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We discuss adiabatic quantum phenomena at a level crossing. Given a path in the parameter space which
passes through a degeneracy point, we find a criterion which determines whether the adiabaticity condition can
be satisfied. For paths that can be traversed adiabatically we also derive a differential equation which specifies
the time dependence of the system parameters, for which transitions between distinct energy levels can be
neglected. We also generalize the well-known geometric connections to the case of adiabatic paths containing
arbitrarily many level-crossing points and degenerate levels.
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I. INTRODUCTION

Evolution of a quantum system, if governed by a time-
independent Hamiltonian, is fully described by relative phase
shifts acquired by its energy eigenstates. These phase shifts
which we refer to as dynamical phases are equal to the en-
ergy differences of the levels integrated over time. On the
other hand, for a general time-dependent system Hamiltonian
fully analytical treatment is usually impossible, or at least
hardly tractable. There is also an intermediate regime in
which adiabatic variation of the system parameters leaves the
population of the instantaneous energy levels unchanged. In
this case, however, apart from the dynamical phases the lev-
els acquire geometric phase factors �1–3� or, in the case of
degeneracy, undergo a nontrivial transformation �within the
degenerate subspace�, also geometric in its nature �4�. A
separate class of phenomena utilizes only the process of
adiabatic following �independently of the phases acquired�,
which can result in a coherent population transfer between
levels that are not directly coupled �this process has been
extensively studied in quantum optical systems, where is
known as the stimulated Raman adiabatic passage �STIRAP�
�5��. The peculiar property of the latter is that the entire
transformation takes place within a single, non-degenerate
level, and the resulting transformation is not simply just a
phase shift. This seems to contradict the predictions made by
Berry �1�. However, more detailed study shows that such
transfer is possible because of the level crossings at the ini-
tial and final times of the process.

The theory of adiabatic phenomena is well-established for
systems with exactly distinguishable or exactly degenerate
levels. The vicinity of the crossing points seems to be a
troublesome, intermediate regime: when the energy differ-
ence between the energy levels tends to zero there is appar-
ently no time scale defining the adiabaticity. Recently, Avron
and Elgart �6� discussed the adiabatic theorem in dissipative
systems. In this scenario the energy gap, which is present in
isolated systems, disappears. Nevertheless, as the authors
show, the adiabaticity still can be defined. Here we consider
an isolated quantum system in which the levels cross as the
externally controlled parameters are varied. An analysis of
adiabatic phenomena in isolated systems with nearly cross-
ing levels has been performed in Ref. �7�; however, the time

dependence of the system parameters has been assumed to be
arbitrary. Similarly, in Ref. �8� the nonadiabatic corrections
due to level crossing in three-level processes �STIRAP� has
been evaluated, again assuming that the time dependence of
the parameters is fixed for a given realization. In our work
we perform an analysis of an evolution in which only the
path in the parameter space is arbitrary. It is indeed very
often the most important characteristic in experiments prob-
ing adiabatic phenomena, such as detection of geometric
phases or population transfer �STIRAP, coherent charge
pumping �9–11��, and the time dependence does not influ-
ence the results of the measurements any further �it needs
only to be adiabatic�.

To summarize the most important of our results, let us
suppose that we have given a path in the parameter space
that passes through some degeneracy point and we want to
determine whether it is possible to satisfy the adiabaticity
condition. In what follows, we show that the answer is
uniquely determined by the geometry of the path. For the
cases when it is possible, we derive a differential equation
whose solution gives the time variation of the parameters
�along the path�, for which transitions between distinct en-
ergy levels can be neglected. Moreover, we show that at the
level crossing the energy eigenstates are discontinuous,
which can result in nontrivial transformations. The points of
crossing correspond themselves to geometric phenomena, in
which the geometry is determined only by the direction in
the parameter space from which such points are approached.
For closed paths which can be passed adiabatically our re-
sults together with the Wilczek-Zee connection �4� give a
method of calculating geometric transformations in a system
with many level crossings and degenerate levels. Finally we
comment on the system behavior while passing through the
crossing points. To give a physical picture of the analyzed
problem we apply our results to the process of the three-level
Raman adiabatic passage.

II. NOTION OF ADIABATICITY

Consider a quantum system in which we choose a fixed
�parameter-independent� basis of states ��1�, �2�, �3�,…�. They
can be internal energy states of an atom, spin pointing “up”
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and “down” in a fixed spatial direction etc. In general, the
system Hamiltonian H�R� �R�M is the set of parameters of
the system and M the parameter space, also referred to as
the control manifold� contains terms that couple different
states in this basis, and after diagonalization we obtain the
parameter-dependent basis of instantaneous energy eigen-
states

�m̄�R�� = 	
n

amn�R��n� . �1�

Here A�R�= �amn�R�� is a unitary matrix that rotates the fixed
basis into the basis of energy eigenstates. Without any loss of
generality we can assume that for some R=Rdiag the matrix
A�Rdiag� is diagonal, so that at this point the bases are iden-
tical. For Rdiag also the Hamiltonian written in both bases is
diagonal, H�Rdiag�=He�Rdiag�=diag�E1�Rdiag� ,E2�Rdiag� , . . . �
�the subscript e denotes here the parameter-dependent basis
of the energy eigenstates�. For any other point we can write
then

H�R� = A†�R�He�R�A�R� , �2�

where He is �by definition� for any R a diagonal matrix. By
this construction we see that the information about the ener-
gies is contained only in He, while the information about the
states �m̄� only in A �we shall use this property also later in
our discussion�. In the regions of R without any level cross-
ing the states �m̄� are continuous functions of R. Indeed,
suppose that the system adiabatically follows �m̄�R�t���, and
while passing through some R0=R�t0�, the state changes dis-
continuously. Since the states �m̄� form a complete basis,
�m̄�R�t0−�t��� is transformed into �m̄�R�t0+�t���=	m�
bm��m̄��R�t0−�t���. But then this process is equivalent to a
discontinuous transition between different energy levels,
which is excluded if the parameters are varied adiabatically.
On the other hand, this observation tells us that if a level
crossing occurs, such discontinuity can be encountered.

Another problem while approaching the level crossing
seems to be the adiabaticity condition which is hard to sat-
isfy there �and for the energy separation close to zero implies
infinitely slow variation of the parameters�. To analyze this
let us first consider two levels that cross at a point R0, which
for convenience we will shift to the origin �R0=0�. The sub-
space of these two states can be characterized by a Hamil-
tonian of spin-1 /2 particle in external magnetic field, for
which the energy eigenstates

� + n� = e−i� cos �/2�↑� + sin �/2�↓� ,

�− n� = e−i��+�� sin �/2�↑� + cos �/2�↓� �3�

�where �, � are the spherical angles� are separated by the
energy difference B, the strength of the magnetic field. The
level crossing in this geometry corresponds to the point of
zero field. We can now easily find the adiabaticity condition
by going to a frame that rotates together with the direction of
the magnetic field. The operator that rotates the frame is A
�as defined in Eq. �1��, which in this case has the form

A��,�� = ei�/2�y ei�/2�z. �4�

The rotated Hamiltonian

H̃ = iȦA† + AHA†, �5�

for the two-level system reads

H̃ = −
1

2
B + �̇ cos � , − i�̇ − �̇ sin �

i�̇ − �̇ sin � , − B − �̇ cos �
� . �6�

The adiabatic theorem states that if the time variation of the

parameters is slow enough, the off-diagonal elements of H̃
are negligible, and so the states precess around the instanta-
neous field direction with the frequency B+ �̇ cos � �the sec-
ond term gives rise to the Berry phase�. It should be also
emphasized �and usually is not� that the Fourier-transformed

off-diagonal terms, ±i�̇− �̇ sin � cannot have at ��B too
large amplitudes as compared to the inverse duration of the
process 1 /� �this is the reason why in the STIRAP experi-
ments, the pulses are usually chosen to be wide Gaussians�.
For the purpose of evaluation, this condition can be written
in the form

f��� = 
−�

�

dt�±i�̇ − �̇ sin ��exp�− i�t� �7a�

�
0

�

dt f�� = B�t���	 1, �7b�

which together with

�B + �̇ cos �� 
 � ± i�̇ − �̇ sin �� , �8�

gives the adiabatic theorem. A few comments should be
made at this point. First of all, the estimate Eq. �7b� is by no
means less important than Eq. �8�. Indeed, the rotated Hamil-

tonian H̃ generates evolution in which the perturbative, off-
diagonal terms may induce transitions between the states par-
allel and antiparallel to the direction of the magnetic field.
This effect for different realizations of the field variation, but
with the same order of magnitude of the off-diagonal terms

in H̃ is illustrated in Fig. 1. The only difference there is the
dominant frequency in the Fourier transform of these terms.
In other words, all the realizations satisfy well the condition
�8�, but only two of them the condition �7b�, and only in
these cases the spin really follows the field direction.

Moreover, in Eq. �8� the LHS is either dominated by B or
�̇ is too large to allow the condition to hold at all, and we
can omit the term �̇ cos �. To verify now whether for a given
path �which crosses a degeneracy point� the adiabatic condi-
tion can be satisfied let us require the time dependence of the
parameter variation to be constrained by

�B�� = � ± i�̇ − �̇ sin �� , �9�

where �	1 is a constant, i.e., we want the adiabatic theorem
to be satisfied at each point of the path to the same extent.
The path can be parametrized as
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B��� = „B���,����,����… . �10�

We have the freedom to choose a reference point �0=0 at the
level crossing. The parametrization in Eq. �10� gives us all
the information about the path along which the parameters
vary, and our goal is to determine the time dependence of �.

Equation �9� can be thus rewritten in the form

�B�� = ��̇�±i��� − ��� sin ��� . �11�

The solution to this differential equation gives the unique
answer to our question: if ��t0�=0 for finite t0, the adiabatic
theorem can be satisfied at each point of the path �down to
the crossing point�, otherwise it cannot.

To illustrate the possible application of this result let us
consider a special class of paths along which the magnetic
field in the spin-1 /2 scenario is varied. We define �=B�,
where � is some relevant time scale in the experiment �e.g.,
its duration�. This guarantees also that �0=0.

The class of paths we consider is parametrized by a non-
negative, real � by defining �=�0+�� �the degeneracy is
approached from the direction �0� and constant �. Equation
�11� then has the following solutions depending on the value
of �:

adiabatic for any ��t�, � = 0

���t� = �1 − �

�

�

�
t�1/��−1��0  �  1

���t� = exp
±
�

��
t��� = 1

���t� = �1 − �

�

�

�
t�1/��−1��� � 1. �12�

Clearly in the first case the states are time-independent and
no mixing is possible. In the second case, in order to satisfy
the adiabaticity condition we would have to approach the
degeneracy infinitely long. �=1 is a critical value, above
which the adiabaticity can indeed be satisfied by choosing
the calculated time dependence of �. The paths for various
realizations are shown in Fig. 2.

FIG. 1. �Color online� Illustration of spin-1 /2 evolution gener-
ated by variation of external magnetic field. In all cases the angle �
grows linearly with time, slowly �adiabatically� as compared to B.
The variation of the second angle, �, is different in all cases. Upper

plot: �̇=0.005�B cos Bt /2, middle plot: �̇=0.005�B cos Bt, lower

plot: �̇=0.005�B cos 2Bt. Since the diagonal terms in H̃ are domi-
nated by B, the middle plot illustrates almost-resonant transition in
the rotated frame.

FIG. 2. �Color online� Realizations of the path �=�0+��, �
=const for various values of �. Variation along the solid paths can
be adiabatic at each point, down to the degeneracy, while adiaba-
ticity for the dashed paths would require infinite time of the process.
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III. ADIABATIC THEOREM AND GEOMETRIC
TRANSFORMATIONS WITH MANY CROSSING LEVELS

One could ask now whether the results are applicable to
higher-dimensional systems, in which some state can cross a
degenerate level, two �or more� degenerate levels cross, or
many levels cross at the same point. Our reasoning is correct
in all imaginable cases: we can consider all pairs of crossing
states separately and verify whether transitions can be pre-
vented within all of the pairs. At the same time well-known
phenomena hold. For instance, transitions between states that
remain degenerate during such “insertion” are still possible,
and given by the Wilczek-Zee connection �4�.

More systematic explanation makes use of the property
Eq. �2�. We can define the set of parameters R
= ���Emn� , ��k���M which has a subset of parameters char-
acterizing the matrix He, i.e., the energy differences between
the levels. The second subset contains the angles parametriz-
ing rotations in the Hilbert space. Using this property we
rewrite Eq. �2� in a more general form as

H�R� = A†���k��He���Emn��A���k�� . �13�

Let us now consider two levels, �m̄� and �n̄� that cross at an
isolated point R0=0 �i.e., for all points in the vicinity of R0
the parameter �Emn is finite�. In this setting �Emn coincides
with the radial component for R→0. This parameter is cru-
cial, as it defines the level crossing point, but we need to find
all the other relevant parameters that could give rise to the
mixing between the states. To do this let us consider a point
R1�M which belongs to the path and is shifted by an in-
finitesimal vector dR from 0 �dR specifies the direction from
which the degeneracy is approached�. To evaluate the mixing
term �n̄�R1��� �m̄�R1�� ·dR we make the expansion

��m̄�R1��=	k bk�k̄�R1��. The only term that can contribute to
the mixing is bn�n̄�R1��, and in the vicinity of R1 the other
states can be simply ignored—indirect mixing, mediated by
the other states is possible as the second �and higher� order
process. The mixing term is, however, proportional to the
first derivative of the states over the parameters and for suf-
ficiently small �in our case infinitesimal� variations of the
parameters the indirect mixing is irrelevant. Furthermore, the
two states can be conventionally �and conveniently� param-
etrized by two spherical angles �mn ,�mn, which together with
�Emn are the only relevant parameters in our problem. By
selecting only three parameters from the set ���Emn� , ��k��
we reduced the problem again to the two-state subspace be-
havior. Now the angles parametrizing the states are perpen-
dicular to �independent of� the radial component of the pa-
rameter space �Emn, and we arrive again at the adiabatic
theorem in the form of Eqs. �7b� and �8�.

It might also happen that due to some symmetries the
domain of degeneracy of the levels �m̄� and �n̄� has a finite
dimensionality. In other words, �Emn=0 can define a sub-
space E�M, where dim E=dim M−1. Then our simple
picture, in which we identify �Emn to be the radial compo-
nent clearly fails. However, the path which we traverse is a
one-dimensional subspace od M, which close to R0 can be
embedded in a subspace T�M tangential to E at R0 �see
Fig. 3�. The symmetry that is present in M disappears in T.

Furthermore we can treat T as the actual control
manifold—we formally put only one additional constraint on
the system parameters, which reduces the number of degrees
of freedom by one, but since the path is physically un-
changed the physics of the process is not altered as well.
Thus the property �2� is still valid and our discussion for the
isolated crossing point is again applicable.

Let us summarize shortly the observations that we have
made up to now. If a quantum system undergoes an adiabatic
variation of parameters R along a path R���t�� , t� �0;��
that does not contain any level crossing points, all levels are
transformed independently. The resulting transformation
within a p-degenerate level ��m̄1 , . . . , m̄p�� with an energy Em

given by

Um�����,��0�� = e−i�0
� Em�t�dt

� lim
d�→0

Ug
p�R���� − d���,R���d���� .

�14�

The first exponent on the RHS is the dynamical phase. The
transformation Ug

p is the p-dimensional geometric transfor-
mation corresponding to the path � �the subscript g stands
for “geometric”�. It is given by the Wilczek-Zee connection
�4�, which can be easily derived from Eq. �5�: within the
degenerate subspace the second term of the Hamiltonian
AHA† is proportional to identity and can be neglected �in Eq.
�14� it is included in the dynamical term�. Hence

lim
d�→0

Ug
p�R���� − d���,R���d����

= lim
d�→0

T exp

�

�−d�

dtȦA†�
= P exp


�

dR · ��RA�A†� . �15�

FIG. 3. �Color online� Schematic structure of the control mani-
fold M. The path � is formally embedded in the subspace T tan-
gential at R0 to the degeneracy domain E.
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Here T is the time ordering, and P the path-ordering opera-
tor.

Let us comment briefly on this formulation. The result in
Eq. �14� is general, and for distinct levels is expressed sim-
ply by the product of dynamical and geometric contributions.
In such cases the ordinary adiabaticity condition holds. If the
path begins �ends� at crossing points we need to examine
whether for a given path the adiabaticity condition can be
satisfied, and if it can, evaluate the connections between �but
not exactly at� the initial and the final point �due to discon-
tinuity of the states�. As shown above, if the path is “adia-
batic,” the adiabatic connections �Eq. �15�� are valid arbi-
trarily close to the crossing points.

The path is parametrized here by the time t which is the
most natural choice. However, the transformation Ug

p is, as
usually, time-independent. It depends only on the parametric
�time� limits of R at the beginning, and the end of the path.
At the crossing points the discontinuity of the states �m̄� im-
plies strong dependence of Ug

p on the direction from which
we approach such points.

Finally, for arbitrary adiabatically traversed path in the
parameters space the resulting transformation can be ob-
tained by dividing the path into pieces that begin and end at
crossing points, evaluating the partial transformations ac-
cording to Eq. �14�, and eventually multiplying the obtained
transformations.

To conclude our analysis let us discuss briefly the nature
of aforementioned discontinuity at the level crossing. It fol-
lows clearly from the degeneracy of the states involved,
which gives the freedom to choose an orthogonal energy
eigenbasis. However, if discussed in a basis of a different
observable, its spectrum does not need to be degenerate at
this point. If, in particular, the basis which we introduced at
the beginning—the parameter-independent basis ��n��—is an
eigenbasis of an operator that has all eigenvalues different at
the level crossing, amplitudes at the states �n� cannot change
abruptly. Moreover, the process under discussion is instanta-
neous �we already know what happens before and after we
reach the crossing point�. Probably the most practical indica-
tion of how the system should evolve while passing through
the crossing points give then the conservation laws. So, un-
less there is some abrupt disturbance of the system param-
eters, during this infinitesimal time interval quantities that
are conserved define the “good” bases in which amplitudes
are continuous.

IV. NONADIABATICITY OF THE THREE-LEVEL STIRAP

To illustrate how our results apply to real physical sys-
tems, let us consider a three-level atom with internal energy
levels �1�, �2�, and �3� �see Fig. 4�a��. At the initial time only
the state �1� is populated. In order to transfer the population
from the state �1� to �3� we adiabatically switch on a laser
field that nonresonantly couples the states �2� and �3�, and
then, after some time delay we switch on the pulse coupling
�1� and �2� �see Fig. 4�b��. Certainly, since the laser frequency
is very close to the level separation, the process is not adia-
batic in the laboratory frame, but after going over to the
rotating frame �in which the amplitudes absorb the phases

resulting from the internal level separation�. In this frame the
system Hamiltonian �in the basis of the internal levels� has
the form

H = � 0 − �12 0

− �12 � − �23

0 − �23 0
� , �16�

where �12, �23 are the Rabbi frequencies of the laser fields,
and � is the laser detuning. Diagonalization of the Hamil-
tonian yields the energy eigenstates

�E+� = sin � sin ��1� + cos ��2� + cos � sin ��3� ,

�E−� = sin � cos ��1� − sin ��2� + cos � cos ��3� ,

�E0� = cos ��1� − sin ��3� , �17�

where

� = arctan
�12

�23
,

� =
1

2
arctan�2��12

2 + �23
2 /�� , �18�

and the corresponding energies

FIG. 4. Quantum optical STIRAP process. �a� The level con-
figuration, �b� applied pulses, �c� the energy of the eigenstates. The
system which initially was in the atomic state �1� follows the eigen-
state �E0� and during the process is transformed into �3�.
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E± =
�

2
±

1

2
�4�12

2 + 4�23
2 + �2, E0 = 0. �19�

The energies of the levels as functions of time in the usual
experiment are shown in Fig. 4�c�. The only states that cross
are �E0� and �E−�. Some features of their parameter-
dependence are shown in Fig. 5. In particular we see that for
the traversed path the initial and final directions differ and
the states are at the point ��12,�23�= �0,0� discontinuous.
Since at t=0 only the state �1� was populated, the system
remains �up to nonadiabatic corrections �8�� during the pro-
cess in the state �E0�. For the final direction of the path, the
state �E0���3�, and the population is indeed transferred.

In this setting the only interesting for us energy eigen-
states are here the crossing levels �E0� and �E−�—transition
between this subspace and the state �E+� can be easily sup-
pressed by varying the parameters on a time scale much
longer than � �the usual adiabatic theorem is applicable�.
The relevant quantities in our earlier notation are B�−E−,
�̇=0 and ���. The paths used in the STIRAP experiments
�see Fig. 5� are parametrized explicitly by a parameter � in
the following way:

�12��� = �0 exp�− �� − 1/2�2� , �20a�

�23��� = �0 exp�− �� + 1/2�2� . �20b�

This parametrization is convenient if �� t, because of the
evident Gaussian characteristics of the pulses, but this is not
the best choice for our purpose, as the degeneracy point is
approached for �= ±�. We will use instead a parameter �
defined in the following way:

B��� = ��� , �21�

where �	1 is a constant, and � the laser detuning. The time
����−1 defines in our case the adiabatic time scale related to
the separation between �E+� and the other two levels. To
express the RHS of Eq. �11� in terms of � we take into
consideration the final part of the path, i.e., �
1. From the
ratio ��23/�12�2=exp�−4�� we see that �23 in Eq. �19� is
negligible, and we find ���� to be

���� =
1

2
+�−

1

2
ln��2

�0
2 ��2 + ��� . �22�

The equation of motion for � now has the following form:

���2 = ��̇������/cosh�2������ �23�

or

FIG. 6. Solution of the equation of motion for �, parametrizing

the path of the three-level STIRAP. �a� �̇ as a function of �, shows
already that near the level crossing, the rate of variation decreases
to zero. �b� The solution for already a long duration of adiabatic
evolution. �c� The time dependence of ln��� shows that the param-
eter decreases in time slower than exponentially. In these plots the
ratio � /�0=1, and �=0.01.

FIG. 5. Geometry of the states �a� �E0� and �b� �E−�. The loops
denote the traversed path during the passage. Dashed lines are the
directions of constant states in the subspace ��1�,�3��. In �b� the
amplitude � changes along these lines, however it does not contrib-
ute in the first order to the mixing of �E0� and �E−�.
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�̇ = ± ���2 cosh�2�����/������ . �24�

The sign of the RHS in Eq. �24� specifies the direction in
which we want to move along the loop. We will start at a
finite value of � and move towards the level crossing ��
=0�, so we choose the minus sign.

The RHS of Eq. �24� as the function of � is shown in Fig.

6�a�. Since the rate �̇ reaches 0 as the parameter approaches
degeneracy, we cannot conclude directly from this depen-
dence whether the path can be traversed adiabatically or not.
The adiabatic variation of the parameter � calculated from
Eq. �24� is shown in Fig. 6�b�. Apparently we can get arbi-
trarily close to the level crossing in an adiabatic manner, but
the question whether we can reach the point exactly in a
finite time is answered in Fig. 6�c�. Expressing the result in
the form ��t�=exp�f�t�� we can see that the function f�t�
=ln���t�� has positive second derivative, which means that
��t� decreases more slowly than exponentially. Since even at
exponential decrease the degeneracy is reached at t=�, in
our case the adiabatic variation would last infinitely long as
well �and thus the paths chosen for the STIRAP experiments
are not really optimal for this process, even if the nonadia-
batic corrections �8� turn out to be negligibly small�.

Alternative path for this process, which would not violate
the adiabatic approximation at any point, could be con-
structed in the following way: first we switch on the pulse
�23 to some finite value �0 while keeping �12=0. Along this
line the parameters characterizing the states, � and � are
constant, and no mixing is possible, regardless of the time of
the variation. Then we could modify the parameters along
the arc �12

2 +�23
2 =�0

2 up to the point ��12,�23�= ��0 ,0�.
Along this arc the energy difference between the states �E0�
and �E−� is constant and equals B0=�4�0

2+�2 /2−� /2. To
satisfy the usual adiabatic condition �Eq. �8�� it suffices to
traverse this part of the path in a time interval � much longer

than 1/B0. However, to make sure that there will be no reso-
nant transitions between the states �E0� and �E−�, the function

�̇= ��̇12�23−�12�̇23� /�0
2 needs to satisfy �according to Eq.

�7b��

��
−�

�

dt �̇e−iB0t�	 1. �25�

The path is then closed by switching off the pulse �12, again
arbitrarily fast.

V. SUMMARY

We have shown that an adiabatic process should not be
understood as a process which is necessarily slow in com-
parison only to the energy scales in the problem. Our treat-
ment of the adiabatic condition proves that for some paths
the transitions between different energy levels can be ne-
glected for a finite-time evolution in an infinite time scale
regions. Moreover, as many of the other adiabatic phenom-
ena, transformations within one, nondegenerate level be-
tween two points of degeneracy �corresponding to the same
point in the parameter space� are geometric. The result de-
pends only on the initial and final directions of the path, not
on its details �as long as it is adiabatic�. Our results, together
with the theory of geometric transformations, give also the
possibility of designing experiments which combine the geo-
metric �Berry� phases, holonomic transformations �within
degenerate levels�, and adiabatic passage.
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