeno-
logical constant in our calculations.

Finally, we would like to comment on the experimental
implications of the collective mode spectra we have calcu-
lated. Although our calculations contain phenomenological
parameters, there are nonetheless some qualitative predic-
tions that could be tested experimentally. First of all, for the
half-pinned and fully pinned vortex lattices the collective

4Note that in Eq.s10d of Ref. f37g there should be an additional
factor of 2p.

5We obtained this estimate using the expression for the shear
modulus following from hydrodynamic theory. We haveeshear

=mHA=mH
3DdzA=sn"V /8ddzp,2, with ,2=" /MV. The ratio be-

tween the chemical potentialm=gn and eshear is constant,eshear/m
=dz/32as. We then useas<5 nm for 87Rb anddz<10 mm to find
h=sER/eshear=0.64ssER/md.
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mode spectrum is anisotropic, i.e., the frequency of the col-
lective modes depends on the direction of propagation. By
performing the same experiment as Coddingtonet al. f19g, in
which the collective modes are excited by a perturbation at
the center of the condensate, one could probe this anisotropy.
Another prediction of our theory is that the collective modes
are in general gapped in the presence of the vortex lattice. An
exception is the triangular half-pinned vortex lattice, which
has a gapless mode, corresponding to the translation of the
vortices in one direction.sFor the illustration in Fig. 2 this
direction is thex direction.d For the propagation of the modes
in the other direction there will be a gap. This strong aniso-
tropy should be experimentally observable by the above-
mentioned experiment. The excitations of the fully pinned
vortex lattice are also gapped. As mentioned before, the zero-
momentum mode corresponds in this case to a simultaneous
in-phase precession of all the vortices around the maxima of
the optical potential. This mode could be excited by slightly
displacing the optical lattice. Because this zero-momentum
mode of the vortex lattice does not have shear or compres-
sion, it does not depend on the elasticity constants, which are
phenomenological in our calculation. Hence Eq.s60d should
give an accurate prediction for the gap in this case, which is
directly experimentally verifiable.

VII. CONCLUSIONS

In this paper, we have presented a method to determine
the ground-state phase diagram of vortices in a Bose-
Einstein condensate in an optical lattice, thereby extending
previous workf37g to an arbitrary number of vortices per
unit cell of the optical lattice, the so-called filling factor. The
vortices arrange themselves in various patterns, depending
on filling factor and the optical lattice strength. Generally, we
find three vortex phases:sid a fully pinned phase in which
each vortex is pinned to a maximum of the periodic poten-
tial, sii d a phase in which half of the vortices are pinned to

maxima of the optical lattice, andsiii d a phase in which none
of the vortices are pinned, and the structure of the vortex
lattice is determined by the interactions. The structure of the
unpinned phase is always hexagonal, whereas the structure
of the half-pinned phase is triangular. We have discussed
several distinct filling factors explicitly, to demonstrate the
above generic features. We calculated the dispersion of low-
lying phonon modes of the vortex lattice for each of these
phases. In the case of the half-pinned and fully pinned vortex
lattice we find that the collective mode spectrum is aniso-
tropic. Furthermore, in the unpinned and fully pinned phase
the collective modes are gapped. Both features should be
observable experimentally, and we have outlined possible ex-
periments to probe the collective modes.

There are several interesting directions for further inves-
tigation of the influence of a periodic potential on the physics
of rotating Bose-Einstein condensates. For instance, it would
be interesting to consider more strongly correlated regimes
that occur at fast rotationf62g, and to study the effects of the
periodic optical potential on the melting of the vortex lattice
f60g. One would expect that in this regime the effect of quan-
tum fluctuations, i.e., quantum tunneling of the vortices
through the potential barriers of the pinning potential, be-
comes important. Aspects of this were studied by Sørensenet
al. f63g, who showed that for ultralow particle and vortex
density the ground state of rotating bosons in a periodic po-
tential is a Laughlin liquid. It would be challenging to inves-
tigate the system with high particle and vortex density and a
large number of vortices per boson.

Yet another interesting possibility for future work is to
study a rotating spinor condensate in the presence of a peri-
odic potential. Rotating spinor condensates are expected to
form spin texturessSkyrmionsd f64,65g and regular lattices
thereoff66,67g, analogous to the formation of vortices in a
single-component condensate. The pinning effects in each
spin component of the condensate caused by the periodic
potential will further enrich the phase diagram in these sys-
tems.

FIG. 4. The energy gap to the collective
modes of a vortex lattice in the presence of a
periodic optical potential as function of the lattice
strength, forn=1/4 sopen circlesd and 1/5sfilled
circlesd. We usedh=0.64ssER/md ssee footnote
5d andqj=0.05.
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