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A method is described that yields a series ofsD+1d-element wave-vector sets giving rise tosD=2 or
3d-dimensional coherent sparse lattices of any desired Bravais symmetry and primitive cell shape, but of
increasing period relative to the excitation wavelength. By applying lattice symmetry operations to any of these
sets, composite lattices ofN.D+1 waves are constructed, having increased spatial frequency content but
unchanged crystal group symmetry and periodicity. Optical lattices of widely spaced excitation maxima of
diffraction-limited confinement and controllable polarization can thereby be created, possibly useful for quan-
tum optics, lithography, or multifocal microscopy.
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Optical lattices are spatially periodic interference patterns
arising from the superposition of a finite set of plane waves.
They have been harnessed in ones1Dd through three dimen-
sionss3Dd for diverse applications including optical section-
ing f1g and superresolutionf2,3g in cellular imaging; photo-
nic crystal lithography f4,5g; and quantum optics
experimentsf6–8g, including the demonstration of a quan-
tum phase transition in a lattice-confined Bose-Einstein con-
densatef9g. Thus far, all such applications have been limited
to closely packed lattices of periodicity less than the excita-
tion wavelengthl.

In this paper, I lift this constraint and develop the math-
ematical basis for two further constructs:sparse lattices, of
many possible periods, including those large compared tol;
andcomposite lattices, containing larger sets of plane waves,
and resulting in improved confinement of the excitation at
discrete intensity maxima. Together, sparse composite lat-
tices permit the creation of 2D and 3D arrays of widely
spaced, and hence individually resolvable, excitation
maxima of controllable polarization, with each maximum
confined to near the diffraction limit in all directions. As
such, they may be suitable as multifocal excitation fields for
live-cell fluorescence imaging with improved spatial and
temporal resolution; the fabrication of photonic crystals with
specially tailored diffracting structures in each primitive cell;
massively parallel two-photon absorption lithographyf10g of
3D structures large compared tol; and optical trapping of
biological objects or ultracold atoms in optimally steep and
symmetric potentials. The latter may lead to individually ad-
dressable atomic qubits for use in quantum computation.

As with any 2D or 3D periodic structure, optical lattices
can be classified by their Bravais symmetry, and described in
the same crystallographic terms used in most texts on solid-
state physicsf11g. In a key paperf12g, this connection was
made, along with three powerful observations. First, the spa-
tial properties of the lattice, such as its symmetry, primitive
cell shape, and periodicity, depend only on the wave vectors
kn of the plane waves and not their electric fieldsen. Thus,
the problem of finding a suitable lattice fieldesx ,td for any
application can be broken into two parts: finding thekn that
define the lattice; and finding theen that determine the basis
sthe field pattern that identically exists in each primitive celld

for this lattice. Second, aD-dimensional latticesD=2 or 3d
requires a minimum ofD+1 wave vectors, since two wave
vectors k0,k1 define a 1D latticeesx ,td=esx,td, where
êxi sk1−k0d, and three wavevectorsk0,k1,k2 define a 2D
lattice esx ,td=esx,y,td, where êzi sk13k2+k23k3+k3

3k1d. Finally, the reciprocal lattice corresponding to a given
D-dimensional directsi.e., real-spaced lattice comprised of
D+1 wave vectors can be constructed from theD reciprocal
primitive vectors

bn = k0 − kn, n = 1,…,D. s1d

Since the spatial properties of sparse and composite lattices
will also depend only on the wave vectorskn, the construc-
tion methods that follow apply to any set of coherent waves,
including acoustic, interfacialse.g., air/waterd, and monoen-
ergetic matter waves. We therefore use the more general term
coherent latticeto describe such constructs, reserving the
more common expressionoptical lattice for describing the
construction of the basisesx ,td from a set of electromagnetic
waves.

We can extend the observations off12g and find a sethkmj
of D+1 wave vectors yielding aD-dimensional coherent lat-
tice of any desired Bravais symmetry and Wigner-Seitz
primitive cell shape by first selecting a sethanj of snonu-
niqued D primitive vectors to describe the lattice. Expressing
these as column vectors, aD3D direct lattice matrixA
=fa1,… ,aDg is defined. A corresponding sethbnj of recipro-
cal primitive vectors is found from the relationshipb8i ·aj
=2pdi j arising from the definition of the reciprocal lattice
f11g. Expressed in matrix form, this yieldsB8 ·A =2pI or,
equivalently,

B ; fb1,…,bDg = 2psA8d−1 s2d

where the prime denotes the transpose.B is theD3D recip-
rocal lattice matrix.

To find thehkmj for a lattice defined byA, we apply the
monochromaticity conditionukmu;k=2p /l to Eq.s1d, yield-
ing uknu2= uk0−bnu2=k2−2b8n·k0+b8n·bn=k2 or, once again
in matrix form,
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FIG. 1. sColord Wave vectors
sgreend and resulting plots of
uesxdu2 over s5ld2 for sad 2D hex-
agonal andsbd 2D oblique funda-
mental lattices.scd Isosurfaces of
0.5maxsuesxdu2d over s6.8ld2 for a
3D centered tetragonal fundamen-
tal lattice.

FIG. 2. sColord sad Direct lat-
tice primitive vectors and result-
ing sbd wave vectors andscd iso-
surfaces of 0.5maxsuesxdu2d over
three periods ofuesxdu2 for the
simple cubic fundamental lattice
sblue, periodÎ3l /2d and simple
cubic sparse lattices of period
Î11l /2 sgreend andÎ59l /2 sredd.

FIG. 3. sColord Distribution of
sparse lattice periodicities of
uesxdu2, as defined by the normal-
ized conventional unit-cell lattice
constanta/l, for five lattice types.

FIG. 4. sColord sad Wave vectorssgreend and plot ofuesxdu2 for a particular 2D square sparse lattice of periodÎ5/2l. sbd Related sparse
lattice obtained by rotating the wave vectors insad by 90°. scd Composite lattice of improved confinement at the intensity maxima obtained
by superimposing the wave vectors fromsad and sbd.
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B8 ·k0 = fb81 ·b1,…,b8D ·bDg8/2 ; b/2. s3d

Combining this result with Eq.s2d leads to an expression for
the first wave vector:

k0 = A · b/4p, s4d

while the remainingD wave vectors inhkmj are found from
this equation and Eq.s1d. Wave-vector setshkmj and result-
ing coherent lattices with the symmetry of any of the five 2D
or 14 3D Bravais lattices can be found in this manner, with
examples shown in Fig. 1.

A key discovery is that, when different valid primitive
vector setshanj are initially chosensi.e., those whose integer
combinations span the entire latticed, a series of coherent
lattices arise of identical symmetry and primitive cell shape,
but differing l-normalized periodicity. An example showing
three such setshanj, corresponding wave-vector setshkmj,
and their resulting lattices is given in Fig. 2.

One manifestation of the diffraction limit is that no lattice
can have a spatial frequency greater than 2k. Therefore, in
such a series, there will always be a lattice of minimum
period, termed thefundamental latticefe.g., the blue lattice
in Fig. 2scdg. Lattices of period larger than the fundamental
lattice comprise the sparse lattices mentioned earlier. New
primitive vector setshanjII leading to their creation can be
found from a known sethanjI as follows. Since the vectors in
each set span the same lattice, they can be expressed as in-
teger combinations of one another. In matrix form, this im-
plies

A8II = GA8I andA8I = HA 8II s5d

whereA I ,A II are the direct lattice matrices associated with
hanjI ,hanjII , andG andH haveD3D integer elements. From
Eqs. s5d, G−1=H. Hence,G−1 also has integer elements.
Thus, uGu and uG−1u must be integers. However, sinceuG−1u
=1/uGu strue for any square matrixd, we conclude that

uGu = ± 1. s6d

Thus, newgenerating matricesG, giving rise via Eq.s5d to
new direct lattice matricesA II and related sparse lattices of
possibly differing periodicity, can be found by cycling
through different possible combinations of integer elements
gij and identifying those for which Eq.s6d is satisfied. Any
given G can be used to generate new matricesA II from a

known A I associated with any Bravais symmetry. Further-
more, uG1G2u= uG1uuG2u, so by Eq. s6d, any multiplicative
combination of generating matrices and their inverses is also
a generating matrix.

The distribution of sparse lattice periodicities found in
this manner withaø8l is plotted in Fig. 3 for five Bravais
lattice types. The density of solutions is largest for 3D lat-
tices, but even 2D lattices offer several possible sizes in this
range. However, although sparse lattices comprised ofD+1
wave vectors can be created at periodicities much greater
than l, they exhibit increasingly poor confinement of the
excitation with increasing sizefas evident from the green and
red lattices in Fig. 2scdg, since they contain only one spatial
frequency in each of theD+1 directions defined by the
possible combinations ofD wave vectors from the
sD+1d-element set.

Consequently, to create a lattice of both large
l-normalized periodicity and confinement of the excitation
to significantly less thanl in all directions at each of the
intensity maxima therein, additional coherent waves must be
superimposed with theD+1 waves of a known sparse lattice
of desired symmetry and periodicity in a manner that does
not adversely affect these properties. Such composite lattices
of N.D+1 coherent waves can be created, as shown in the
example in Fig. 4, by applying one or more symmetry op-
erations that map the lattice onto itself to the wave vectors of
the original lattice, and then superimposing the resulting new
set of wave vectors on the original one. This process can then
be repeated with additional self-mapping symmetry opera-
tions to further increase the spatial frequency content of the
lattice and the confinement at the individual excitation
maxima therein.

Clearly then, the most tightly confined and symmetric ex-
citation maxima within each primitive cell of a given Bravais
lattice will occur for themaximally symmetric composite lat-
tice comprised of all wave vectors obtained by applying all
valid combinations of symmetry operations to the wave-
vector set of an initial sparse lattice of the same Bravais
symmetry. Since the 2D square, 2D hexagonal, and 3D lat-
tices of the cubic crystal group have the highest symmetry,
they can result in sparse, maximally symmetric composite
lattices of particularly well-confined, widely separated exci-
tation maxima, as shown in the examples in Fig. 5. As men-
tioned above, such lattices may prove useful for multifocal
microscopy, spectroscopy, lithography, and quantum optics.

FIG. 5. sColord Maximally symmetric composite lattices ofuesxdu2: sad 2D hexagonal, periodÎ485l /2 s24 wave vectorsd; sbd 3D
body-centered cubic, periodÎ62l s96 wave vectorsd, isosurfaces of 0.5maxsuesxdu2d. scd Plot of uesxdu2 in thexy planesblued in sbd, indicating
the contrast of the excitation maxima with respect to the remainder of each primitive cell.
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Also as mentioned above, the methods described thus far
can be applied to any type of coherent waves. However, for
the specific case of optical lattices comprised of electromag-
netic plane waves, there still remains the issue of determin-
ing the complex electric fielden of each constituent wave and
resulting total basis fieldesx ,td that identically exists within
each primitive cell of a given lattice. Once the lattice and its
set hknj of N+1 wave vectors is determined, a general ap-
proach would be to optimize a desired basis propertyY
=Yse0,e1,… ,eNd, treated as a function of the plane-wave
fields en, and subject to the constraint that the waves are
transverse, i.e.,kn·en=0 ∀ n. A simpler yet still effective
prescription, however, that leads to bases of highly confined
excitation maxima of controllable polarization, is to maxi-
mize the projection of each complex plane-wave fieldensx ,td
onto a desired stateed of the total lattice fieldesx ,td at a
desired positionxd and timetd. Since the physical electric
field is given by the real part of the complex field, the physi-
cal projection ofensx ,td ontoed at xd andtd is given, through
analogy to the brau ket notation of quantum mechanics, by
Rehen

*sxd,tdd8 ·edj. If we additionally defineed in reference to
some unit vectorêp se.g., edi êp for linear polarization,
ed' êp for circular polarizationd, then kn and êp define a
natural orthonormal coordinate system:

êkn i kn, êpk'n i sêp 3 êknd, êk'n = êkn 3 êpk'n s7d

in which ensx ,td can be expressed as

ensx,td = enfcosx expsiudêk'n

+ sinx expsicdêpk'ngexpfiskn ·x − vtdg. s8d

The unknownsx ,u ,c are then found, thereby determining
the plane-wave field ensx ,td, by applying to
Rehen

*sxd,tdd8 ·edj;Gsx ,u ,cd the maximization conditions
]G/]x=]G/]u=]G/]c=0, ]2G/]x2,0, ]2G/]u2,0, and
]2G/]c2,0. For example, optimizing linear polarization
sed=Edêpd, we find

en = enêk'nexpf− iskn ·xd − vtddg, s9d

and optimizing circular polarizationfed=EdêR, where êR
;sêpk'n− iêp'nd /Î2 andêp'n; êpk'n3 êpg we find

en = en
− isêp · êkndêk'n + êpk'n

Î1 + sêp · êknd2
expf− iskn ·xd − vtddg.

s10d

Figure 6 shows the plane-wave electric field vectorsensxd,td
at eight timestq= td+2pq/8, q=0,… ,7, over one oscillation
cycle that arise when this procedure is used to optimize three
different polarization states at the excitation maxima of the
same lattice.

Maximally symmetric lattices of the cubic crystal group
with bases such as these offer superior excitation confine-
ment at discrete points compared to single-focus methods
such as confocal microscopyfFigs. 7sad and 7sbdg. Further-
more, the improved confinement and symmetric wave-vector
distribution lead to steeper, more symmetric optical trapping
potentialsfFigs. 7scd and 7sddg, due to the correspondingly
sharper intensity gradients and cancellation of scattering
forces.

Of course, the unavoidable corollary is that the experi-
mental generation of such lattices requires careful control of
the phase and propagation direction of each plane wave in a

FIG. 6. sColord 72 wave vectorssgreend and corresponding electric field vectorssmultiple colorsd at eight times over one oscillation cycle
for bases that optimize thesad x component;sbd z component; andscd right circular component of the total lattice field at each of the
excitation maxima of the same maximally symmetric simple cubic lattice of periodÎ59l /2.

FIG. 7. sColord sad,sbd Isosurfaces of 50%sblued, 25%sgreend, and 12.5%sredd of maxsuesxdu2d at sad the focus of a confocal microscope
scalculated viaf13gd; and sbd a single excitation maximum within a maximally symmetric composite body-centered cubic lattice of period
Î26l. scd,sdd Optical trapping potentialUsxd in the scd xy andsdd xz planes for a dielectric particlesn=1.6,ka=0.8 in H2O, calculated via
f14gd for the confocalsredd and latticesgreend cases considered insad,sbd.
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potentially large set. Simulations indicate that, for normally
distributed phase errors among all waves, the basis does not
become significantly perturbed until the mean error of each
wave exceeds,l /5. As detailed inf15g and summarized in
Fig. 8, control at this level or better can be achieved by
replacing each wave with a convergent beam propagating in
the same directionkn as the wave, created by illuminating
the rear pupil of a high-numerical-aperturesNAd microscope
objective with a confined, collimated beam located at an ap-
propriate offset position. Many beams of a given lattice can
then be created simultaneously by passing a single flat-phase
beam through an aperture mask or, more flexibly, a spatial
light modulator, prior to insertion at the rear pupilfFig. 8sbdg
of one of two opposed objectivesfFig. 8sadg. Since each
objective transforms a planar wave front to a spherical one,
the convergent beams so defined will maintain the phase re-

lationship necessary to produce abound latticefFig. 8scdg of
the desired properties, confined to anexcitation zonenear the
common focal point, of extent inversely proportional to the
diameter of each input beam. Other beamsfpurple, Fig. 8sadg
from within the maximally symmetric composite set can also
be optionally added with individual low-NA lenses between
the objectives, thereby improving the confinement at each
lattice excitation maximum. Use of opposed high-NA objec-
tives also leads to efficient collection of the resulting signal
fred in Figs. 8sad and 8sbdg in microscopy, spectroscopy, and
quantum optics applications. Finally, two groups of input
beams of orthogonal polarization and controllable amplitude
and phase can be combined prior to rear pupil insertion to
match the field of each convergent beam to the polarization
en of the corresponding plane wave, thereby controlling the
ultimate basis fieldesx ,td.
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FIG. 8. sColord Proposed experimental method:sad opposed microscope objectives deliver multiple converging beams to a common
focus; sbd said beams being created via illumination through an appropriate pupil filter at the rear of each objective. The resulting lattice
fisosurfaces of 0.5maxsuesxdu2d in scdg is then bound to an excitation zone of controllable extent.
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