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We present a theoretical study of dissociative multiphoton ionization of the H2
+ molecular ion in perturba-

tive and nonperturbative regimes including both electronic and nuclear degrees of freedom. Differentialsin
proton and electron energyd ionization cross sections have been evaluated for various photon energies, laser
intensities, and pulse lengths. We have found that the proton energy distribution is modulated by vertical
Franck-Condon transitions but also by vibrational resonances associated with intermediate electronic states. We
have also found that, as expected, nonperturbative results tend to the time-independent perturbative ones when
both the pulse length increases and the laser intensity decreases. No divergence near intermediate-state reso-
nances is found in the perturbative results when the nuclear motion is properly taken into account in the
calculations.
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I. INTRODUCTION

The rapid developments in laser technology have made
recently available intense ultrashort laser pulses in the fem-
tosecond sfsd and subfemtosecondssub-fsd time regimes
f1–3g which allow one to perform time-resolved spectros-
copy at the atomic time scalef4,5g. Experiments based on
high-order harmonic generationsHOHGd are now able to
provide fs and sub-fs pulses in the xuv rangesi.e., tens to
hundreds of eVd with high enough intensityf6g to induce a
nonlinear response of most atoms and moleculesf7g. In ad-
dition, very recently, free electron laserssFEL’sd have also
been able to provide xuv pulses in the fs regimef8,9g. The
use of ultrashort xuv pulses opens up the way to study el-
ementary two- and three-photon ionization processes in
simple atomssHe,Ne,…d f7g and moleculessH2

+,H2, . . .d.
Simple systems that are accessible to accurate theoretical de-
scriptions are crucial to guide theoretical developments in
strong field multiphoton ionization and to reach a deeper
insight on the basic mechanisms involved in the latter pro-
cess.

The dynamics of bound electronic states typically occurs
in the sub-fs time scalesthe revolution time of an electron
orbiting around a proton is,150 asd. Electronic processes
related to autoionization can be much slower and occur in
the fs time scale. Recent experiments on rare gas atoms have
taken advantage of this large difference and have led to in-
teresting temporal pictures of ionizationf4,10g and autoion-
ization f5g. Molecular processes are even more interesting
due to the presence of the nuclear motion, which is mani-
fested through rotation, vibration, and the possibility of dis-
sociation. Vibration and rotation typically occur in the fs
time scale and, therefore, may compete efficiently with slow

electronic processes such as autoionizationf11g. The new
available experimental techniques open up the possibility to
analyze in detail the role of the nuclear motion in the xuv/fs
and xuv/sub-fs context and, in particular, how this nuclear
motion affects the ionization of molecules.

Although some theoretical work has been carried out for
atoms interacting with xuv/fs and xuv/sub-fs laser pulses
f12g, applications to molecules are very scarce, mainly due to
the complexity introduced by the nuclear degrees of free-
dom. Thus, many theoretical applications have concentrated
on the simplest H2

+ molecule. Detailed investigations of H2
+

ionization have been carried out in the infraredsird regime
sseef13g and references thereind. Most of these applications
have made use of one-dimensionals1Dd models. A notable
exception is the work of Ref.f14g in which the electronic
motion is described by including the full dimensionality of
the problem. For laser intensities of the order of
1013–1014 W cm−2, ionization is dominated by tunneling
f13g in the ir regime, whereas it is dominated by multiphoton
ionization in the xuv regime. This is because the ponderomo-
tive energy is much larger in the former than in the latter
case. In the xuv domain, multiphoton ionization of H2

+ has
been recently studied by solving the time-dependent
Schrödinger equationsTDSEd within the frozen nuclei ap-
proximationsFNAd f15–17g. The effect of nuclear vibrations
have been included in both perturbativef18g and nonpertur-
bative f19g approaches.

The importance of nuclear motion in the study of reso-
nance effects in H2

+ ionization by xuv/fs and sub-fs pulses
has been recently investigatedf20g. Preliminary investiga-
tions have shown that, at variance with atoms, electronic
resonance effects are barely seen in the photoelectron energy
spectra. This is because the electronic resonances are diluted
among the different dissociative states. In contrast, resonance
effects are perfectly visible when one analyzes the kinetic
energy distributionsKEDd of the nuclear fragments.

The aim of the present work is to systematically investi-
gate proton and electron energy distributions in two-photon

*Electronic address: alicia.palacios@uam.es
†Electronic address: bachau@celia.u-bordeaux1.fr
‡Electronic address: fernando.martin@uam.es

PHYSICAL REVIEW A 71, 063405s2005d

1050-2947/2005/71s6d/063405s11d/$23.00 ©2005 The American Physical Society063405-1



ionization of H2
+ by xuv/fs and xuv/sub-fs laser pulses, both

in perturbative and nonperturbative regimes, in the resonant
and in the nonresonant regions. In particular, we would like
to investigate the limits of validity of perturbation theory for
both differential and integrated ionization rates. The advan-
tage of using H2

+ is that it allows one to treat the six dimen-
sions of the problem within the Born-OppenheimersBOd ap-
proximation. Production of H2

+ molecules in a well-defined
vibrational statese.g.,v=0d is now possible and has in fact
recently been used to study nonionizing dissociation dynam-
ics f21g and tunneling ionizationf22g. Previous attempts
treating all dimensions of the problem have only been re-
ported in the nonresonant regionf19g.

The paper is organized as follows. In Sec. II the theoret-
ical methods used in the present work are explained in detail,
in particular how the effect of the nuclear motion has been
introduced both in the perturbative and nonperturbative re-
gimes. All electronic and vibrational wave functions have
been described in terms ofB-spline basis sets. Computational
details concerning the use of these basis sets are given in
Sec. III. Section IV presents the different convergence tests
that have been performed to select the electronic and nuclear
basis sets. The results for differential as well as integrated
two-photon ionization cross sections are presented in Sec. V.
The paper ends with some conclusions in Sec. VI.

II. THEORY

A. Electronic and vibrational structure of H 2
+

We will neglect mass polarization terms and relativistic
effects. Also, we will assume that there is no interaction be-
tween vibrational and rotational motions, so that the rota-
tional wave function can be factored out. In the following,
the origin of the electronic coordinates will be placed in the
middle of the internuclear axis. The Hamiltonian of H2

+ in
the body-fixed frame can be written as the sum of the relative
kinetic energy of the nuclei, −¹R

2 /2m, with m the reduced
mass, and the electronic HamiltonianHelsr ,Rd, which con-
tains all the potential energy terms, including the nucleus-
nucleus repulsion:

Hsr ,Rd = −
1

2m
¹R

2 + Helsr ,Rd. s1d

The vectorr indicates all electronic coordinates andR is the
internuclear distance. In the BO approximation, the complete
stationary wave function is given by

Cnvn
sr ,Rd =

xvn
sRd

R
cnsr ,Rd, s2d

where the indicesn and vn indicate specific electronic and
vibrational states. The electronic and nuclear wave functions
are the solutions of

fHel − «nsRdgcnsr ,Rd = 0 s3d

and

fTsRd + «nsRd − Wnvn
gxvn

sRd = 0, s4d

where «nsRd is the BO potential energy curve of thenth
electronic state,Wnvn

is the total energy of the molecule in
the vibrational statevn and the electronic staten, and

TsRd = −
1

2m

d2

dR2 +
JsJ + 1d
2mR2 , s5d

with J the total angular momentum. As in previous works
f11,23,24g, the effect of the centrifugal term will not be taken
into account because we are not interested in analyzing in
detail rotational effectssin fact, we have found that ioniza-
tion and dissociation patterns are practically independent of
the value ofJ chosen to perform the calculationsd.

For a given value ofR, the electronic continuum states of
energy «nsRd satisfy the usual boundary conditions corre-
sponding to a single incomingsoutgoingd spherical wave
with a well-defined value of the angular momentuml and a
combination of outgoingsincomingd spherical waves for all
possible values of the angular momentum that are compat-
ible with the molecular symmetrysseef24g for detailsd. For-
mally, there are an infinite number of degenerate continuum
statessone for each value ofld and, consequently, each of
these states must be labeled using the two indicesl, «n. As
usual, these continuum states are normalized to the Diracd
function sinfinite normd, in contrast with bound electronic
states that are normalized to the Kroneckerd function sfinite
normd. At variance with the electronic continuum, there is
only a single vibrational continuum state for a given energy
Wnvn

, which is due to our neglect of nuclear rotation and,
therefore, of the coupling between different values ofJ. Vi-
brational states that belong to the continuumsi.e., dissocia-
tive statesd satisfy normalization conditions similar to those
of electronic states.

B. Perturbative approach

In this work we study two-photon ionization of H2
+ from

the X 2Sg
+s1ssgd ground state using linearly polarized light.

We restrict this study to the dipole approximation and to the
case of H2

+ molecules oriented along the polarization direc-
tion of the incident light. In this particular case, the dipole
selection rule implies thatDm=0 and, therefore, that the first
photon couples the initial molecular state to intermediate
states ofsu symmetry and the second photon couples the
latter to final states ofsg symmetry according to the se-
quence:sg→su→sg.

Within the lowest order of perturbation theorysLOPTd,
the transition amplitude is given by

Mfvfgvg

l = lim
e→0

o
k

oE
vk

Ffvf,kvk

l Fkvk,gvg

Wkvk
− Wgvg

− v + ie
, s6d

where the indicesf, k, andg refer to the final, intermediate,
and ground electronic states, respectively. Vibrational states
associated with these electronic states are denotedv f, vk, and
vg, respectively. The energy of the final state is determined
by energy conservation,Wfvf

=Wgvg
+2v. The index f indi-
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cates the energy of the electronic continuum state andl is the
channel indexsi.e., as explained above, the asymptotic value
of the angular momentumd. The integralsFkvk,gvg

andFfvf,kvk

l

are given by

Fkvk,gvg
=E dRxvk

sRdxvg
sRdkckuDucgl, s7d

Ffvf,kvk

l =E dRxvf
sRdxvk

sRdkc f
l uDuckl, s8d

where the brackets indicate integration over electronic coor-
dinates andD is the dipole operator.

At a given photon energyv, the cross section, differential
in the proton kinetic energy, can be written

ds scm4 sd
dEfvf

= Cs2dv−2o
l

uMfvfgvg

l u2, s9d

whereCs2d is a conversion factor from atomic to cgs units
and is 2.505 47310−52 cm4 s, v and Mfvfgvg

l are given in
a.u., andEfvf

is the proton kinetic energy in the center of
mass—i.e.,Efvf

=Wfvf
−« f where « f is the energy of the

ejected electron. The latter formula, which is the result of
energy conservation in the photoabsorption process, shows
that the cross-section differential in electron energy is simply
the mirror imagesreferred toWfvf

d of the cross-section dif-
ferential in proton energy. A straightforward integration of
Eq. s9d leads to the total cross section.

C. Nonperturbative approach: The time-dependent
Schrödinger equation

In the nonperturbative regime, one directly solves the
TDSE, which in the dipole approximation is written as

i
]

]t
Fsr ,R,td = fH + VstdgFsr ,R,td, s10d

whereH is the Hamiltonian given in Eq.s1d andVstd is the
laser-molecule interaction potential, which is written as the
productp ·Astd in velocity gauge. In this gauge, for a total
pulse durationT and a photon energyv, the vector potential
Astd, polarized along the vectorez sthe direction of the inter-
nuclear axisd, is defined in the intervalf−T/2 , +T/2g as

Astd = A0 cos2Sp

T
tDcossvtdez, s11d

The vector potential is related to the electric field in length
gauge:

Estd = −
]

]t
Astd. s12d

The time-dependent molecular wave functionFsr ,R,td is
expanded on the basis of stationary statesCnvn

sr ,Rd given in
Eq. s2d:

Fsr ,R,td = o
n

oE
vn

cnvn
stdCnvn

sr ,Rdexpf− iWnvn
tg

+ o
l
E d«oE

v«

c«v«

l stdC«v«

l sr ,Rdexpf− iW«v«
tg,

s13d

where the first term is a summation over bound electronic
statessand their corresponding vibrational states, including
the dissociation continuumd and the second one is an integral
over electronic continuum states for alll sincluding again the
corresponding vibrational statesd. Substituting this expansion
in the TDSE and neglecting nonadiabatic couplings leads to
a system of coupled differential equations that must be inte-
grated over the whole pulse durationT to obtain the un-
known coefficientscnvn

andc«v«

l .
In the ionization channel, the differential density of prob-

ability in the proton kinetic energy is simply given by

dP

dEH+
= o

l
E d«uc«v«

l st = T/2du2, s14d

whereEH+ is the center-of-mass energy of the outgoing pro-
tons. Similarly, the differential density of probability in the
electron energy is given by

dP

d«
= o

l
oE
v«

uc«v«

l st = T/2du2. s15d

Integrating Eq.s14d over vibrational energyfor Eq.s15d over
«g gives the total ionization probabilityP, which is related to
the cross sections:

s scm2N sN−1d = Sv

I
DNC8sNd

T
P, s16d

whereI is the laser intensity in W cm−2, T is the pulse dura-
tion in seconds,v is the photon energy in joules, andC8sNd
is the dimensionless coefficient taking into account the time
dependence of the intensity,C8s1d= 8

3 ,C8s2d= 128
35 ,C8s3d

= 3072
693 , . . .. Here T/C is an effective pulse durationf25g that

takes into account the time dependence of the intensity.
Thus, by including this term, we exclude the effect of having
used a particular pulse shape and, therefore, the cross sec-
tions obtained from the TDSE approach will be directly com-
parable with those obtained from the time-independent
LOPT approach.

III. COMPUTATIONAL METHODS

All electronic and vibrational wave functions are ex-
panded on a basis ofB-splines in a box of lengthRmax. Due
to the mass difference between electrons and protons, we
define two different sets ofB-splines to calculate the elec-
tronic and vibrational statessvibrational states are defined in
a much smaller box than the electronic onesd. The vibrational
wave functions are expanded as
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xvn
sRd = o

i=1

N

ci
vnBisRd, s17d

and the electronic wave functions of the groundssgd and
intermediatessud states are written using the one-center ex-
pansion:

cnsr ,Rd = o
l=0

lmax

o
i=1

Nl

cil
nBisrd

r
Yl

0sr d, s18d

where the angular partsYl
0 are the spherical harmonics with

m=0 swhich is our cased and lmax is the maximum value of
the angular momentum included in the expansion. As ex-
plained at length inf24,26g, the advantage of the one-center
expansion is that one avoids linear dependences in the basis
set, but the price to pay is that, for largeR, one must include
large values ofl to obtain a reasonable description of the
cusp in the vicinity of the nuclei.

As the above wave functions are defined in a finite box,
the resulting spectra are discrete. The eigenvalues that appear
above the ionization limit when Eq.s3d is diagonalized cor-
respond to the electronic continuum. Similarly, those lying
above the dissociation limit when Eq.s4d is diagonalized
correspond to vibrational continuum states. The correspond-
ing continuum states are normalized to unity. Thus, to re-
cover the correct normalization one must renormalize these
states using the density of states. For example, in the case of
the vibrational continuum, the continuum state with the cor-
rect normalization,xvn

, is related to the discretized con-
tinuum state that results from the diagonalization,x̃vn

,
through the formula

xvn
= rvn

1/2x̃vn
, s19d

where r is the density of vibrational states given byrvn
=2/sWnsvn+1d−Wnsvn−1dd.

The final electronic continuum statesssgd are not ob-
tained by direct diagonalization of the Hamiltonian in the
aboveB-spline basis. As described in detail inf24g, such a
procedure does not lead to states with the proper asymptotic
behavior. To avoid this problem we have used theL2 close-
coupling method introduced by Cortés and Martínf27g to
describe the continuum states of atomic systems and later
generalized in Refs.f27,28g to treat molecular continuum
states. Thus, we define a set of orthogonal uncoupled-
continuum statessUCS’sd for each channell:

z«nlsr d = o
i=1

Nl

ci
nBisrd

r
Yl

0sr̂d, s20d

where the indexl denotes the angular momentum of the elec-
tron in the continuum andn indicates the electronic state of
energy«n. Each UCS, for a givenl, is formally associated
with a projection operatorPl which satisfies

Plz«nl = z«nl ,

PlPl8 = dll8Pl8, s21d

so that the UCS’s are eigenfunctions of the uncoupled
Hamiltonian:

So
l8

Pl8HelPl8 − «nDz«nl = 0. s22d

Solution of the latter equation in the finite box used to define

the B-spline basis leads to discretized UCS’sz̃nl that are
normalized to unity. Since, by definition, UCS’s with differ-
ent l ’s are not coupled, they can be renormalized exactly as if
they were single-channel states—i.e., through the density of
statesrnl

1/2:

z«nl = rnl
1/2s«ndz̃nl, s23d

wherernl=2/s«sn+1d−«sn−1dd. Coupling between differentl ’s
is then introduced through the Lippman-Schwinger equation

c«nl = z«nl + G+s«ndVz«nl , s24d

whereG+s«nd is the Green function associated with the exact
HamiltonianHel and

V = o
ll8

lÞl8

PlHelPl8. s25d

This equation ensures that the resulting continuum state sat-
isfies the proper boundary conditions. The Green function is
evaluated as described inf27g using the basis of UCS’s cal-
culated in the previous steps. The method consists in project-
ing the usual relationG+=G0

++G0
+VG+, where G0

+ is the
Green function operator associated with the zero-order
Hamiltonian given in Eq.s22d, into the complete UCS basis
and solving the resulting system of linear equations. For each
value ofR, the electronic statesc«nl are evaluated in an en-
ergy grids«nd that is chosena priori. To ensure that, for each
l, at least one of the UCS’s corresponds to a chosen energy,
we have used an inverse interpolation proceduref28g, which
consists in varying the box size until one of the«n eigenval-
ues coincides with the chosen energy. The energy grid is
chosen to be equidistant in the vectork sk=Î2«nd so that it
simulates the spectrum that would be obtained in a box. As
we will see below, this is important for coherence with the
finite box used to solve the TDSE.

In all calculations presented below, the electronic states of
H2

+ have been represented in a basis of 140B-splines of
orderk=8, including angular momentum froml =0 to l =12,
in a box of radial length of 60 a.u. By changing the box size
and/or the number of basis functions, we have checked that
this basis set leads to practically converged energies in the
Franck-Condon region. Figure 1 shows the potential energy
curves of H2

+ and a typical two-photon transition leading to
ionization of H2

+.
The B-spline basis sets used to describe the vibrational

states are different in the LOPT and TDSE calculations, and
will be described in the next section.
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IV. CONVERGENCE TESTS

To analyze the quality of the basis sets and wave func-
tions used in the present work, we have performed calcula-
tions in the fixed-nuclei approximation forR=2.0 a.u.sthe
equilibrium distance of H2

+d. This approximation has been
already used by Apalateguiet al. f18g to obtain two-photon
ionization cross sections of H2

+ using perturbation theory. A
comparison between our results and those of Ref.f18g is
given in Fig. 2. The agreement is excellent. We have checked
that results obtained in the length and velocity gauges are
practically undistinguishable. As usual, convergence of the
calculated cross sections is much faster in the velocity gauge
than in the length gauge. For this reason, all results presented
below, both in the LOPT and TDSE frameworks, have been
obtained in the velocity gauge.

As can be seen from the comparison of this figure with
Fig. 1, perturbative calculations performed in the fixed-
nuclei approximation lead to divergences when the photon
energy exactly matches the energy difference between the
ground state and a bound state ofsu symmetry. This occurs
because the denominator in Eq.s6d vanishes. This failure of
LOPT is well known: similar divergences have been ob-
tained in multiphoton ionization of atoms when the photon
energy is in resonance with the energy required to excite
those atomsssee, e.g.,f12gd. In the atomic case, this problem
can be solved by including the laser-induced width of the
intermediate states. However, as we will see later, a similar
procedure cannot lead to a correct description of H2

+ ioniza-
tion in the resonance region. This failure in the LOPT calcu-
lations comes from the use of the fixed nuclei approximation
and not from LOPT itself. This can be easily understood with
the help of Fig. 1. Thesu intermediate electronic states are
repulsive and, therefore, support a continuum of vibrational
states. Thus the situation is formally identicalsalthough
physically differentd to above threshold ionizationsATI d in
atoms: transitions associated with the first photon couple the
ground state with a series ofsvibrationald continuum states
ssee the shadowed areas in Fig. 1d. In this case, the integral
in Eq. s6d can be split into a principal value term and ad
function term representing a resonant one-photon transition
to an intermediate continuum statesthe poled. Contribution
of this term is always finite and can be treated accurately
with discretization techniquesf26g. Consequently, two-
photon ionization cross sections obtained within the LOPT
should not diverge in the vicinity of intermediate-state reso-
nances even without inclusion of the laser-induced width.

To account for the nuclear motion in LOPT, we have cal-
culated the H2

+ vibrational wave functions in a basis set of
400 B-splines of orderk=8, contained in a box of 15 a.u.
The initial vibrational state hasvg=0 and is supported by the
1ssg potential energy curve. All vibrational statesvk associ-
ated with aksu intermediate electronic state have been in-
cluded in the calculations. At variance with results obtained
in the fixed-nuclei approximation, we have found that, in the
photon energy range considered in Fig. 2, convergence is
already achieved by just including the lowest tensu elec-
tronic states. This is because dipole matrix elements are
strongly suppressed when the overlap between the initial and
intermediate vibrational states is small, which is the case for
the higher-su states. Although this greatly simplifies the cal-
culations, they still are computationally much more expen-
sive than those obtained in the fixed-nuclei approximation.

The final states ofsg symmetry have been determined for
l =0,2, . . . on anenergy grid between 0 and 1.5 a.u. that in-
cludes from 24 to 35 levels, depending on the photon energy.
Obviously, the higher the photon energy, the higher the num-
ber of electronic states included. As mentioned above, evalu-
ation of the pole contribution in Eq.s6d can be done within
our discrete representation of the final states. Here we have
used an approach proposed by Cormier and Lambropoulos
f29g that explicitly avoids the evaluation of the limit by using
a sufficiently small value ofe. The method is based on the
following heuristic considerations. For a box of infinite size,
the energy spacing between consecutive levels tends to zero
and, therefore, evaluation of the transition amplitudes whene

FIG. 1. Potential energy curves of H2
+ as functions of internu-

clear distance. The figure shows the ground state, the ten lowest
states ofsu symmetry, and the ionization threshold 1/R. A typical
two-photon transition leading to ionization is illustrated by solid
arrows. The two shadowed areas in the right-hand side column in-
dicate dissociation and ionization+dissociation energy regions.

FIG. 2. Two-photon ionization cross section of H2
+ as a function

of photon energy. Results obtained within the fixed-nuclei approxi-
mation and the LOPT. Solid line: present results. Dashed line: re-
sults of Apalateguiet al. f18g.
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also tends to zero is meaningful. However, for a box of finite
radial length, it is not possible to evaluate that limit because
this would require the knowledge of the wave functions in
energy intervals much smaller than those corresponding to
that box. To avoid this problem the value ofe must be com-
parable to the energy spacing between consecutive energy
levels. In Fig. 3 we show the variation of the two-photon
ionization cross section with the value ofe chosen to evalu-
ate Eq.s6d. It can be seen that the cross section takes spuri-
ous values for very small values ofe, but fore.0.007 a.u. it
exhibits a simple monotonous behavior that allows one to
easily extrapolate its value fore=0. The valuee=0.007 is
practically identical to the energy spacing between consecu-
tive vibrational intermediate states. This value ofe has been
used in all calculations reported below. We have checked that
using e values within the intervalf0.005–0.009g barely
changes the results. We have also checked that the results do
not change when the size of both the nuclear and the elec-
tronic boxes are increased.

We have studied the convergence of the calculated cross
sections with the number of partial waves included in the
expansion of the final electronic continuum states. Figure 4
shows results obtained within the LOPT by including up to
l =6 at a photon energy of 0.8 a.u.. The main contributions
come froml =0 andl =2. In fact, the figure shows that very
similar results are obtained by only including these two par-
tial waves in the close-coupling expansion. The same con-
clusion is obtained at a photon energy of 0.6 a.u. Conver-
gence of the TDSE calculations withl is similar. This is
consistent with previous works performed at intensities of
1014 W/cm2 using elliptic coordinatesf17,19g. Therefore, in
all LOPT and TDSE calculations reported below, we have
only included thel =0 and l =2 channels in the final elec-
tronic states.

An important technical aspect in the TDSE calculations is
the choice of the box size, which must be compatible with
the pulse durationT. For such a pulse, the frequency spectra
obtained from a Fourier transformation has a spectral width
shalf-height widthd given by

Dv =
2p

T/2
. s26d

To correctly treat the continuum spectra using a discretiza-
tion procedure, the energy separation between discretized
statessboth vibrational and electronic statesd must be smaller
than the spectral width. This implies that the size of the
electronicsnucleard box must be chosen so that the condition
D«n!Dv sDWnvn

!Dvd is fulfilled. This condition ensures
that the electronicsvibrationald wave packet does not reach
the limit of the electronicsvibrationald box before the end of
the pulse. This technical constraint does not exist in LOPT
because a basic assumption of this theory is that the pulse
duration is sufficiently longsT→`d. Hence, the basis sets
si.e., the box lengthsd used in LOPT are not necessarily the
same as those used in the TDSE approach. In the TDSE
calculations reported below, the electronic grid is chosen ac-
cording to the pulse duration and the photon energy. For
example, for a pulse duration ofT=10 fs, an energy grid
spacing ofD«,0.03 a.u. must be used, while for shorter
pulses, one can use a larger energy spacing to simplify the
calculations without a significant loss of accuracy. We have
checked that several choices fulfilling the above criteria lead
to TDSE results that are practically identical. To obtain the
vibrational states used in the TDSE calculations, we have
used a basis of 300B-splines of orderk=8 in a box of 14 a.u.
for all pulse durations. Although the vibrational energy spac-
ing obtained with this basis is not constant, it is always lower
than 0.03 a.u. in the whole spectrum and, therefore, it is
appropriate to describe the evolution of the system with
pulses of 10 fs or shorter.

V. RESULTS AND DISCUSSION

We have solved the TDSE for various photon energies,
laser intensities and pulse durations, and we have compared
the results with those obtained with the LOPT. This allows us

FIG. 3. Convergence of the two-photon ionization cross section
of H2

+ with e fsee Eq.s6dg, for a photon energy of 0.6 a.u. FIG. 4. Differential cross section for two-photon dissociative
ionization of H2

+ at a photon energy of 0.8 a.u. The proton kinetic
energy is referred to the center of masssc.m.d of the system. Results
are shown for two different choices oflmax in the close-coupling
expansion of the final electronic continuum states.
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to establish the limits of validity for the latter, which is of
practical interest due to its simplicity compared with the
TDSE approach. We have chosen two different photon ener-
gies,v=0.6 and 0.8 a.u. In the first case, we are far from the
region where intermediate-state resonances are expected to
appear, while in the second case, we are close to the region
where the first intermediate-state resonance appears in the
fixed-nuclei approximationssee Fig. 2d.

Figure 5 shows differential two-photon ionization
cross sections for intensities ranging from 1012 to
231014 W cm−2 and a fixed pulse duration ofT=10 fs. The
figure also includes the results of the LOPT. As expected, the
TDSE results tend to the LOPT ones as the laser intensity
decreases. Forv=0.6 a.u., the LOPT and TDSE results are
close for I ø1013 W cm−2. The perturbative approach is not
appropriate when the intensity reaches 1014 W cm−2. For v
=0.8 a.u., similar patterns are observed, but there is a better
agreement between TDSE and LOPT at larger intensities. We
note in Fig. 5 that the cross section is much larger atv
=0.6 a.u. than atv=0.8 a.u.

Figure 6 shows the final populations of the initial state,
the dissociative ionization channels, and the dissociation
channelssi.e., channels not leading to ionizationd as func-
tions of laser intensity. The populations in the dissociative
and dissociative ionization channels are extracted from the
solution of the TDSE by adding, at the end of the pulse, all
contributions associated with individual dissociative and dis-
sociative ionization states, respectively. The dissociation
probability is much higher than the ionization probability for
I ,1014 W cm−2, whereas both probabilities are similar and
even compete for larger intensities. This is consistent with
the fact that, for photon energies ranging from
0.6 to 0.8 a.u., dissociation from the ground state is mainly
due to one-photon absorption while ionization requires ab-
sorption of two photons. The log-log scale used in Fig. 6
shows that these populations are proportional toI and I2,
respectively, while the population of the ground state re-

mains close to 1. This indicates that one- and two-photon
absorption can be well described by perturbation theory, at
least forI ,1014 W cm−2.

We analyze now the behavior of the differential two-
photon ionization cross sections when the pulse duration is
changed keeping a fixed intensity ofI =1012 W cm−2. The
results are shown in Fig. 7. As expected, TDSE results con-
verge to the time-independent LOPT ones when the pulse
duration increases. For long pulse durationsi.e., small band-
widthd, peaks show up in the cross section. As we will dis-
cuss later, these peaks are related to virtual resonant transi-
tions between electronic states. Most structures disappear for
short pulsessi.e., large bandwidthd due to the larger energy
spread of the pulse which makes resonant transitions to be
less efficient. For the shortest pulses considered in this work

FIG. 5. Differential two-photon ionization cross sections of H2
+

vs proton energy for different laser intensities and a fixed pulse
duration ofT=10 fs. The proton kinetic energy is referred to the
center of masssc.m.d.

FIG. 6. Populations of the initial 1ssg state, dissociative and
ionization channels of H2

+ vs laser intensity. The laser parameters
are indicated in the figure.

FIG. 7. Differential cross sections for different pulse durations
at a fixed intensity ofI =1012 W cm−2. The dashed line corresponds
to LOPT results and the thin black line is the Franck-Condon factor
between the initialvg=0 and final vibrational states. This factor has
been renormalized for a better comparison with the TDSE results.
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s500 and 760 asd, the differential cross section is almost pro-
portional to the Franck-Condon factor between the initial and
final vibrational statesssee Fig. 7d. Due to the dissociative
character of the final state, this is almost equivalent to saying
that it is proportional to the square of the initial vibrational
state. A similar imaging of H2

+ vibrational functions has
been reported in referencef30g for ultrashorts5 fsd infrared
pulses. In fact, when the pulse duration is much smaller than
the vibrational time scaleswhich is above the fsd, the differ-
ential cross section could be evaluated in the frozen nuclei
approximation by calculating the ionization probability at
different internuclear distancesR, with a weight given by the
Franck-Condon factorf17g. An ionization probability inde-
pendent of the internuclear distance would give, in this ap-
proximation, a differential cross section matching perfectly
the Franck-Condon behavior. The small differences between
the Franck-Condon behavior and that observed for the short-
est pulses are due to the slight dependence of the ionization
rate withR.

We focus now our attention on the origin of the different
peaks observed in the differential cross sections when the
pulse duration is of the order of 10 fs or when the LOPT is
used. In Fig. 8 we show the evolution of these peaks with
photon energy in the rangev=0.76–0.88 a.u. Since we are
considering the case of long pulse duration, one can analyze
the origin of the different peaks in terms of a two-photon
transition consisting ofsAd a “virtual” one-photon transition
from the 2Sg

+svg=0d ground state of H2
+ to a k 2Su

+ interme-
diate state in a narrow band of vibrationalscontinuumd states
centered aroundvk andsBd another transition from the latter
intermediate states to the final2Sg

+ ionization state in a vi-
brational scontinuumd state v f. These transitions are sche-
matically represented in Fig. 9.

For v,0.8 a.u., transitionsAd can connect the ground
state with, in principle, any electronic intermediate state.
This is becausesid the photon energy is larger than the en-
ergy separation between the ground state and the ionization

energy atR=` ssee the right-hand column in Fig. 1d andsii d
all electronic intermediate states support a continuum of vi-
brational states so that the resonance condition is automati-
cally satisfied. Nevertheless, among all intermediate states,
only those with a large Franck-CondonsFCd factor will play
a significant role. Forv,0.8 a.u., these are the2Su

+s2psud
and the2Su

+s3psud states, which are the only states lying
inside the FC region at this photon energyssee Fig. 9d. All
otherk 2Su

+ states have negligible FC factors with the ground
state. Therefore, transitionsBd can only be efficient from one
of these two states. The importance of this second transition
depends on how large is the overlap between the intermedi-
ate and final vibrational functions. According to this FC pic-
ture, since the intermediate vibrational functions are most
important near the classical turning pointssCTP’sd, one can
visualize transitionsBd as a “vertical” transition from the
CTP’s of the active intermediate electronic states to the final
ionizing state. This is illustrated in Fig. 9, which shows the
two final states that can be efficiently populated: one with
energyR1 and the other one with energyR2. This leads to
peaksR1 andR2 shown in Fig. 8. Obviously, the position of
these two peaks depends on photon energy because the po-
sition of the CTP’s also does. For instance, diminishingv
shifts the CTP’s to largerR ssee Fig. 9d. Thus, a vertical
transition from the new CTP’s leads to final vibrational states
of lower energy and, therefore, to displacements of theR1
andR2 peaks to lower energy. This is precisely what is ob-
served in Fig. 8.

Another mechanism is a direct two-photon transition from
the initial vg=0 vibrational state to thev f vibrational states
associated with the 1/R potential energy curve of H2

+ ssee
Fig. 9d. The corresponding FC overlaps have a maximum at
,0.5 a.u. and lead to the peak denotedV in Fig. 8. In con-
trast with peaksR1 andR2, the position of peakV does not
vary with photon energy. This explains why this transition is
observed even for pulses with a large bandwidthssee Fig. 7d,

FIG. 8. Proton differential two-photon ionization cross sections
of H2

+ for three different photon energies. The different peaks are
labeledR1, R2, andV, according to the notations used in Fig. 9ssee
textd.

FIG. 9. A qualitative description of two-photon ionization using
the potential energy curves of H2

+. The figure shows the vibrational
states of the resonant transitions that take place in the Franck-
Condon regionslimited by two vertical lines atR,1 and,3 a.u.d.
Each transition is represented by an arrow. The crossing points be-
tween the upper three arrows and the 1/R curve correspond to dif-
ferent values of the proton kinetic energysR1, R2, andVd.
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while transitionsR1 andR2 can only be seen when the band-
width is narrow.

It is easy to show that the positions of the different peaks
contain the essential information about the potential energy
curves of the intermediate electronic states of H2

+ in the FC
region. Indeed, for a given photon energy"v, one can con-
struct a one-to-one correspondence between the proton ki-
netic energies at the peak maximum,Wi, and the internuclear
distance through the simple relationRi =1/Wi sin Fig. 9,
these values ofR correspond to the intersections of theR1,
R2, and V horizontal lines with the ionization limitd. Then
one can relate eachRi value to a resonant one-photon tran-
sition from the ground state to an intermediate electronic
state of energy«ksRid=Wgvg

+"v. Thus, by varying the pho-
ton energy, one can obtain approximate potential energy
curves«ksRd for the relevant intermediate statesf2Su

+s2psud
and 2Su

+s3psud in the present caseg. We have checked that
this procedure leads to potential energy curves in reasonable
agreement with the ab initio ones.

We have also studied the variation of the total two-photon
ionization cross section as a function of photon energy. This
has been done within the TDSE approach for different inten-
sities and pulse durations. The results are shown in Fig. 10.
The figure also includes the results of the LOPT including
the nuclear motion. The cross sections are very similar in all
cases. A comparison of these results with those obtained in
the LOPT+fixed nuclei approximationssee Fig. 2d shows
clearly that the main effect of the nuclear motion is to dilute
the intermediate-state resonances, which appear now as small
oscillations in the cross sections. In particular, it is worth
stressing that, as expected, no divergence is obtained when
the nuclear motion is properly included in the LOPTswe
recall that divergences within the LOPT are due to the use of
the fixed nuclei approximationd. For comparison we have
also included in Fig. 10 the LOPT results of Apalateguiet al.

f18g that include the effect of the nuclear motion within the
reflection approximation. It can be seen that their results are
very close to ours for photon energies smaller than 0.6 a.u.;
however, they exhibit unphysical oscillations at higher ener-
gies. This is due to the failure of the reflection approximation
in the resonance region.

The similarity between the LOPT results and those ob-
tained from the TDSE approach for pulse durationsT
.10 fs and intensitiesI ø1012 W cm−2 are more evident if
one compares electron and proton energy distributions. We
show in Fig. 11 both distributions for a photon energy of
0.84 a.u. This energy is resonant with the 1ssg-3psu transi-
tion and leads to a divergent cross section when the LOPT is
applied in the framework of the fixed-nuclei approximation.
For “long” pulse durations10 fs, top of the figured the proton
and electron differential cross sections obtained with both
LOPT and TDSE are similar. One can see that the proton
distribution is the specular image of the electronic one,
which is the consequence of energy conservation. The lower
part of the figure shows the case of a smaller pulse duration
s2.5 fsd and larger intensitys1014 W cm−2d. For reasons ex-
plained above, in this case the resonant transition is much
less efficient and the proton distribution tends to the Franck-
Condon one. In contrast, the electron distribution has now a
width that is closer to the laser bandwidthsabout 0.12 a.u.d
and the specular behavior is lost. As in the case shown in
Fig. 7, the distributions differ significantly from those ob-
tained from the time-independent LOPT. Strictly speaking
this does not mean that the perturbation theory does not work
in general, because one could in fact use a time-dependent
perturbation theory that integrates the temporal pulse shape,
but it is much easier to directly use the TDSE.

VI. CONCLUSION

We have investigated two-photon ionization of H2
+ in the

photon energy range where this process is dominant over

FIG. 10. Two-photon ionization cross section of H2
+ as a func-

tion of photon energy. Black solid line: present TDSE results atT
=10 fs andI =1012 W cm−2. Grey solid line: idem atT=2.5 fs and
I =1014 W cm−2. Long dashed line: present LOPT results including
the nuclear motion. Orange solid line: LOPT results from Apal-
ategui et al. f18g including the nuclear motion in the reflection
approximation.

FIG. 11. Proton and electron differential cross sections corre-
sponding to two-photon dissociative ionization of H2

+. The photon
energy is 0.84 a.u., in resonance with the 1ssg-3psu transition.
Solid sdashedd lines corresponds to TDSEsLOPTd results.
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single-photon ionization:v=0.45–1.0 a.u. We have used
both perturbativesLOPTd and nonperturbativesTDSEd meth-
ods. In both cases, the theoretical approach includes the elec-
tronic and nuclear motions within the Born-Oppenheimer ap-
proximation. When the fixed nuclei approximation is used,
the total two-photon ionization cross sections exhibit sharp
resonances associated with intermediate electronic state. In
contrast, when the nuclear motion is included, the total cross
section does not exhibit pronounced resonances: they are
only observed when the kinetic energy of the ejected protons
is analyzed. The two-photon ionization cross sections calcu-
lated within the TDSE andstime-independentd LOPT ap-
proaches are very similar for a wide range of intensities
s,1014 W cm−2d and pulse durationss.2.5 fsd. As expected,
for larger intensities and shorter pulses, the LOPT does not
work.

The calculated proton kinetic energy distribution varies
dramatically when the pulse duration goes from the femto-
second regime to the subfemtosecond regimesin which the
pulse duration is smaller than the vibrational time scale,
which is of the order of the femtosecondd. For pulses of the
order of 1 fs or less, the proton kinetic energy distribution
closely follows the shape of the Franck-Condon factor be-
tween thevg=0 initial state and the final dissociative states
swhich is quite similar to the behavior observed in one-
photon ionizationd. The electron distribution shows a broader
structure, reflecting the laser bandwidth. When the pulse du-
ration approaches 10 fs, the proton and electron energy dis-
tributions show peak structuressone specular of the otherd
associated with two “virtual” one-photon resonant transitions
involving intermediate vibronic states. Such structures are
absent in one-photon ionization.

The pulse durations and wavelengths investigated in this
work are currently produced in many laboratories. Thus,
two-photon ionization experiments in which the ion energy
distribution is analyzed can be envisaged in the short term. In
this respect, the simple model proposed in this paper will
allow one to easily interpret the origin of the different peaks
observed in the kinetic energy distribution. This leads to an
even more interesting possibility: the use of the proton en-
ergy distribution observed in two-photon ionization experi-
ments as a probe of the pulse characteristicssduration and
wavelengthd in the femtosecond and subfemtosecond do-
mains. Besides H2

+, one could also consider D2
+, which can

be handled more easily in experiments. In this case, the vi-
brational period is,20 fs, which would allow one to explore
a slightly different time regime.

Finally, it is worth stressing that, although we have fo-
cused on a specific pulse envelop, similar conclusions are
expected for other pulse envelops having similar duration
and comparable shape. Variations with the pulse envelop
have been recently predictedsf31g and references thereind,
but only for pulses that strongly differ in shapese.g., for
symmetric and asymmetric pulsesd. The possibility of similar
effects in the present context should be the subject of future
work.
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