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Pinning and collective modes of a vortex lattice in a Bose-Einstein condensate
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We consider the ground state of vortices in a rotating Bose-Einstein condensate that is loaded in a corotating
two-dimensional optical lattice. Due to the competition between vortex interactions and their potential energy,
the vortices arrange themselves in various patterns, depending on the strength of the optical potential and the
vortex density. We outline a method to determine the phase diagram for arbitrary vortex filling factor. Using
this method, we discuss several filling factors explicitly. For increasing strength of the optical lattice, the
system exhibits a transition from the unpinned hexagonal lattice to a lattice structure where all the vortices are
pinned by the optical lattice. The geometry of this fully pinned vortex lattice depends on the filling factor and
is either square or triangular. For some filling factors there is an intermediate half-pinned phase where only half
of the vortices is pinned. We also consider the case of a two-component Bose-Einstein condensate, where the
possible coexistence of the above-mentioned phases further enriches the phase diagram. In addition, we
calculate the dispersion of the low-lying collective modes of the vortex lattice and find that, depending on the
structure of the ground state, they can be gapped or gapless. Moreover, in the half-pinned and fully pinned
phases, the collective mode dispersion is anisotropic. Possible experiments to probe the collective mode
spectrum, and in particular the gap, are suggested.
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[. INTRODUCTION and superconductors is that in the latter systems the pinning
i of vortices due to intrinsic disorder in the system plays an
It has been known since the work of Onsagigt and  important role[21-27. This, together with the discovery of
Feynman[2] that a superfluid supports angular momentumhigh-temperature superconductors, has led to many theoreti-
only through quantized vortices. Furthermore, followingcal studies of the effects of pinning on the melting of the
Abrikosov’s prediction that vortices in type-Il superconduct-vortex lattice[28—31]. Furthermore, in the context of type-I|
ors arrange themselves on a lattj&, and its experimental superconductivity, there has been a lot of interest in the ef-
confirmation[4,5], Tkachenko showed that vortex lines in a fects of a periodic array of pinning centers on the ground
rotating superfluid form a regular hexagonal lattice in thestate of the vortice§32—36. In particular, it turns out that,
absence of disordd6]. Such an Abrikosov lattice, as it is due to the competition between vortex interactions and pin-
nowadays called, was indeed observed experimerital8}. ning, the system exhibits a rich glround state phase diagram,
Tkachenko also predicted the vortex lattices to supporgs @ function of the vortex density and the strength of the
phononS, the so-called Tkachenko mot&h plnnlng pOtentla[36]. quever, since the pinning p_otentlal
With the first experimental realization of Bose-Einsteinin the case of vortices in type-Il superconductors is known
condensation in ultracold dilute atomic gagas], another ONly phenomenologically, a detailed comparison between
regime in the physics of neutral superfluids has become adh€ory and experiment seems unfeasible. .
cessible, i.e., the weakly interacting regime. Following this_ Very recently, we have shown that a rotating Bose-

achievement, the same group created, for the first time, F'Stein condensate in a so-called optical lattice is a very
' ' ' attractive system to study the pinning of vortex lattices in a

superfluid[37]. Such an optical lattice is formed by laser
"Relds that trap the atoms using the dipole force. Recently, the
xperimental control over the strength of the optical lattice
nabled Greineet al. [38] to experimentally explore the
Mott insulator to superfluid quantum phase transition
39,40. By rotating the optical lattice at the same frequency
rotation as the Bose-Einstein condensate, the vortices ex-

and nonequilibrium behavior of a single vortex lif2—14
since the observation of a Bose-Einstein condensate wit
more than one vorteKl5], however, most of the experimen-
tal studies are focused on vortex latti¢¢6—18. In particu-

lar, the dependence of the lowest Tkanchenko mode on th

rotation frequency has been measuf€l], and is theoreti- - oience a static pinning potential that is determined by the
cally well understooc[zo]_. . . _ .optical lattice[37,41,42. Such a corotating optical lattice

Of?e aspect _that .dIStII’]QUISheS the physics of VOrtices s e made by rotating holographic phase plates or ampli-
atomic Bose-Einstein condensates from superfluid helium, o mask$43-46. Since the strength of the optical lattice

determines the strength of the pinning potential, and the ro-

tation frequency controls the density of vortices, the phase

*Electronic address: jwr@science.uva.nl diagram can be studied in detail experimentally.
"Electronic address: duine@physics.utexas.edu; URL: http:// In Ref.[37] we have calculated the phase diagram for a
www.ph.utexas.edtduine homogenous Bose-Einstein condensate with one vortex per
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unit cell of the optical lattice analytically, by means of a strength of the optical lattice. The chemical potential that
variational method. It is the aim of this paper to extend thesdixes the number of atoms in the condensate is givemby
calculations to other vortex filling factors and to the situation ~ Throughout this paper we consider for simplicity a con-
of a two-component Bose-Einstein condensate. Furthermoreensate with infinite extent in they plane which is tightly

we also study the collective modes of the pinned and uneonfined in thez direction by a harmonic trap with frequency
pinned vortex lattices. Complementary to our analyticalw,. This approach is motivated by the fact that a Bose-
work, Puet al.[47] numerically studied a Bose-Einstein con- Einstein condensate that is rotated around zhaxis will
densate in a corotating optical lattice with an additional harextend in thex-y plane due to the centrifugal force. Assum-
monic confining potential. The harmonic trapping potentialing that modes in the direction are frozen out, such that the
leads to finite-size effects which further enrich the phase diawave function is Gaussian in this direction, effectively leads
gram of the system. Unfortunately, including an additionalto a condensate thickness= /7%/(Mw,). These assump-
harmonic potential in our variational calculations makes anations allow us to neglect the curvature of the vortex lines
lytical results unfeasible. Therefore, we consider the homoalong thez direction. Note also that we can safely omit the
geneous case, which brings out the physics of the competierm proportional to the external rotation frequency in Eq.
tion between vortex interactions and pinning potential mos{1), since we intend to work with a variational ansatz which
clearly. In Ref.[37] we studied both the case of a one- has a fixed vortex density, and, moreover, we assume that the
dimensional optical lattice and the two-dimensional case. Itharmonic magnetic trapping potential approximately cancels
this paper we focus on the two-dimensional situation. the centrifugal force.

The paper is organized as follows. In Sec. Il we derive the We consider the system in the Thomas-Fermi limit where
pinning potential and vortex interaction energy. Using thesehe kinetic energy of the condensate atoms is neglected with
results, we calculate in Sec. lll the energy of an arbitraryrespect to their potential energy and mean-field interaction
vortex lattice in a periodic potential. This result is used toenergy. Minimizing the Hamiltonian of Edq1) in this limit,
determine the ground state phase diagram in Sec. IV for ¢he global density profile of the condensate without vortices
single-component Bose-Einstein condensate for various fillis given by
ing factors. The two-component case is discussed in Sec. V.

In Sec. VI we determine the dispersion of the low-lying col- = 2 -
lective modes over the ground state. We end in Sec. VII with M) = ¥ 00"= = [Vo, () = sExfg. &

our conclusions. with n=[u—sEg]/g the average density of the condensate.

As already mentioned, to find the potential energy of a
Il. VORTEX INTERACTIONS AND POTENTIAL ENERGY vortex in a Bose-Einstein condensate in an optical lattice, as
a function of its coordinatesu,,u,), we use a variational

In this section we calculate the interaction energy of two ) o
nsatz for the condensate wave function. It is given by

vortices, as well as the potential energy of a vortex in the?
optical lattice, i.e., the pinning potential, by means of a varia-
tional ansatz. These results are needed later on to determine W(X) = Vne(X)O[|x — ul/é = 1]exdip(x,u)], (4)
the phase diagram.
with ¢é=1/\{8mas the healing length that sets the size of the
A. Pinning potential vortex core,¢(x,u)=arcta(y-uy)/(x—u,)] the phase con-
fiG?uration corresponding to one vortex, afz) the unit

Since we assume the system to be at zero temperatuf ep function. For the above ansatz to be a good approxima-
throughout the paper, the most convenient starting point i% p ' 9 P

the Hamiltonian functional which gives the total energy of ion, we have assumed that the vortex core is much smaller

the system in terms of the macroscopic condensate Wa\}gen an optical lattice periogis <1, and that the strength of
function ¥(x), and reads the potential is sufficiently wealsEzx < . The use of a unit

step function for the density profile of the vortices is justified
. . h2v2 1 because the main contribution to the energy of the vortices is
H[W ,\If]:fdx\lf (X){—m+ég|‘1’(x)|2 due to the superfluid velocity pattern and not due to the
inhomogeneity of the condensate dens$ig].
Substituting the ansatz in E¢4) in the Hamiltonian in
*+VoL(x) _“]q}(x)' @) Eg. (1) and integrating over the entirey plane gives the
total energy of the vortex in the optical lattice. This energy
Here,M denotes the mass of one atom which interacts withyiverges with the system size. However, we need to isolate
the other atoms via a two-body contact interaction ofthe finite, position-dependent contribution to the energy due
strength g=4magh’/M, with a;>0 the swave scattering to the presence of the vortex, which is the only relevant
length. The two-dimensional optical lattice potential is givencontribution for our purposes.
by There are two position-dependent terms which contribute
_ : . significantly to the energy. The first one is largest and is
Vou(x) = sE[sirf(ax) + sirr(ay)]. 2) entirely due to the kinetic energy of the condensate. Neglect-
with Eg the recoil energyg the wave number of the optical ing the effect of the Laplacian on the global density profile,
lattice, ands=0 a dimensionless number indicating the which is consistent with the Thomas-Fermi limit, we have

063607-2



PINNING AND COLLECTIVE MODES OF A VORTEX.. PHYSICAL REVIEW A 71, 063607(2005

dZSERfd dy{ sinz(qx)+sin2(qy)} the same form as in Eq6). The only difference is the
Ukin(Uy Uy) = = == . i
kin(Uy, Uy) 8. X K-t (- )2 prefactor, which depends art,
(5
. s . . _ _J1(299)
The integral can be done by shifting the integration variables Qcorddé) = T (10

to x=p cosf+u, andy=p sin 6+u,. A little algebra yields

_dsEg Consistent with our previous remarks, this contribution of
Utkin(U Uy) = 8a, [cos2qu,) + cod2quy)] the vortex core to the position-dependent energy is smaller
" than the kinetic energy contribution. It adds to the latter
xf(z)wdaf %cos(qucose) ciontribution give_n in _Eq.(7) and hence we defin&®
¢ 2p = Quin* Qcore Pu_ttlng things together, the poten_t|al energy of
a vortex described by the ansatz of E@) in a two-
_ dgsafR[Sin(ZqUx) + sin(2qu)] dimensional optical lattice is given by
“dp . ) d
X f el f 2—2 sin(2gpsine).  (6) Upin(u) = gssERQ(qf)[COS(ZQUX) +cog2qu)]. (11
4

When integrated over polar angle, the second part on the . . . .
right-hand side of this expression gives zero. The integral irlt IS clearly seen that the potential energy is minimal if the

the remaining part can be further simplified by using a .JacobYor_tiC_es are Iocatepl at the maxima (_)f the optical potential.
expansion and integrating out the polar angle This is expected, since at these maxima the condensate den-

sity, and hence the kinetic energy associated with the super-
0 “ dp 27 _ fluid motion, is minimal. The expression in E(L1) is re-
> (- 1)“f 2—J2n(2C]p)f dge*n? garded as a pinning potential experienced by vortices in a
g &P 0

n=-c condensate loaded in a optical lattice.
=] —Jy2
L p ol2p) B. Vortex interactions
= mQuin(dé), (7) The interaction energy of two vortices must be known

explicitly to calculate the ground-state structure of vortex

whereJ, is thelth-order Be_sfsel function of the f|.rst !(md. lattices. We calculate this interaction energy by using the
The second vortex-position-dependent contribution to th‘:f‘ollowing ansatz for the condensate wave function:

energy comes solely from the core. Let us consider the en-
ergy contribution

W(x) = \nO(R-[xO[|x - ul/¢ - 11O[|x + ul/¢ - 1]
u :dzf d*x \I,*(X)|:VOL(X) + gI‘I’(X)IZ—M V(x). (8) Xexgi (x,u) +ib(x,-u)]. (12)

Alternatively, this term is written ab/=E..~UcodU), Where  is form is a generalization of the ansatz in E4j. to the

E.. is a divergent constant equal to the energy of the condensase of two vortices in a disk-shaped condensate with radius
sate without a vortex antlc,du) the contribution of the g anq average density oppositely displaced over a distance
region excluded by the core of the vortex. Since the lattery| from the origin. The reason that we do not explicitly take
depends on the vortex coordinates this contribution must bg\tg account the spatial inhomogeneity of the condensate

taken into account, which gives density due to the optical lattice potential in the calculation
of the vortex interaction energy is that most of the vortices in

UgordU) = —d, f de[gnTp(X)nTF(x) the vortex lattice are separated by more than one optical

core lattice constant, such that the effect of a spatially varying

density profile on the vortex interactions is averaged out. In
+[Vor(x —u) = ,LL]HTF(X)] the relevant limit where the healing length is small compared
to the system size, the only significant contribution comes

d from the kinetic energy of the condensate. For simplicity we
= 2—2 d>X = VoL (x —u)J? place the vortices along theaxis, (uy,u,)=(r/2,0), which
9 core leads for the energy of the system to

d
=-= ] PxVox-u) +OFER).  (9) . -
g Jeore See also Ref[41], which treats the limit of a small number of
condensate atoms, as opposed to the Thomas-Fermi regime we con-

Performing the integral on a disk with radigswve arrive at  sider here.
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thn 27 R —64p2
V(r):—zf dﬂf dpp— 7 5>
2M J, 0 r*+ 16p™ — 8r“p“ cos 2

h2dn (7 p*
=128r—— J dp p—5—— sgr4p?-r?). (13
2M J, PP16p4_r4 gr(4p ). (13
Herep is the radial coordinate anélis the polar angle. The
effect of the condensate density profile is incorporated by
simply excluding the contribution of the vortex cores from
the expression in Eq13) such that

64ﬂ'ﬁ2d n (r=¢)12 p2
V(r) = ——2 l_f dpp—l6 YR
0 p =T

la

+ JR dp p p2 FIG. 1. Two ways to parametrize the unit cell of a vortex lattice,
(812 16p*-r? using parameteréal, 8m) and (¢, ), with k=L,/L,. The relation
between those parametrizations is given by the expressions in Eq.
} (14 (17). The grid indicates the pinning potential with lattice constant

ah2dn {16?6—4F4+4F2—1
=- lim In —
R TH16R* T4

R—®
- We consider commensurate filling factors smaller than 1,
where we define®R=R/¢ andr =r/¢ and also took the limit  j.e., v=1/k, with k a positive integer. All possible vortex
R . The latter result is divergent with increasing systemlattice unit cells corresponding to such commensurate vortex
size. The finite, interaction energy of the two vortex configu-lattices at a particular filling factor can be found by factoriz-
ration is isolated by subtracting the divergent constaning k in productsim, with I and m positive integers, and
(mh2d,n/M)lim7 .. In[l/hli“] from the expression in Eq14) arranging vortices on the S|de§ of rectangles of_ size
laX ma, as shown in Fig. 1. Varying the vortex positions
along the sides of the rectangle, keeping the area of the unit
cell constant, gives all possible primitive commensurate lat-

and evaluating the limitR— . The resulting expression
does not depend on the system size and behaves like

2ﬂrﬁ2dzn r tice structures for the vortex lattice. For a vortex lattice of
V(r)=- 2 In<g) (15 filling » this procedure is parametrized by
for r>¢&. This is the well-known long-range interaction po- —
tential experienced by singly quantized vortices in two di- u(a, B:1,m) = a<\1 +al M al )( Iny )
mensiong49]. R Am V1+alBm/\mn,/’

In the next section we will use the results for the vortex
pinning potential and the vortex interaction energy to calcu-
late the energy of a lattice of vortices.

(16)

with nje Z and O< a, B=< % Notice that the transformation

matrix in the above expression preserves the area of the unit

cell, since its determinant equals unity. This ensures that we
In principle, to calculate the equilibrium positions of the are considering lattice configurations with equal vortex den-

vortices, we have to minimize the total energy as a functiorsity. The more familiar parameters of a unit cell of a two-

of the coordinates of the vortices. Clearly, for a large numbedimensional lattice, the anglg between the primitive lattice

of vortices this is unfeasible. It is known, however, that invectors and the ratio of their lengths=L,/L,, are related to

the limit of strong pinning, the vortices form regular lattices « and 8 by

[32—-36. Therefore, to find the phase diagram of the system,

we minimize the energy of the system assuming that the

IIl. ENERGY OF A VORTEX LATTICE IN A PERIODIC
POTENTIAL

vortices form a regular lattice. This procedure neglects the cose _ m(al +BM)V1 +alpm
fact that for small pinning potential the hexagonal Abrikosov K I[1+Am(al + AM)]
vortex lattice is slightly distorted by the pinning potential
[36].

To carry out the above minimization procedure, it is easi- sing m

est to parametrize a unit cell of the vortex lattice for a given = . (17)
filling factor ». The filling factor is defined as the number of “ I[1+pmial +pm)]

vortices per pinning center, i.e., per minima of the pinning The interaction energ¥;, per unit cell as function ofp
potential. In terms of the density of vortices it is equakto and « for an infinite two-dimensional lattice of vortices sub-
=n,a?, wheren, is the two-dimensional density of vortices ject to the logarithmic interaction potential of EQL5) was
that is set by the rotation frequen€yasn,=MQ/(=h) [48],  calculated by Campbe#t al. [50]. Cast in a dimensionless

anda=m/q is the optical lattice constant. form their result reads
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~ Eint lations of Puet al.[47], these authors observed that for fill-
Eint = —(whzd n/M) ing larger than 1 the vortices form pinned phases where pairs
Z . . .
_ _ of vortices are pinned, and hence two vortices get very close
_mSsing inl 2 sing | *? _in 1°f[ 1 together. Since our approximations break down in this case,
- K ™k =1 we study only phases with a filling factor smaller than 1.
o ilai . COS(p Aile
2 Ik A1 /k
~ 2¢72milsindl CO<27TJ p ) + g émilsingd ” IV. PHASE DIAGRAMS
(18) The energy per unit cell of the vortex lattice, obtained by

- . . , _adding the pinning energy of Eq19) and the interaction
It is important to realize that the interaction energy per vor energy of Eq.(18), enables us to calculate the zero-

tex is divergent for an infinite vortex lattice, and that the . )

above expression gives the relative interaction energy fofSMperature phase diagram of the vortex Iatt|ce_ structure at a
configurations with equal vortex density. The absolute mini-cgrtal.n. filling. As ﬁlready_ mentioned, we conS|der systems
mum of the dimensionless interaction energy in B cor- with filling factor »=1/k with k a nonnegative integer larger

responds to a hexagonal vortex lattice structure, i.e., thgha'lr']ht.dimensionless ener er unit cell of the vortex lat-
Abrikosov vortex lattice with [=m=vk and al=gm gy p

=V1/\3-1/2 or (¢,x)=(w/3,1), and is equal to tice reads

E=—1.321 12. Note that this lattice is incommensurate with 5 1

the optical lattice. (—)E(a,ﬁ;l,m) =Ein(@, B;1,m) - -—Q(qé)
The pinning energy per unit cell is found by substituting pd, 2w

Eg. (16) in Eq. (11), summing over alh, andny, and divid- X[ 8gmez+ Out ez, (20)

ing the result by the number of unit cells,

4a, SEg

P P where we used that=gn. It is most convenient to mini-
Epn(a. 8L, m = lim —= > > Uyu(a,B;l,m] mize this expression in the plane spanned by the dimension-
P 4P7 —p n=-P less parametergé andsEg/ i This leads to the three phases

d discussed in the previous section. However, the presence of
=~ —=SERQ(AE)[ Spmez + Oat e 7]- (190  the half-pinned vortex configuration depends on the filling
8as factor, implying different phase diagrams for even and kdd
This form of the pinning energy per unit cell is what we Since the structure of the lattice does not change continu-

expect on an infinite lattice. Only if the vortices form a lat- ©USly: the phases are separated by a first-order transition.

tice that is commensurate with the optical lattice do they give . N the case of evetk, the half-pinned lattice is absent,
a nonzero contribution to the pinning energy. This is why weSInce the pinning centers are distributed such that the mini-
mum energy configuration is always a fully pinned lattice.

consider only commensurate fillings, since we expect struc he bh , h : o h ~afull
tural transitions at these fillings. Incommensurate vortex lat] "€ Phase diagram thus contains two distinct phases: a fully

tices have zero potential energy per unit cell on average. Fdinned vortex lattice and the hexagonal Abrikosov lattice.

v=1 there are three possible outcomes for the pinning enlhe geometry of the fully pinned vortex lattice is determined

ergy in Eqg.(19: (i) a phase in which all the vortices are such that the interaction energy is.mininﬁaE.—3G: .
pinned by optical latice maxima  at Eyp If kis an odd integer, the half-pinned lattice is present in

=—(d,/4a)SEsQ(qé), (ii) a phase in which one-half of the the phase diagram if the pinning energy and the interaction

vortices are pinned ... =—(d./8a.)s Cand(iii) an ENergy are of the same order. However, this phase exists only
unpinned phzse & _p'8 foﬁ ;nya?)/ortEZg(l(ft?[ice th(at )is in if the intervortex distance and the optical lattice constant are
pin— b

commensurate with the optical lattice. The precise geometr§0m|0arable In size.
of the unit cell of these vortex lattices is determined further,. In Re_-f. [37].We d|:_scus§ed the case 9f one vortex per op-
by minimization of the interaction energy in E6L8). Of tical Iattlce.unlt ce:ll, i.e.p=1. We now dlscus§ thrge d!st|nct
course, the structure of the unpinned phase is always hexagg)—(amples in detail. The results are summarized in Fig. 2.
nal, corresponding to the global minimum of the interaction
energy. A v=2

To end this section, we would like to point out that, since N _ _ _
the interaction energy of the vortex lattice is derived by sum- For »=5 the phase diagram contains two phases and is
ming the expression for the interaction energy of two vorti-depicted in Fig. 2a). For weak pinning the vortices are not
ces over all pairs of vortices, we have implicitly assumedpinned and form a hexagonal Abrikosov lattice. For strong
that the vortex density is so low that the vortex cores nevepinning all vortices are located on the minimum of the pin-
overlap, and that we are therefore allowed to neglect thregring potential, and form a square lattice with,3)=(0,3)
vortex interactions, and interactions of higher order. A simi-and (I,m)=(1,2). Note that, as opposed to the=1 case
lar argument validates the derivation of the pinning energy of37], which also has a square and pinned vortex lattice in the
the vortex lattice by summing the single-vortex pinning po-strong-pinning regime, in this case the vortex lattice is ro-
tential over the number of vortices. In the numerical calcu-tated over an angle/4 with respect to the optical lattice.
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T ( %> _0.01057

=—. 21
M/ hexagonal pinned Q(gé) @D

0.006

It is important to note that, contrary to the cases/gfl2 and

1 [37], the geometry of the fully pinned vortex lattice is in
0004 1 this case triangular. Since a fully pinned square lattice has
the same pinning energy as this triangular lattice, the inter-
o002 f AB 1 action energy favors the latter. The phase diagram for this
a) filling is shown in Fig. Zb).

0.05 0.1 0.15 0.2 0.25 03
0.01 T T

_1
C.r=¢

0.008 -

At k=5 we find three phases. The result is depicted in Fig.

sEgr 2(c). First, for large strength of the optical lattice we have a
B0t 1 fully pinned vortex lattice wit«, 8)=(£,0), 1=5,m=1, and

interaction energyE;,,=—-1.310 55. At intermediate optical

lattice strengths we find a half-pinned phase wifth, 5)

] =(%,0), =5, andm=1. The interaction energy per unit cell

AB b) of this configuration equalg;,;=—1.318 49. At small lattice

0 ‘ ‘ ‘ strength we find again the hexagonal Abrikosov vortex lat-

001 a : : : tice. The boundaries between these phases are given by

0.004 -

0.002 ¢

oote | ' ( %> _ 0.005 26
)2

i oo | hexagonal/half pinned  Q(0)

(22)

oot | ] (%) _0.01588
M/ half pinned/pinned Q(gé) .

‘ ‘ c) Similar to thev=2 case, we find that the fully pinned vortex
o1 015 02 lattice has a square geometry, and is now rotated over an
'S angle taﬁl(%) with respect to the optical lattice. Generally, if

FIG. 2. Vortex phase diagram of a Bose-Einstein condensate ir?ht_e fully pinned vortzex Ig\ttlcg has a squar_e geometry, then for
a two-dimensional optical square lattice, for three different filling filliNg factor ¥=1/(ki+k;), with k; andk; integer, the fully
factorsv= (a) 1/2, (b) 1/4, and(c) 1/5. For a weak pinning poten- Pinned vortex lattice will be rotated over an angle
tial the vortex lattice structure is always the hexagonal Abrikosovar '(kz/k;) with respect to the optical lattice.

lattice (AB). The insets indicate the vortex lattice structure for — Contrary to the above-mentioned filling factors, but simi-
stronger pinning potential. The black dots indicate the vorticesar to thev=1 case[37], there is an intermediate triangular

whereas the square grid indicates the pinning potential. vortex lattice, where half of the vortices are pinned.

_1
B. v=4

If there are four pinning centers per vortex, correspondingv' PINNING OF VORTICES IN TWO-COMPONENT
CONDENSATES

to k=4, we find for large strength of the optical lattice a fully
pinned triangular vortex lattiGawith (a,,8)=(0,;11),l=2, and In this section we study the influence of a two-

m=2. The interaction energy per unit cell of the vortex lat- gimensional optical potential on vortex lattices in a mixture
tice of this configuration id;,,=-1.318 49. At small optical of Bose-Einstein condensates of two different species. Our
lattice strength we find the hexagonal Abrikosov vortex lat-results also apply to a Bose-Einstein condensate that consists
tice. The phase boundary is given by of two hyperfine components, provided the number of atoms
in each component is conserved. Along the lines of Secs.

2ppart from breaking the translational symmetry, such a triangulad—!V We calculate the ground-state phase diagram for two
vortex lattice also breaks a discrete symmetry, because there af@UPled condensates each containing a vortex lattice at fill-
several distinct possibilities to form the triangular lattice configura-ing ¥ =1 with the optical potential. Note that the fact that we
tion. In this particular case the discrete symmetrgjsThis addi-  take the filling factor to be the same in both species implies
tional symmetry breaking implies the existence of domain wallsthat the masses of both species are approximately equal.
between triangular vortex lattices that are oriented differently. We A system of two coupled Bose-Einstein condensates is
do not consider such configurations here. described by the following Hamiltonian:
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—h2y2 sionless parametgr = gizl 0105, for which these criteria im-
H= E dx \I}i 2M, +VOL X) Mi Wl p|y 0<X2< 1.
1=1,2 Solving the coupled equations for the condensate wave
1 1 functions, derived from the Hamiltonian of E(R3) in the
+f dx[§g1|‘1’1|4+ 592|‘1’2|4+ 912|‘I’1|2|‘1’2|2], Thomas-Fermi approximation, leads to the following density
profile in component:

(23)
i e Llmi— VOL r)] 1 [p=Vou()] ..
: ’ ) . Nre(r) = [Wif2 =~ > o JFL
with gi=4m#2a;/M; and g;,=2mi%a;,/ M;;. Hereay, is the g 1-X° 912 1-1lx
scattering length between unlike species and the reduced (24)

mass is given by;;=M;M;/(M;+M;).

In the absence of the opt|cal potentlal Mueller and HoYVe use the variational ansatz for the condensate wave func-
[51] and Kasamatset al.[52] theoretically predicted smooth tion containing a vortex in component
transitions between hexagonal lattices in both components at () = 4/ _ulie s
small(|ntraspeC|e)5|nterac?|ons and interlaced square vortex Wit = \nTF(X)®[|X ulié = exdidixwl, (29
lattices at larger interaction. These square lattices where olwith &=1/\8man; and n;=(u;—sEg)/g;.. Furthermore, we
served very recently by Schweikhaed al. [53]. However, assume that vortices in different components do not interact.
the above-mentioned transition is caused by the fact that tha&s explained before, in particular we neglect the effect of the
interaction energy is minimized if the overall density is asdensity profile caused by a vortex in one component on the
smooth as possible. Since we take a step function for theortices in the other component, which, in the absence of an
density profile of the vortex, this density effect is not in- optical potential, leads to the structural transitions discussed
cluded in our calculations. Therefore our results only makeby Mueller and Ho[51] and Kasamatset al. [52]. Within
sense in the regime where this density effect is dominated bgach component, the vortex interactions are logarithmic, as
the optical potential, i.e., in the strong-pinning limit. To en- derived in Sec. Il B.
sure this, the requiremerisEg/ u;)Q(q&) > g12/g; must be The pinning potential which is experienced by the vortex
satisfied. This implies that we must have tigg g;,, since  can be calculated along the lines of Sec. Il A. The first con-
we assumed thasEz<<pu;. It must be stressed that this is tribution, coming from the kinetic energy term of the Hamil-
quite restricting as at the present day there is no experiment&bnian in Eq.(23), is equal to
atomic system known which meet these requirements. How-

ever, one might expect that near an interspecies Feshbach Uk.n(U) SERQk|n(Q§.)G (01,92,912)
resonance this regime of parameters is realizable. Therefore,
we study the fully pinned and half-pinned lattices and the X[cos(2qux)+cos{2quy)], (26)

phase transition between them.

A nonrotating two-component condensate phase separaté4th Qun given by Eq.(7). The difference with the single-
if g1,>10,0, [54,55. The condensates mutually exclude cOmponent case is the appearance of the factor
each other, even in the absence of external poteriBélsor O12— Gix2
with rotation[52]. The vortex ground state in the latter case Gi(91,02010 = . &
will not be given by a regular lattice, in general. In our cal- 911 -x")
culations we restrict ourself to the regime where the systenThis factor is completely dependent on the various interac-
does not phase separate. In this regime, the coupling parartien strengths. The other significariposition-dependent
eters satisfyg;>0 andg;g,> g5, which falls safely within ~ contribution, coming from the vortex core, involves more
the approximation discussed above. We define the dimerwork,

(27)

. 1 1
Ugordl) == dzf dzx{ §9i|‘1’i|4 + (VoL = m)[Wi[? + 5912|‘I’1|2|‘I'2|2}
core

_ 2 ) 9| (ui— Vou)? (= Voo)? (1 = Vo (1 = Vo)
=-d, dx 2 22t 2 2212 N N TV
core gi (1 _X) glz(l 1/)() giglz(l X (1 1/)()

_ 912 (Mj‘VOL) (i = Vor) )} |:(Mi_VOL) (Mj_VOL) ]
{V"L o 2<gj<1—x2>+glz<1—1/x2) “La1-0 " adl-1d

__ 4% 1 |:glz(:“i + )

g xX2- 2, - Mi} fcoredzx VoL(x—u) + O(s’E4 R)- (28)
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If we assume thajs;~ u; we find a contribution similar to 0.0048
Eq. (26). The prefactor in this case is given l6..dq¢)
which is defined in Eq(10). The total pinning potential ex- o0uss | oo
pengnced by a vortex in componentiue to the optical lat- g, 6% ©-&-0® 3
tice is equal to B 00044 i ® [9-9-©-& b
94 P
. d I
Upin(u) = 8—;sER[Qkin(q§i) + Qcord 04)1Gi(91,92,912) 000
x[cog2qu,) + cog2quy)]. (29 el
@t ®
This energy is dependent on the ratio of the coupling param- 00041 | Q%-Q}%
eters. The pinning energy is minimized on lattice maxima in 9'@"3'@5‘
both components in the regime where it is the dominanten- .., L_, . s . .
ergy scale. Therefore, vortices in both components tend to bt 02 04 06 08 1 12 14
on the same position. ¥ —

In order to find the vortex phase diagram we minimize the _ _
interaction and pinning energy in each component, as in Sec. FIG. 3. Vortex phase diagram of a rotating two-component con-
IV. We assumdagain w;~ u;=u. This impliesé =~ &=¢£ As densate in the presence of an optical lattice, at commensurate fill-
mentioned before, we are only interested in lattice typednd: »=1. The phase diagram is plotted as a function of the dimen-
which are fully or half pinned. The phase boundary betweersioniess parametery=arctarg,/gp). Black dots and circles
the fully and half pinned vortex lattice&commensurable represent vortices in different components. The dashed lines repre-

with the optical latticg in each component is given b sent the pinning potential. We took=100 andq¢=0.05 which
P g P g y implies O(0.09 ~ 3.612.

( ﬁ) _ 001494 (30
- Gi(01,02,:912) d,;sE:Q(aé)
wl QAG0,02.012 efu] = =S (cogzai, + )} + cod2dlr,
To find all possible lattice types in the two-component sys- :
tem it is most convenient to parametrize the coupling param- wh2d,n ri+u(ry) —rj-u(ry)
eters byg; =g, sin(y) and g,=«g;,cogy). By varying y +uy(r)]h) - —2 In : :
one scans along a circle segment in tae,g,) plane. The 17l
non-phase-separated regime in terms of the new parameters (32
is given byx>v2 andy.<y<y, with We perform a Fourier transform
1 [kt -4 1 .
Ve = arcco{ 5(1 £ KK2 )1 : (31 u(ry) = —=—=2 u(k)e*", (33

VNGNy &

We find that the phase diagram contains four different vortexvhereN, is the number of vortices along thedirection of
lattices. In Fig. 3 the phase diagram and the lattice geometrhe vortex lattice, and the momentum sum is restricted over
are displayed fogé=0.05 and«=100. Notice that the two- valuesk,=27n,/L, in the first Brillouin zone, whera,, is
component phase diagram has a straightforward interpretan integer and.,, is the size of the vortex lattice in the

tion in terms of coexistence of phases found in the singledirection. Note that throughout this section we use greek
component case. For strong pinning the vortex lattices argymbols to indicate two-dimensional Cartesian components,
both fully pinned. For the filling under consideration=1) e, a,8 < {x,y}. We also sum over repeated greek indices.
the vortices in both components therefore form a square lat- We expect that after this Fourier transformation the en-
tice. Depending on the relative strength of the interactionergy of the vortex lattice for small displacements will, up to
determined by the parametegy the vortex lattice in one of an irrelevant constant, be given by

the components will change first to the half-pinned triangular 1

geometry, as one lowers the strength of the optical potential. = _

For sufficiently weak pinning potential both vortex lattices Elul= 2% Dag(k)ua(~k)uglk), (39

assume this structure. ) o
where the so-called dynamical matrix is the sum of three

contributions

D,s(k) = D55(k) + DL3(K) + DI5(K). (35)

VI. COLLECTIVE MODES

In this section we calculate the dispersion of the collective
modes of the pinned vortex lattices. In principle, this requiresThe first contributiorDE[L,(k) takes into account the interac-
the calculation of the energy of the system for small dis-tion between neighboring vortices and follows from elastic-
placementsu(r;) of the vortices from their equilibrium posi- ity theory. Although the elastic constants that will enter in the
tionsri=ryXx+ry. In first instance, the energy of the system expression foDEE(k) can in principle be calculated from the
is then given by interaction energy in Eq32), such a calculation is beyond
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the scope of this paper, and we will adopt a more phenomin the dynamical matrix would lead to a quadratic dispersion.
enological point of view and write down the most generalMoreover, we would like to point out that due to the fact that
form for Dig(k) allowed by symmetry arguments, for each vortices are described by Euler dynamics we find only one

lattice under consideratidib7]. The second contribution mode, instead of two modes for the case of a lattice of par-
242 ticles that obey Newtonian dynamics.
DR(k) = 8mhdN KK (36) The polarization of the vortex lattice phonons is deter-
p AM  KZ+\7% mined by the eigenvector of the matrix in EQ7), corre-

. . .. sponding to the eigenfrequency in E@9). Generally, the
whereA is the area of the unit cell of the vortex lattice, is displacements are given hyr;, t) = Uy (@<, whereuy o

independent of the structure of the lattice and follows fromis the eigenvector. For a wave in thalirection we have that
the long-range nature of the logarithmic interactions, which 9 ' v
has to be taken into account separafé§—60. Note that we
have explicitly included a finite range of the logarithmic i[8172ﬁ2d2n/aﬁM + kﬁ]
interactions, to ensure thBLR — 0 ask— 0. After taking the ] 21 /a2 2
’ B U0 * | KV u[872A%d /&M + (Ky + ppp)K
long-wavelength limit, we can safely take— 0. The final ko | kyval AVEM + Ky + i)

contributionDSg(k) is due to the optical lattice. 1
The dispersion of the collective modes is determined by i 8muh2d,n
putting the determinant of the matrix 2
M s(K, ) =D 44(K) — €,54mNd i, (37) 1

equal to zero. Hereg,; is the antisymmetric Levi-Cevita

tensor in two dimensions, which takes into account the Eulewhich shows that the vortices move on an ellipse with the
dynamics of the vortice48,49,. long axis perpendicular to the direction of propagation. In

We will now calculate the dynamical matrix for each type the limit k — 0, the wave is almost transverse.

of vortex lattice considered in the previous section, i.e., for The translation symmetry of the system is broken explic-
the hexagonal, half-pinned, and fully pinned vortex latticesjtly in the presence of an optical lattice. The collective modes
in the long-wavelength limit, and use these results to calcutherefore acquire a gap, i.e., there is a minimum amount of
late the phonon spectrum of the vortex lattice. energy required to excite a phonon. Considering the part of
the energy of Eq(32) which corresponds to the pinning
energy of the vortices and expanding it, we have, up to an

A. Hexagonal vortex lattice .
irrelevant constant,

For a hexagonal vortex lattice we have thaT]
DEH(K) = Kk ks + 218,62, (B8  gouyy-- 2q2dst8R:(q§) s

whereKy is the bulk modulus, angy, is the shear modulus Kk
of the hexagonal vortex lattice. Using this result together k! "
3 ‘ c x4 uuy k) X cog2ar e m},
J

{ux<k>ux<k'>2 cog2qr,]
J

with Eq. (36), we find for the frequency of the collective
modes in the absence of an optical lattice that

k 8m*h%dn
fiwy = 4mnd, \/MH{ M =+ (Ky + MH)kZJ . (39

(42)

with the positions of vortices in the hexagonal lattice given

For large wavelengths we have thai, = c{k, where the by
sound velocity of the so-called Tkachenko waves is given by

2 1 1 -
2 P = = i —i X —_ c" Y .
. 1 /8772M2Hﬁ dzn. 40 ri=a,\/ \’,3[<|X+ 2|y>x+ 2\?:lyy} (43
a

- 47nd,

We could now fix the value for the shear modulus of theSumming over these lattice coordinates in E42) gives
vortex lattice uy by demanding that the Tkachenko soundzero. This is in contradiction with the fact, that on symmetry
velocity is equal to\#{)/(4M), the result known from the grounds we expect a finite gap for the collective modes. To
hydrodynamic theory of a vortex lattid®,61]. This would,  overcome this problem we must take into account that the
however, not be consistent, since the value ggr should real unpinned vortex ground state in a weak periodic pinning
follow from the expression for the energy of the vortex lat- potential is a slightly distorted hexagonal lattic®6]. This

tice in Eq.(32), and may lead to a different sound velocity comes about because the periodic potential exerts a small net
due to the variational approximations we have made in thdorce on the vortices arranged in the hexagonal lattice. The
description of the vortex lattice. Note that is crucial to takesmall distortion of the vortex positions is a modulation
into account the long-range interactions of the vortices byaround the equilibrium of the hexagonal latticg—r;
means of the dynamical matrix in E¢B6) to get a linear +R(r;). Following Pogoso\et al.[36] we find for a square
dispersion at long wavelengths, since an omission of this pattvo-dimensional periodic potential
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SER dZ . oL dZSERQ(qg)
R,(r)) = — 2ar; 1. 44 E === 2d(ri, + )+
a(rl) 2 ,U,HASaSQ(qé)SIr[ qua] (44) [U] 8a Ei:(C0§{ q[rlx UX(I‘,)] 77}
The modulation of the vortex coordinates around the posi- +cog2q(ry, + uy(ry)] + 7})
tions of the regular hexagonal lattice involves a facipr d 2 _
=sEx/ uyA. To keep the displacements small, the condition = M > (- () + ug(ri)},
7<<1 must be satisfied. 8 i
Summing over the displaced hexagonal vortex lattice in (50)

Eqg. (42) indeed leads to a nonzero energy gap. Numerical . )
evaluation of Eq(42) on a large lattice gives a contribution where we have omitted an irrelevant constant. Note that we

to the dynamical matrix which is roughly linear i have translated the optical lattice potential to ensure that
there is a vortex at the origin, consistent with the parametri-
quQ(q,g)]2 zation in Eq.(49). Using that

Dglgxo.SnsER{ Supr M<1. (45

4as 2 4T = N,Ny &y o, (51)
Including this in the calculation of the collective modes, we . I ) o
find we find after a Fourier transform in the first instance that
q0Q@d\?, | eorfu = HEEAW
= . e 2 4
o wndio 5773ER< 42, ) + upk } ag k
8a2i%d,n qd,Q(qé) \2 x| 2 2 (= DIy (k)uy(k')
X | =5 +0.5psEx| — i
aM 43
2 + Uy (K)uy (- k)} . (52)
+(Ky + MH)kZ} : (46)

The sumi, in the second term of this equation is evaluated
The gap takes the form by splitting it into a sum over, even and, odd. If we denote

k+k'=(2mn,/Ly,2mn /L), we have that
0.575Ex qsz(qar e
~ : 47 — 1)ix+Lgi(kHk )T,

4mnd, [ dag “n 2( 1)+"e

h(l)o

-_ 2 (- 1)ixe2winXiX/NX+27-riny/Ny{[l—(— l)ix]/4+iy}

B. Half-pinned vortex lattice iy

In the case of the half-pinned vortex lattice, which is al- =-Ny5, o E €2min(2p)/Ny _ E 2miny(2p+1)/Ny=miny/Ny,
ways triangular, the dynamical matrix that follows from elas- Ty p I
ticity theory is given by[57] 11 _
Daﬁ(k) - KTkakB + :u’Taaﬁk + KT(l - 5aﬁ)kak5 + 5IU“TTZIBkakﬁa

(48) With the use of this result we have that

2
whereKy is the bulk modulus of the triangular vortex lattice, ECHu] = dZSERq—Q(qg)E Uy (K)uy(= k)
and «; and ut denote the Lamé constants. For a square lat- 4as k
tice we have that the parametéu is equal to zero, as we 1
vr;/:flilt;c,i)e(e below. In the above expressiaf)y, denotes the Pauli = EEK: Dos(K)U(K)ug(=k), (54)

To find the contribution due to the optical lattice, we con-
sider specifically the half-pinned case at filling=1/5, as
shown in Fig. 2. We parametrize the equilibrium position of

so that the contribution to the dynamical matrix due to the
optical lattice is given by

the vortices as d 2
Do =R, 5 6
5 . 1-(=1)x| . s
ri=Shax+ 2 |t 2iay. (49) With the above results, we find that the collective mode

dispersion is given by

With the use of this parametrization we find that the energy

of the vortex lattice due to the pinning of the optical lattice S3Note that if we rotate the vortex lattice over an angiét, we
is, for small displacements(r;) from the equilibrium posi-  would find that the dynamical matrix is proportional &9, instead
tions, given by of 8,,. (See also footnote P.
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(4mndfiw)? _ 9°SErQ(q€)
1 6 "= gna, =
8mhed,n 167h°d,n
= 2K + M$k2<KTk2+ 5 ) - T{ 5 : . . o
aM aM corresponding to an eigenvecta(l,i). From this eigenvec-
122 tor we therefore conclude that the zero-momentum mode
+ (2K + KT)kz] ﬁz -z M%kikf, + prSurki(Ke - ki) physically corresponds to a precession of the vortices around
k 4 the maxima of the optical lattice potential, as expected.
2 232
2ag 2 a Mk D. The gap
5 If one tunes the strength of the periodic potential, the
+ urks |- (56)  vortex lattice changes, depending on the fillingrhe energy
gap of the collective modes is different in the three vortex
Interestingly, this dispersion is gapless, i%wy=0. The ei- lattice phases. To summarize the results on the gap, we have

genvector corresponding to this eigenfrequency is given b%
(1,0, and so the displacement of the vortices is alongxhe "®0

axis. Physically, this is understood because it does not cost d, ) .
any energy to uniformly displace all the vortices in the O-SWgS[%Q(QE)] sEr, hexagonal vortex lattice,
direction when the vortices are forming a half-pinned lattice = ) )
with the geometry shown in Fig. ZSee again footnotes 2 , half-pinned vortex lattice,
and 3) This comes about because under a uniform transla- (9¢)°Q(qé)sEx/, fully pinned vortex lattice.
tion of the vortices in thex direction, half of the vortices (60)

move away from an energy minimum and therefore increase
their energy, the other half moves downhill from an energylt is clear that the gap in the hexagonal phase is much
saddle point, precisely compensating this increase. smaller than the gap in the fully pinned vortex phase. This is
because in the hexagonal phase, the nonzero contribution
comes entirely from the displacements of the vortices from
the equilibrium positions of the hexagonal lattice. The gap is
The structure of the fully pinned vortex lattice at certainthen of second order isEg, since 7> sEx.

filling is triangular, in general. Therefore, the contribution to  For the half-pinned and fully pinned vortex lattices, there
the dynamical matrix due to the elasticity of the vortex lat-is no second-order contribution to the gap. This is because in
tice takes the form of Eq48) with elastic constantkp, up,  these phases the vortices are located on minima and saddle
kp, and Sup. In the special cases for which the fully pinned points of the pinning potential. The fact that the energy gap
vortex lattice has a square structure, we have that=0. in the half-pinned phases is zero relies on the fact that we
Since all the vortices are positioned at the minimum of theconsider infinite vortex lattices. In a trapped system there
pinning potential, the contribution of the optical lattice to the will be a gap to collective excitations, that becomes smaller
dynamical matrix is constant and diagonal, and given by  with increasing system size.

In Fig. 4 we display the gap as a function of the dimen-
_ 9sSEr"Q(a8)

C. Fully pinned vortex lattice

_ (57) sionless parametesEz/u for the casesy=1/4 and 1/5
h 2ag A which we have considered in this paper. It is clearly seen that
the gap has a discontinuity $feg/ « is tuned through a phase
boundary’ It must be emphasized that in the Abrikosov
) d,SEx0?Q(qé) \? phase only the qualitative featurgs qf the behavior of the gap
+T can be deduced from Fig. 4. This is because the gap then
depends on the shear modulug which is a phenomeno-
o[ ok + d,SER0PQ(q€) logical constant in our calculations. _
P 2a, Finally, we would like to comment on the experimental

Hence, we find for the phonon dispersion

(4mnd,fiay)® = (,U«Pk

212 implications of the collective mode spectra we have calcu-
X{kaer 8mh7dn + %(kz_ k@} lated. Although our calculations contain phenomenological
a,ka2 2 parameters, there are nonetheless some qualitative predic-
2 2724 tions that could be tested experimentally. First of all, for the
+ [% - K%_ZKP(KPJrM)]kZ 2 half-pinned and fully pinned vortex lattices the collective
4 a?MK? ) |

(58) We obtained this estimate using the expression for the shear

At zero momentum we find for the g‘élp modulus following from hydrodynamic theory. We haegeqar
= A= wPd,A= (nhQ/8)d,me?, with ¢2=A/MQ. The ratio be-

tween the chemical potentigd=gn and egpe, S cONStant ggneaf 1

“Note that in Eq.(10) of Ref.[37] there should be an additional =d,/32a,. We then useg~5 nm for ®’Rb andd,~ 10 um to find

factor of 2. 7=SER/ €shear 0.64SER/ 1).
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mode spectrum is anisotropic, i.e., the frequency of the colmaxima of the optical lattice, an@i) a phase in which none
lective modes depends on the direction of propagation. Byf the vortices are pinned, and the structure of the vortex
performing the same experiment as Coddingtbal.[19], in  lattice is determined by the interactions. The structure of the
which the collective modes are excited by a perturbation atnpinned phase is always hexagonal, whereas the structure
the center of the condensate, one could probe this anisotrop§f the half-pinned phase is triangular. We have discussed
Another prediction of our theory is that the collective modesSeveral distinct filling factors explicitly, to demonstrate the
are in general gapped in the presence of the vortex lattice. Aﬁt_)ove generic features. We calculated_the dispersion of low-
exception is the triangular half-pinned vortex lattice, which!Ying phonon modes of the vortex lattice for each of these

has a gapless mode, corresponding to the translation of tHf1aSes. In the case of the half-pinned and fully pinned vortex
vortices in one direction(For the illustration in Fig. 2 this attice we find that the collective mode spectrum is aniso-

direction is thex direction) For the propagation of the modes :rh%pigélre%rtﬁcgrmgﬁégngge ;:ppgéréedB%?ﬁ ;ggu?g;niﬂormgsge
in the other direction th_ere will be a gap. This strong aniso,pservable experimentally, and we have outlined possible ex-
tropy should be experimentally observable by the above

tioned . t Th itati f the fullv bi dberiments to probe the collective modes.
mentioned experiment. The excitations ot the 1Ully pinNed™ rpara gre several interesting directions for further inves-

vortex lattice are also gapped. As mentioned before, the zergy a1 of the influence of a periodic potential on the physics
momentum mode corresponds in this case to a simultaneoys rotating Bose-Einstein condensates. For instance, it would
in-phase precession of all the vortices around the maxima g jnteresting to consider more strongly correlated regimes
the optical potential. This mode could be excited by slightlyihat occur at fast rotatiof62], and to study the effects of the
displacing the optical lattice. Because this zero-momentunheriogdic optical potential on the melting of the vortex lattice
mode of the vortex lattice does not have shear or compresg(]. One would expect that in this regime the effect of quan-
sion, it does not depend on the elasticity constants, which arg,, fluctuations. i.e. quantum tunneling of the vortices
phenomenological in our calculation. Hence E&0) should  rough the potential barriers of the pinning potential, be-
give an accurate prediction for the gap in this case, which igomes important. Aspects of this were studied by Sgreesen

directly experimentally verifiable. al. [63], who showed that for ultralow particle and vortex
density the ground state of rotating bosons in a periodic po-
VIl. CONCLUSIONS tential is a Laughlin liquid. It would be challenging to inves-

tigate the system with high particle and vortex density and a
In this paper, we have presented a method to determinkarge number of vortices per boson.

the ground-state phase diagram of vortices in a Bose- Yet another interesting possibility for future work is to
Einstein condensate in an optical lattice, thereby extendingtudy a rotating spinor condensate in the presence of a peri-
previous work[37] to an arbitrary number of vortices per odic potential. Rotating spinor condensates are expected to
unit cell of the optical lattice, the so-called filling factor. The form spin textureqSkyrmions [64,65 and regular lattices
vortices arrange themselves in various patterns, dependintpereof[66,67], analogous to the formation of vortices in a
on filling factor and the optical lattice strength. Generally, wesingle-component condensate. The pinning effects in each
find three vortex phasesi) a fully pinned phase in which spin component of the condensate caused by the periodic
each vortex is pinned to a maximum of the periodic poten-potential will further enrich the phase diagram in these sys-
tial, (ii) a phase in which half of the vortices are pinned totems.
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