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Transport cross sections based on a screened interaction potential: Comparison of classical
and quantum-mechanical results
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Standard classical and quantum-mechanical methods are used to characterize the momentum-transfer cross
section needed in energy-loss calculations and simulations for heavy, swift charges moving in an electron gas.
By applying a well-known, finite-range screened Coulombic potential energy to model the two-body collision,
the quantitative applicability range of the classical cross section is investigated as a function of(2Zharge
screening lengtiiR), and scattering relative velocity). The a posteriori conditiofZ/R)/v?<1, as an upper
bound for heavy charges, is deduced for this applicability range from the comparative study performed.
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[. INTRODUCTION sical, orbital consideration of relative motion. The condition
(2Z/v)>1 (we use atomic unite’=%A=m,=1 unless other-
The use of moving external charges as probes of statigjise is stateflis applied in recentnumerical attempts for
and dynamical properties of matter dates back to the earliesfeavy ions to justify classical mechanics for transport cross-
days of modern physics. Particularly, the phenomenon o§ection calculation witlscreenednteractions3,4].
stopping of a target has, especially for heavy intruders, been Motivated by this condition and comparing with the clas-
one of the most important source of information on thesesical Bohr theory[5] of stopping of harmonically bound
coupled properties. The analysis of the phenomena is in alectrons, it was demonstrated that the binary-scattering
continual progress on both sides, experimental and theoretiheory could give, with a suitable screenif®4], equivalent
cal, of physical understanding. results. On the other hand, as was already pointed out by
In theoretical modeling, the target is usually consideredBohr, for a screened field the conveniatassical variable
either as an ensemble of independent atomic constituents §F[(2Z/R)/v?] should also play1] an important role in a
as a degenerate homogeneous electron gas. The kinetic daere detailed justification, due to the predominance of large-
scription of stopping for these models rests on the cumulaangle deflections in the transport cross section.
tive assumption, and the emphasis is on the special role of Of course, it is well known that if one makés— 0 in any
electron binding and electrostatic shielding, respectively. Théormula of quantum theory, one obtains the corresponding
common root of inelastic energy loss—namely, the problenformula in classical theory6]. As a relevant illustration of
of collision between two charges—is of primary importancethis fact, we mention here the exact quantum-mechanical ex-
for these applied models of condensed matter. pressiono, (2D ,v) =(27Z€/v?)tand (7Z€)/ (fv)], obtained
The bare interaction between charges is the Coulomlfor the transport cross sectigiength in a 2D Coulomb field
force for which the classical and quantum-mechanical methf7,8]. In the traditional(3D) terminology for stopping, the
ods give the same, charge-sign and Planck-constantant(wZ€?)/(%v)] codifies a 2D form for the Bloch correc-
independent, differential cross section in the threetion, which gives the difference between classical and
dimensional (3D) case. The important transport cross quantum-mechanical treatments in stopping power. Unfortu-
section, a weighted angle average of the differential one, isately, for standard screened Coulomb fields in 3D we have
divergent for bare Coulomb interactions in 3D. not an exactanalytical result for the transport cross section,
It is, therefore, necessary to take into account certaifrom which an expression at thfe— 0 classical limit should
screening effects of static or dynamical charadtgly the  follow.
influence of which may be essentially different in classical On the other hand, even an exact solution obtained in
and quantum descriptions. In addition to the standard conelassical mechanics for the important cross section is not
cepts for screening, an interesting and quantum-mechanicgecessarily decisive for an arbitrary combination of param-
based idea is mentioned at this point. A special regularizatioeters(charge, screening length, relative velogitgince it is
for integrated(total and transpoytCoulomb cross sections based on the idea of orbits and impact parameter. Clearly,
was suggested in Refi2], performing a nonasymptotic cal- one can get justification for the applicability range of classi-
culation in which the detector—scattering-center distance apezal mechanics in stopping description omlyposteriori
pears explicitly as a cutoff in the scattered Coulomb wave.  As this Introduction shows, the present study is devoted to
In his famous study on stoppirid] Bohr deduced, for a the understanding at a fundamental level. Thus, apart from
bare Coulomb field, the2Ze?/%iv) > 1 constraint as a neces- selected motivations for the relevant parameter space
sary and sufficient condition for the justification of the clas-(Z,R,v), practical applications are not considered. The next

1050-2947/2005/76)/0629025)/$23.00 062902-1 ©2005 The American Physical Society



VINCENT, JUARISTI, AND NAGY PHYSICAL REVIEW A 71, 062902(2009

section, Sec. Il contains the theoretical methods and the olmuantum mechanidsb] for the classical oscillator model of
tained results. In the last section, Sec. Ill, a short summary ian atom. Precisely, it is this behavior which governed the
given. development of a binary theof{3,4] based on a numerical
solution of the classical scattering problem with a Yukawa-
Il. THEORIES AND RESULTS type screened potential. In this attempt the parametées
The main goal of the present study, as a natural and |Ogiassociated with the electron bindifdynamical charactgin
cal attempt, is to compare numerically exact quantum result§1€ adiabatic limit. _ o _
with a classical, analytical expression for the transport cross 1he quantum-mechanical description, for spherical poten-
section using theamescreened potential in the Schrodinger tials, is based on an expansion for the outgoing wave in

and deflection-angle equations: terms of angular momentum eigenstates. The radial
Schrédingernwith k=v, in a.u) equation forR(k,r),
V4 r
V(r) =——<1——>, 1 1d{ ,dR(kr) I( + 1)
r R il At \ALLYS 2 T -
r2dr<r ar )+[k 7z 2V(r) |R(k,r) =0,

with the V(r)=0 constraint, forr=R. This form for a
screened potential was used in the partial-wave scattering (5)

description of electron-atom interactions at the beginning ofyas solved numerically with thetandard(regulay boundary
applied quantum mechanics; for further historical details, segonditionR(k,r —0) ~r', and the scattering phase shifts are

Refs.[9,10]. _ _ _obtained from the R(k,r— o)~ [1/(kr)]sin(kr—lm/2
More recently, motivated by the charge-sign effect in &(k)] asymptotic form.

stopping, the above potential wilf=+1 (proton aT‘d anti- A linear scaling of variablesk— ak, r —r/a (and, of
proton[11,12]) andZ=+2 has been usdd3] to the impact- ., ,ser . R/ ), andZ— aZ, in the radial equation will not

parameter-based description of the transport cross section. B?lange the phase shift values. Therefore, based on the exact
this classicalcl) limit one obtaing11-13 the following: [10] expression:

odv) = 7R [AINA-(A-1)], (2)

(A-1)?
to which an abbreviatioPA=[(Rv?/Z)-1]? is introduced.

This analytical expression is based on the simple and inforin which (k) are the scattering phase shifts, one has
mative connectiofi1l] between the deflection anglé) and oy, (ak)=(1/a?) 0y (K), as in the classical equatid@) where

700= 33 1+ VS0 - 2.0], @

the impact parametdb): A is not changed undehis scaling.
2 2 In addition, the above-mentioned kinetic-energy shift is
tanz(g> = (i) ﬂ (3) also clearly visible from the equation fd&®(k,r) with Eq.
2 bv?/ [1-Z/(Rv*) P (1). In fact, the short-range part of the radial equation corre-

8ponds, in our case, to an energy-shifted Coulomb problem
which is regularized via the finitR.

The values of the input variable&Z,R,v) depend, of
course, on concrete physics in both the classical and

Eq. (1) already suggestbecomes apparent and definit. quantum-mech.a}nical descriptions. In our _compargtive study
The expression for the angle in E@®) shows that in the of Fhe appllcablllty of clasglcal mechanlcs in stopplng calc_u—
[Z/(Rv?)]—1 (i.e., A—0) limit one gets® — = for the de- Igtlon for heavy ions moving with moderately high veloci-
flection angle all 0<b<R values ofb. This peculiar be- UES: We use theZ| e[1,40], v £[1.5,5], andRe[1, 3] sets.
havior heralds that the classical parame@i2)=2/(Rov?), High (positive) Z values and relative velocities higher than

introduced by Bohif1], plays indeed a very important role. typical Fermi velocitiesat aboutrs=1.5 andr,=2 density

This parameter is knowjiL4] now in the field of stopping as parameteysof metals are evidently important in various ex-
the Barkag15] parameter periments and associated simulati¢hé].

- : : For very high velocities the velocity-dependdni2,17]

The energy shift results in thel(Z,v)=0%(-Z,v) in- . . : .
equality, since the transferred enerigyE(b)] is given, via Frled'el sum of phase shifts, as a constraint fqr the scat'terlng
the v2(1—cos6) expression, b amplitude, may have a straightforward application with a

v P e dynamical (R~v) output. In this perturbative limit, where

5 R2 - p? the Lippmann-Schwinger radial equations are solved by
AE(b) =2y Rt AR (4)  plane-wave-based kernels, the first-order BtBh approxi-
mation with our potential gives

We stress the point that the role of screening, with respect t
the R=9 Rutherford form, is twofold. Due to the nominator
of Eqg. (3) one gets finite cross sections, while via the de-
nominator a charge-sign-dependent, kinetic-energy Ghsft

A similar charge-sign effect, at least fpZ/(Rv?)]<1 [see R o
Eq. (5)], is expected also in the wave-mechanical oB(K) = 4_77sz dx1<1 _%) )
(Schrodinger description; the Hamiltonian consists of the ” K X '
same kinetic and potential energy terms.
Notice that in theé— 0 limit the logarithm of Eq.(2) For (kR)>1 the leading form with logarithmic accuracy is

tends to a Bohr-type logarithm (wPR/|Z|) deduced before quite simple:og(K)=(4m)(Z/v»)Zn(2kR). This is similar to

0
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the mentioned?2] expression based on Coulomb-wave regu-
larization, since the incoming wave is only perturbatively
modified. Notice that we shall use, in our figures, the math-
ematically completer2(k) result.

For intermediate velocities and nonperturbative couplings
further motivations of reasonabR values are in order. For
negative intrudergZ<0) in an electron gas of density,
:3/(47-rr§) the Wigner-Seitz pictur¢18], which rests on a
properly constrained depletion hole for repulsive interaction,
may fix the (R/r93=|Z| condition on R(Z). For atoms
(Z>0) in their ground states, the chemical-radius argument
[19], which should be relevant in our one-electron scattering
treatment, suggests an abdrt=unity characteristic quite
independently ofZ. For more detailed tables of the(Z)
parameters, we refer to R¢fl0].

Finally, recent self-consistent screening calculations, per- ~ ’
formed within density-functional theory fagxcitedembed- E 4] )/
ded atoms, give an2R< 3 estimation as a function of the s
prescribed number of not-populatedhole) bound states 1
[20-23. A highly excited, screened atom resembles physi- 0 e
cally to our model in Eq(1), since the model corresponds, -10 0 10 20 30 40
from an electrostatiPoisson point of view, to the screening z

of the point charg& by a compensating electron distribution ) . _
whith constant densitgn a sphere of radiug. FIG. 1. Transport cross sections as a functiorZpft a fixed

Notice that the screening of swift highly charged ions isvalue of the screening paramet&=1), _and for different relative
itself a delicate question. The understanding of associategiomenta (k=1.5, 3, and 5 Open circles refer to quantum-
multiple-electron processes is in its infancy. ConventionalMechanical calculations and.are obtained from . Thg solid
concepts for screening, which are based usually on suitabfg!rves are based on E@), while the dashed ones on the first-order
fields for independentfree) electrons, may have limitations BOr approximation given by Eq7).
on an important portion of the stopping process.

Our detailed results, based on E@®), (6), and(7), are tion to the influence of growin®. Clearly, the range for the
exhibited in Figs. 1-3. The presentatifout not the calcula- Vvalidity of the first-order Born approximation becomes a
tions) for negative charges is restricted [8/<10, as in a  gradually (but slowly) wider one. Furthermore, the appear-
recent atomistic treatmef24]. For compact screeningRis  ance of quantum oscillations is shifted to higher and higher
small, Fig. 2 and at lowk values we obtain the characteris- values, showing the combined effect of growiRgandk, at
tic, quantum oscillations in the transport cross sections for
positive charges. These amplitude oscillations are reduced by 504
growing k and shifted to higheE values.

The Born approximation, Eq7), has a very limited range
of applicability. The results of Fig. 1 show that the standard
second-order Born approximation, based on plane-wave ba-
sis functions up to second order for the scattering amplitude
[25], cannot give an improvement for the physically most
important positive charges. In fact, the perturbative scaling
oy (k) ~[a(R,k)Z2+b(R,k)Z%] would lift the first-order re-
sults into the wrong direction at higher velocities, since the
b(R,k) coefficient is positivg25]. The next,Z*-proportional
and negativd 14] term could correct this second-order lift-
ing. But the resulting net effect should remain on the wrong
direction if the perturbative expansion is a meaningful—i.e.,
convergent—one. Clearly, in a strong-coupling range the
conventional series in terms &fis not adequate.

The classical result, Eq2), shows a remarkable accuracy
even for positive ions up to,practically, where a
(Zlv)I(Rv)=1 (i.e., A=0) condition becomes satisfied and
guantum oscillationgk=wv, in a.u) set in. We stress thdhis
type of condition is behind the observésee after Eq(3)]
angle peculiarity in the classical method.

The analysis of the other figure sets, Figs. 2 and 3, sup- FIG. 2. The same as in Fig. 1, at tRe2 value for the screen-
ports this important conclusion and adds additional informaing parameter.

Cir (a.u)

Ctr (a.u)

Cir (a.u)

Ctr (a.u.)

Ctr (a.u.)

062902-3



VINCENT, JUARISTI, AND NAGY PHYSICAL REVIEW A 71, 062902(2005

T T T ] Our analytical expression in E), which is based on a

c classical 3D treatment, provides an accurate representation of
[} . . .
© this so-called(in a quantum treatmenstrong-coupling ef-
fect, as the figures show. Notice, parenthetically, that in the
classical(A=0) 2D Coulomb case one hd¥] a strict |Z|
proportionality forany value of|Z|.

The observed, remarkable agreement between the quan-
tum and classical results would require a rigorous theoretical
analysis of theh—0 limit in our 3D quantum case. This
analysis may rest on consideration of operators that arise
naturally in the study of coherent stafes. But an investi-
gation of the role of harmonic quantum fluctuations around
the classical trajectory is beyond the scope of the present
work.

We can state that the classical method is applicable in a
remarkably large range of the physical parameiétbgy are
constrained by (Z/v)/(Rv)]<1. This is our main result. It
provides arupperbound forZ and shows, in this form, the
additional role of theRv product.

80

oy (a.u)

Cir (a.u)

Ctr (a.u)

z IIl. SUMMARY

FIG. 3. The same as in Fig. 1, at tRe3 value for the screen- Motivated by the experimental and theoretical importance
ing parameter. Solid circles refer to quantum-mechanical calculaof swift, heavy-ion stopping in condensed matter, the capa-
tions with a rescaled Yukawa potential and are obtained from Eqgbility range of the classical approximation for scattering is
(6). (see the text for further details. investigated in a detailed, comparative study. Based on nu-

merically exact, quantum-mechanical calculations a simple
fixed Z. Our deduced scaling argument, together with Figsand physically transparent conditif(Z/v)/(Rv)]<1, as an
1-3, could give further orientations in the parameter Spaceupper bound in the prob|em, on this app||cab|||ty range is

The observed reduction and shifting in quantum oscilla-deduced. The condition may provide arposteriori justifi-
tions, obtained here for a finite-range model potential, are itation of the real validity of recent, numerics-based classical
nice agreement with recent quantum calculations performeginary theories.
with a Moliere model(sum of three Yukawa formdor the The analytical expression for the transport cross section,
interaction[26]. Very recently, a simple rescaling=V6/R  together with the established and quite strong condition on
between Eq(1) and a Yukawa-type/(r)==(Z/r)exp(-Ar)  its validity, is expected to find applications in various simu-
screened potential has been suggep2ddl This rescaling is  lation methods. The inelastic energy loss and the nuclear
based on a perturbatively treated Friedel sum rule and coulgtopping are the key ingredients in such methods devoted, in
result in, therefore, quantitatively similar quantum results aimaterial science, to the design of target properties. Further
higher values of th&v product and for moderaté. works on the stopping-related channels, capture loss, and

The statement is illustrated in Fig. 3 by solid circles. multielectron processes, could help in constraining the physi-
Physically, the larger screening lengiR> (1/\)]in Eq.(1)  cally relevant, averagealuesof R.
compensates for the longer spatial range of the Yukawa form
[27]. For lower velocities and at high, the aboveZ- and ACKNOWLEDGMENTS
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