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Sparse and composite coherent lattices
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A method is described that yields a series(Bf+1)-element wave-vector sets giving rise 0=2 or
3)-dimensional coherent sparse lattices of any desired Bravais symmetry and primitive cell shape, but of
increasing period relative to the excitation wavelength. By applying lattice symmetry operations to any of these
sets, composite lattices ®>D+1 waves are constructed, having increased spatial frequency content but
unchanged crystal group symmetry and periodicity. Optical lattices of widely spaced excitation maxima of
diffraction-limited confinement and controllable polarization can thereby be created, possibly useful for quan-
tum optics, lithography, or multifocal microscopy.
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Optical lattices are spatially periodic interference patterngor this lattice. Second, ®-dimensional lattic§D=2 or 3
arising from the superposition of a finite set of plane wavesrequires a minimum obD+1 wave vectors, since two wave
They have been harnessed in ¢&®) through three dimen- vectors kg, k; define a 1D latticee(x,t)=e(x,t), where
sions(3D) for diverse applications including optical section- &l (k;—kg), and three wavevectorsy,k,,k, define a 2D
ing [1] and superresolutiof?,3] in cellular imaging; photo- |attice e(x,t)=e(x,y,t), where &l(k;XKky+k,Xkg+ks
nic crystal lithography [4,5]; and quantum optics xk;). Finally, the reciprocal lattice corresponding to a given
experimentg6-8], including the demonstration of a quan- p-dimensional directi.e., real-spacelattice comprised of

tum phase transition in a lattice-confined Bose-Einstein conp +1 wave vectors can be constructed from Eneeciprocal
densatd9]. Thus far, all such applications have been limited primitive vectors

to closely packed lattices of periodicity less than the excita-
tion wavelengthh. b.=k-—-k. n=1..D 1
In this paper, | lift this constraint and develop the math- nTrho e e @)

ematical basis for two further construceparse latticesof Since the spatial properties of sparse and composite lattices

many possible periods, including those large compared to will also depend only on the wave vectdtg, the construc-

andcomposite latticescontaining larger sets of plane waves, ..
AP a L tion methods that follow apply to any set of coherent waves,
and resulting in improved confinement of the excitation at : S . :
ncluding acoustic, interfacigle.g., air/water, and monoen-

d_|screte |n'Fen5|ty maxima. Together, sparse comp05|_t c Ia{érgetic matter waves. We therefore use the more general term
tices permit the creation of 2D and 3D arrays of widely

L .7 coherent latticeto describe such constructs, reserving the
spaced, and hence individually resolvable, excitation

. o X : more common expressiooptical lattice for describing the
maxima of controllable polarization, with each maximum : : :

. . . S . . construction of the basix,t) from a set of electromagnetic
confined to near the diffraction limit in all directions. As waves

such, they may be suitable as multifocal excitation fields for . ,

live-cell fluorescence imaging with improved spatial and fl\évf 1can extendtthe o_bfde_rvatﬁl)og_s[mﬂ] a_nd fllndase{ktnft

temporal resolution; the fabrication of photonic crystals with© wave Veclors yielding @-dimensional coherent fat-
tice of any desired Bravais symmetry and Wigner-Seitz

specially tailored diffracting structures in each primitive cell; > i Il sh by first selecti ¢

massively parallel two-photon absorption lithograph@] of primiive cell shape by Tirst selecting a Sﬁ?} 0 (nonu—.

3D structures large compared X0 and optical trapping of nique D primitive vectors to describe the lattice. Expressing
gthese as column vectors, @X D direct lattice matrixA

biological objects or ultracold atoms in optimally steep and” X ) ; .
symmetric potentials. The latter may lead to individually ad-—L81---»@p] is defined. A corresponding s, of recipro-

dressable atomic qubits for use in quantum computation. &l Primitive vectors is found from the relationshig; -a;
As with any 2D or 3D periodic structure, optical lattices =274 arising from the definition of the reciprocal lattice

can be classified by their Bravais symmetry, and described it1l: Expressed in matrix form, this yield8"-A =2l or,

the same crystallographic terms used in most texts on solicduivalently,

state physic$11]. In a key papef12], this connection was

made, along with three powerful observations. First, the spa- B=[by,...,bp] =2m(A")* 2

tial properties of the lattice, such as its symmetry, primitive

cell shape, and periodicity, depend only on the wave vectorashere the prime denotes the transpddés theD X D recip-

k, of the plane waves and not their electric fielgls Thus,  rocal lattice matrix.

the problem of finding a suitable lattice fietdx,t) for any To find the{k,,} for a lattice defined byA, we apply the

application can be broken into two parts: finding thethat ~ monochromaticity conditiotk .| =k=27/\ to Eq.(1), yield-

define the lattice; and finding theg, that determine the basis ing |k,|?>=|ko—b.|>*=k*-2b’,-ko+b’,-b,=k? or, once again

(the field pattern that identically exists in each primitive cell in matrix form,
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FIG. 1. (Color) Wave vectors

\\\\\\ 1@ ; (green and resulting plots of

| ; le(x)]? over (5M\)? for (a) 2D hex-
\ NV ATATY Y & agonal andb) 2D oblique funda-
\ \ \ \ \ \ \ B () 4 ; W AY mental lattices(c) Isosurfaces of
' WY &Y # 0.5max|e(x)|?) over (6.8\)? for a
\ \ \ \\ \ \ Wl FaL.: 3D centered tetragonal fundamen-

tal lattice.

FIG. 2. (Color) (a) Direct lat-
tice primitive vectors and result-
ing (b) wave vectors andc) iso-
surfaces of 0.5male(x)|?) over
three periods of|e(x)|?> for the
simple cubic fundamental lattice
(blue, periody3\/2) and simple
cubic sparse lattices of period
V1IN/2 (green and 59\ /2 (red).
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FIG. 3. (Color) Distribution of

3%&552"’"9 sparse lattice periodicities of

3P b%dg _ le(x)|?, as defined by the normal-
centered cubic ized conventional unit-cell lattice
3Dch<_axé’=lgonal constan@/\, for five lattice types.
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FIG. 4. (Color) (a) Wave vectorggreen and plot of|e(x)|? for a particular 2D square sparse lattice of per{m. (b) Related sparse
lattice obtained by rotating the wave vectord@ by 90°.(c) Composite lattice of improved confinement at the intensity maxima obtained
by superimposing the wave vectors frda and (b).

063406-2



SPARSE AND COMPOSITE COHERENT LATTICES PHYSICAL REVIEW A1, 063406(2005

(a) (b) |

FIG. 5. (Colon Maximally symmetric composite lattices d&(x)[% (@ 2D hexagonal, periodﬁE&/Z (24 wave vectors (b) 3D
body-centered cubic, perio®2\ (96 wave vectors isosurfaces of 0.5mébe(x)[?). (c) Plot of |e(x)|? in the xy plane(blue) in (b), indicating
the contrast of the excitation maxima with respect to the remainder of each primitive cell.

B’ -ko=[b’; -by,....b"p-bpl'/2= BI2. 3) known A, associated with any Bravais symmetry. Further-
o _ _ , more, |G;1G,|=|G4||G,|, so by Eg.(6), any multiplicative
Combining this result with E¢(2) leads to an expression for compination of generating matrices and their inverses is also
the first wave vector: a generating matrix.
Ko=A - Bldm 4) The distribution of sparse lattice periodicities found in
0 k this manner witha<8\ is plotted in Fig. 3 for five Bravais
while the remaining® wave vectors ik} are found from lattice types. The density of solutions is largest for 3D lat-
this equation and Eq1). Wave-vector setgk,} and result- ~ tices, but even 2D lattices offer several possible sizes in this
ing coherent lattices with the symmetry of any of the five 2D'ange. However, although sparse lattices compriseld 61

or 14 3D Bravais lattices can be found in this manner, withVave Vvectors can be created at periodicities much greater
examples shown in Fig. 1 than \, they exhibit increasingly poor confinement of the

A key discovery is that, when different valid primitive excitation with increasing siZeas evident from the green and
vector setga,} are initially choseri.e., those whose integer red lattices in Fig. &)], since they contain only one spatial

binati th tire latt ) f coh i frequency in each of th®+1 directions defined by the
combinations span the entre fathce Series of coheren possible combinations ofD wave vectors from the
lattices arise of identical symmetry and primitive cell Shape’(D+1)-eIement set
?hurteglfgirgr]lg;\e_?&r}nagére;ispeonnodOiILCIty\;vg\r/]e?\)/(:é?grleszu;%wng Consequently, to create a lattice of both large
: o ponding wav ' N-normalized periodicity and confinement of the excitation
and their resulting lattices is given in Fig. 2.

One manifestation of the diffraction limit is that no lattice to significantly less than in all directions at each of the
. ) intensity maxima therein, additional coherent waves must be
can have a spatial frequency greater th&n Therefore, in

h . there will alw b latti £ minim msuperimposed with thB+1 waves of a known sparse lattice
Sufi da tsfmesd’ thefir?d m ﬁt Ialystti g a athceblo latti YUMot desired symmetry and periodicity in a manner that does
period, termed amenta’ 1atlicge.g., the biue 1atlce ., adversely affect these properties. Such composite lattices
in Fig. 2(c)]. Lattices of period larger than the fundamental of N>D+1 coherent waves can be created. as shown in the
lattice comprise the sparse lattices mentioned earlier. Ne P . !

. . . xample in Fig. 4 lying one or mor mmetr -
primitive vector setda,}, leading to their creation can be Exa ple g- 4, by applying one or more symmetry op

found f K foll Si th fors i erations that map the lattice onto itself to the wave vectors of
ound from a known sefa,}, as follows. Since the vectors in the original lattice, and then superimposing the resulting new

each set span the same lattice, they can be expressed as 483 of vave vectors on the original one. This process can then
teger combinations of one another. In matrix form, this iM-pe repeated with additional self-mapping symmetry opera-
plies tions to further increase the spatial frequency content of the
A’ =GA’, andA’, =HA’, (5) lattice and the confinement at the individual excitation
maxima therein.
WhereA| ,A|| are the direct lattice matrices associated with C|ear|y then, the most t|ght|y confined and Symmetric ex-
{anhi,{anhy, andG andH haveD X D integer elements. From  cjtation maxima within each primitive cell of a given Bravais
Egs. (5), G™'=H. Hence,G™ also has integer elements. |attice will occur for themaximally symmetric composite lat-
Thus, |G| and |G™| must be integers. However, sin@™"|  tice comprised of all wave vectors obtained by applying all
=1/|G| (true for any square matrixwe conclude that valid combinations of symmetry operations to the wave-
G| = +1. (6) vector set of an initial sparse lattice of the same Bravais
symmetry. Since the 2D square, 2D hexagonal, and 3D lat-
Thus, newgenerating matrice$s, giving rise via Eq.(5) to  tices of the cubic crystal group have the highest symmetry,
new direct lattice matriced, and related sparse lattices of they can result in sparse, maximally symmetric composite
possibly differing periodicity, can be found by cycling lattices of particularly well-confined, widely separated exci-
through different possible combinations of integer elementsation maxima, as shown in the examples in Fig. 5. As men-
gij and identifying those for which Ed6) is satisfied. Any tioned above, such lattices may prove useful for multifocal
given G can be used to generate new matriéggsfrom a  microscopy, spectroscopy, lithography, and quantum optics.
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FIG. 6. (Color) 72 wave vectorggreen and corresponding electric field vectdmsultiple colors at eight times over one oscillation cycle
for bases that optimize th@) x component;(b) z component; andc) right circulzicomponent of the total lattice field at each of the
excitation maxima of the same maximally symmetric simple cubic lattice of pei®i/2.

Also as mentioned above, the methods described thus farhe unknownsy, 6, ¢ are then found, thereby determining
can be applied to any type of coherent waves. However, fothe plane-wave field e,(x,t), by applying to
the specific case of optical lattices comprised of electromagRe{e, (x4,ty)’ -€t=G(x, §, ) the maximization conditions
netic plane waves, there still remains the issue of determingG/ gy =dG/96=dG/ =0, Gl Ix*<0, #G/9¢*<0, and
ing the complex electric field, of each constituent wave and #G/gy?<0. For example, optimizing linear polarization
resulting total basis fielé(x,t) that identically exists within (es=E4&,), we find
each primitive cell of a given lattice. Once the lattice and its R )
set{k,} of N+1 wave vectors is determined, a general ap- €= €8 neXH— i (K - Xg — wtg)], 9
proach would be to optimize a desired basis propéfty ang optimizing circular polarizatioie,=E4&s where &;
:_Y(eo,el, e BN, 'Freated as a functhn of the plane-wave E(épkin_iépin)/\‘/i and&, | =2y, ¥ &] we find
fields e,, and subject to the constraint that the waves are
transverse, i.ekk,-e,=0 O n. A simpler yet still effective _
prescription, however, that leads to bases of highly confined €=
excitation maxima of controllable polarization, is to maxi-
mize the projection of each complex plane-wave figlc,t) (10
onto a desired statey of the total lattice fielde(x,t) at a Figure 6 shows the p|ane_Wave electric field VECEP,(Xd,t)
desired positiorxy and timety. Since the physical electric gt eight timed,=ty+27q/8,q=0,...,7, over one oscillation
field is given by the real part of the complex field, the physi-cycle that arise when this procedure is used to optimize three
cal projection ofe,(x,t) ontoey atXy andty is given, through  different polarization states at the excitation maxima of the
analogy to the bra ket notation of quantum mechanics, by same lattice.

- i(ép i ékn)ékin + épkLn
\/1 + (ép ’ ékn)2

exgd—i(kp - Xg— otg)].

Refe(Xq,tg)' -€g}- If we additionally defines; in reference to
some unit vectorg, (e.g., eyllé, for linear polarization,
eqL & for circular polarization thenk, and &, define a

Maximally symmetric lattices of the cubic crystal group
with bases such as these offer superior excitation confine-
ment at discrete points compared to single-focus methods

natural orthonormal coordinate system: such as confocal microscop¥igs. 1a) and 7b)]. Further-
more, the improved confinement and symmetric wave-vector
distribution lead to steeper, more symmetric optical trapping
potentials[Figs. 71c) and 7d)], due to the correspondingly
sharper intensity gradients and cancellation of scattering
forces.

Of course, the unavoidable corollary is that the experi-
mental generation of such lattices requires careful control of

the phase and propagation direction of each plane wave in a

ékn|| kn- éka_n” (ép X ékn)1 ékLn: é(n X éka_n (7)

in which e,(x,t) can be expressed as

en(x,1) = e;[cosy expli )&
+sin y expli) €y nlexdi(ky -x - wt)].  (8)

FIG. 7. (Colon (a),(b) Isosurfaces of 50%blue), 25% (green, and 12.5%red) of max|e(x)|?) at (a) the focus of a confocal microscope
(calculated vig 13]); and (b) a single excitation maximum within a maximally symmetric composite body-centered cubic lattice of period
V26\. (c),(d) Optical trapping potentidll(x) in the (c) xy and(d) xz planes for a dielectric particler=1.6,ka=0.8 in H,0, calculated via
[14]) for the confocal(red) and lattice(green cases considered i@),(b).
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FIG. 8. (Color Proposed experimental metha@) opposed microscope objectives deliver multiple converging beams to a common
focus; (b) said beams being created via illumination through an appropriate pupil filter at the rear of each objective. The resulting lattice
[isosurfaces of 0.5mé&pe(x)[?) in (c)] is then bound to an excitation zone of controllable extent.

potentially large set. Simulations indicate that, for normallylationship necessary to producéaund lattice[ Fig. 8c)] of
distributed phase errors among all waves, the basis does nitite desired properties, confined toextitation zoneear the
become significantly perturbed until the mean error of eacltommon focal point, of extent inversely proportional to the
wave exceeds-\/5. As detailed if15] and summarized in diameter of each input beam. Other bedmsple, Fig. 8a)]

Fig. 8, control at this level or better can be achieved byfrom within the maximally symmetric composite set can also
replacing each wave with a convergent beam propagating ibe optionally added with individual low-NA lenses between
the same directiotk, as the wave, created by illuminating the objectives, thereby improving the confinement at each
the rear pupil of a high-numerical-apertuféA) microscope lattice excitation maximum. Use of opposed high-NA objec-
objective with a confined, collimated beam located at an aptives also leads to efficient collection of the resulting signal
propriate offset position. Many beams of a given lattice car{red in Figs. 83 and 8b)] in microscopy, spectroscopy, and
then be created simultaneously by passing a single flat-phasgiantum optics applications. Finally, two groups of input
beam through an aperture mask or, more flexibly, a spatidbeams of orthogonal polarization and controllable amplitude
light modulator, prior to insertion at the rear pufiiig. 8b)]  and phase can be combined prior to rear pupil insertion to
of one of two opposed objectivd$ig. 8@)]. Since each match the field of each convergent beam to the polarization
objective transforms a planar wave front to a spherical oneg, of the corresponding plane wave, thereby controlling the
the convergent beams so defined will maintain the phase radtimate basis field(x,t).
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