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Standard classical and quantum-mechanical methods are used to characterize the momentum-transfer cross
section needed in energy-loss calculations and simulations for heavy, swift charges moving in an electron gas.
By applying a well-known, finite-range screened Coulombic potential energy to model the two-body collision,
the quantitative applicability range of the classical cross section is investigated as a function of chargesZd,
screening lengthsRd, and scattering relative velocitysvd. The a posteriori conditionsZ/Rd /v2,1, as an upper
bound for heavy charges, is deduced for this applicability range from the comparative study performed.
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I. INTRODUCTION

The use of moving external charges as probes of static
and dynamical properties of matter dates back to the earliest
days of modern physics. Particularly, the phenomenon of
stopping of a target has, especially for heavy intruders, been
one of the most important source of information on these
coupled properties. The analysis of the phenomena is in a
continual progress on both sides, experimental and theoreti-
cal, of physical understanding.

In theoretical modeling, the target is usually considered
either as an ensemble of independent atomic constituents or
as a degenerate homogeneous electron gas. The kinetic de-
scription of stopping for these models rests on the cumula-
tive assumption, and the emphasis is on the special role of
electron binding and electrostatic shielding, respectively. The
common root of inelastic energy loss—namely, the problem
of collision between two charges—is of primary importance
for these applied models of condensed matter.

The bare interaction between charges is the Coulomb
force for which the classical and quantum-mechanical meth-
ods give the same, charge-sign and Planck-constant-
independent, differential cross section in the three-
dimensional s3Dd case. The important transport cross
section, a weighted angle average of the differential one, is
divergent for bare Coulomb interactions in 3D.

It is, therefore, necessary to take into account certain
screening effects of static or dynamical characterf1g, the
influence of which may be essentially different in classical
and quantum descriptions. In addition to the standard con-
cepts for screening, an interesting and quantum-mechanics-
based idea is mentioned at this point. A special regularization
for integratedstotal and transportd Coulomb cross sections
was suggested in Ref.f2g, performing a nonasymptotic cal-
culation in which the detector–scattering-center distance ap-
pears explicitly as a cutoff in the scattered Coulomb wave.

In his famous study on stoppingf1g Bohr deduced, for a
bareCoulomb field, thes2Ze2/"vd@1 constraint as a neces-
sary and sufficient condition for the justification of the clas-

sical, orbital consideration of relative motion. The condition
s2Z/vd.1 swe use atomic unitse2="=me=1 unless other-
wise is statedd is applied in recentsnumericald attempts for
heavy ions to justify classical mechanics for transport cross-
section calculation withscreenedinteractionsf3,4g.

Motivated by this condition and comparing with the clas-
sical Bohr theoryf5g of stopping of harmonically bound
electrons, it was demonstrated that the binary-scattering
theory could give, with a suitable screeningf3,4g, equivalent
results. On the other hand, as was already pointed out by
Bohr, for a screened field the convenientclassicalvariable
j=fs2Z/Rd /v2g should also playf1g an important role in a
more detailed justification, due to the predominance of large-
angle deflections in the transport cross section.

Of course, it is well known that if one makes"→0 in any
formula of quantum theory, one obtains the corresponding
formula in classical theoryf6g. As a relevant illustration of
this fact, we mention here the exact quantum-mechanical ex-
pressionstrs2D ,vd=s2pZe2/v2dtanhfspZe2d / s"vdg, obtained
for the transport cross sectionslengthd in a 2D Coulomb field
f7,8g. In the traditionals3Dd terminology for stopping, the
tanhfspZe2d / s"vdg codifies a 2D form for the Bloch correc-
tion, which gives the difference between classical and
quantum-mechanical treatments in stopping power. Unfortu-
nately, for standard screened Coulomb fields in 3D we have
not an exact,analytical result for the transport cross section,
from which an expression at the"→0 classical limit should
follow.

On the other hand, even an exact solution obtained in
classical mechanics for the important cross section is not
necessarily decisive for an arbitrary combination of param-
etersscharge, screening length, relative velocityd, since it is
based on the idea of orbits and impact parameter. Clearly,
one can get justification for the applicability range of classi-
cal mechanics in stopping description onlya posteriori.

As this Introduction shows, the present study is devoted to
the understanding at a fundamental level. Thus, apart from
selected motivations for the relevant parameter space
sZ,R,vd, practical applications are not considered. The next
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section, Sec. II contains the theoretical methods and the ob-
tained results. In the last section, Sec. III, a short summary is
given.

II. THEORIES AND RESULTS

The main goal of the present study, as a natural and logi-
cal attempt, is to compare numerically exact quantum results
with a classical, analytical expression for the transport cross
section using thesamescreened potential in the Schrödinger
and deflection-angle equations:

Vsrd = −
Z

r
S1 −

r

R
D , s1d

with the Vsrd=0 constraint, for r ùR. This form for a
screened potential was used in the partial-wave scattering
description of electron-atom interactions at the beginning of
applied quantum mechanics; for further historical details, see
Refs.f9,10g.

More recently, motivated by the charge-sign effect in
stopping, the above potential withZ= ±1 sproton and anti-
protonf11,12g d andZ= ±2 has been usedf13g to the impact-
parameter-based description of the transport cross section. In
this classicalscld limit one obtainsf11–13g the following:

str
clsvd = pR2 2

sA − 1d2fA ln A − sA − 1dg, s2d

to which an abbreviationA=fsRv2/Zd−1g2 is introduced.
This analytical expression is based on the simple and infor-
mative connectionf11g between the deflection anglesud and
the impact parametersbd:

tan2Su

2
D = S Z

bv2D2 1 − sb/Rd2

f1 − Z/sRv2dg2 . s3d

We stress the point that the role of screening, with respect to
the R=` Rutherford form, is twofold. Due to the nominator
of Eq. s3d one gets finite cross sections, while via the de-
nominator a charge-sign-dependent, kinetic-energy shiftfas
Eq. s1d already suggestsg becomes apparent and definit.

The expression for the angle in Eq.s3d shows that in the
fZ/ sRv2dg→1 si.e., A→0d limit one getsQ→p for the de-
flection angle atall 0øb,R values ofb. This peculiar be-
havior heralds that the classical parametersj /2d=Z/ sRv2d,
introduced by Bohrf1g, plays indeed a very important role.
This parameter is knownf14g now in the field of stopping as
the Barkasf15g parameter.

The energy shift results in thestr
clsZ,vdùstr

cls−Z,vd in-
equality, since the transferred energyfDEsbdg is given, via
the v2s1−cosud expression, by

DEsbd = 2v2 R2 − b2

R2 − b2 + Ab2 . s4d

A similar charge-sign effect, at least forfZ/ sRv2dg,1 fsee
Eq. s5dg, is expected also in the wave-mechanical
sSchrödingerd description; the Hamiltonian consists of the
same kinetic and potential energy terms.

Notice that in thej→0 limit the logarithm of Eq.s2d
tends to a Bohr-type logarithm lnsv2R/ uZu d deduced before

quantum mechanicsf5g for the classical oscillator model of
an atom. Precisely, it is this behavior which governed the
development of a binary theoryf3,4g based on a numerical
solution of the classical scattering problem with a Yukawa-
type screened potential. In this attempt the parameterR is
associated with the electron bindingsdynamical characterd in
the adiabatic limit.

The quantum-mechanical description, for spherical poten-
tials, is based on an expansion for the outgoing wave in
terms of angular momentum eigenstates. The radial
Schrödingerswith k;v, in a.u.d equation forRlsk,rd,

1

r2

d

dr
Sr2dRlsk,rd

dr
D + Fk2 −

lsl + 1d
r2 − 2VsrdGRlsk,rd = 0,

s5d

was solved numerically with thestandardsregulard boundary
conditionRlsk,r →0d, r l, and the scattering phase shifts are
obtained from the Rlsk,r →`d,f1/skrdgsinfkr− lp /2
+dlskdg asymptotic form.

A linear scaling of variables,k→ak, r → r /a sand, of
courseR→R/ad, andZ→aZ, in the radial equation will not
change the phase shift values. Therefore, based on the exact
f10g expression:

strskd =
4p

k2 o
l=0

`

sl + 1dsin2fdlskd − dl+1skdg, s6d

in which dlskd are the scattering phase shifts, one has
strsakd=s1/a2dstrskd, as in the classical equations2d where
A is not changed underthis scaling.

In addition, the above-mentioned kinetic-energy shift is
also clearly visible from the equation forRlsk,rd with Eq.
s1d. In fact, the short-range part of the radial equation corre-
sponds, in our case, to an energy-shifted Coulomb problem
which is regularized via the finiteR.

The values of the input variablessZ,R,vd depend, of
course, on concrete physics in both the classical and
quantum-mechanical descriptions. In our comparative study
of the applicability of classical mechanics in stopping calcu-
lation for heavy ions moving with moderately high veloci-
ties, we use theuZu P f1,40g, vP f1.5,5g, andRP f1,3g sets.
High spositived Z values and relative velocities higher than
typical Fermi velocitiessat aboutrs=1.5 andrs=2 density
parametersd of metals are evidently important in various ex-
periments and associated simulationsf16g.

For very high velocities the velocity-dependentf12,17g
Friedel sum of phase shifts, as a constraint for the scattering
amplitude, may have a straightforward application with a
dynamical sR,vd output. In this perturbative limit, where
the Lippmann-Schwinger radial equations are solved by
plane-wave-based kernels, the first-order BornsBd approxi-
mation with our potential gives

str
Bskd =

4p

k4 Z2E
0

2kR

dx
1

x
S1 −

sinx

x
D2

. s7d

For skRd@1 the leading form with logarithmic accuracy is
quite simple:str

Bskd=s4pdsZ/v2d2lns2kRd. This is similar to
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the mentionedf2g expression based on Coulomb-wave regu-
larization, since the incoming wave is only perturbatively
modified. Notice that we shall use, in our figures, the math-
ematically completestr

Bskd result.
For intermediate velocities and nonperturbative couplings

further motivations of reasonableR values are in order. For
negative intruderssZ,0d in an electron gas of densityn0
=3/s4prs

3d the Wigner-Seitz picturef18g, which rests on a
properly constrained depletion hole for repulsive interaction,
may fix the sR/ rsd3= uZu condition on RsZd. For atoms
sZ.0d in their ground states, the chemical-radius argument
f19g, which should be relevant in our one-electron scattering
treatment, suggests an aboutR.unity characteristic quite
independently ofZ. For more detailed tables of theRsZd
parameters, we refer to Ref.f10g.

Finally, recent self-consistent screening calculations, per-
formed within density-functional theory forexcitedembed-
ded atoms, give an 2,R,3 estimation as a function of the
prescribed number of not-populatedsholed bound states
f20–23g. A highly excited, screened atom resembles physi-
cally to our model in Eq.s1d, since the model corresponds,
from an electrostaticsPoissond point of view, to the screening
of the point chargeZ by a compensating electron distribution
whith constant densityon a sphere of radiusR.

Notice that the screening of swift highly charged ions is
itself a delicate question. The understanding of associated
multiple-electron processes is in its infancy. Conventional
concepts for screening, which are based usually on suitable
fields for independentsfreed electrons, may have limitations
on an important portion of the stopping process.

Our detailed results, based on Eqs.s2d, s6d, and s7d, are
exhibited in Figs. 1–3. The presentationsbut not the calcula-
tionsd for negative charges is restricted byuZuø10, as in a
recent atomistic treatmentf24g. For compact screeningsR is
small, Fig. 1d and at lowk values we obtain the characteris-
tic, quantum oscillations in the transport cross sections for
positive charges. These amplitude oscillations are reduced by
growing k and shifted to higherZ values.

The Born approximation, Eq.s7d, has a very limited range
of applicability. The results of Fig. 1 show that the standard
second-order Born approximation, based on plane-wave ba-
sis functions up to second order for the scattering amplitude
f25g, cannot give an improvement for the physically most
importantpositivecharges. In fact, the perturbative scaling
strskd,fasR,kdZ2+bsR,kdZ3g would lift the first-order re-
sults into the wrong direction at higher velocities, since the
bsR,kd coefficient is positivef25g. The next,Z4-proportional
and negativef14g term could correct this second-order lift-
ing. But the resulting net effect should remain on the wrong
direction if the perturbative expansion is a meaningful—i.e.,
convergent—one. Clearly, in a strong-coupling range the
conventional series in terms ofZ is not adequate.

The classical result, Eq.s2d, shows a remarkable accuracy
even for positive ions up to,practically, where a
sZ/vd / sRvd=1 si.e., A=0d condition becomes satisfied and
quantum oscillationssk;v, in a.u.d set in. We stress thatthis
type of condition is behind the observedfsee after Eq.s3dg
angle peculiarity in the classical method.

The analysis of the other figure sets, Figs. 2 and 3, sup-
ports this important conclusion and adds additional informa-

tion to the influence of growingR. Clearly, the range for the
validity of the first-order Born approximation becomes a
gradually sbut slowlyd wider one. Furthermore, the appear-
ance of quantum oscillations is shifted to higher and higherZ
values, showing the combined effect of growingR andk, at

FIG. 1. Transport cross sections as a function ofZ, at a fixed
value of the screening parametersR=1d, and for different relative
momenta sk=1.5, 3, and 5d. Open circles refer to quantum-
mechanical calculations and are obtained from Eq.s6d. The solid
curves are based on Eq.s2d, while the dashed ones on the first-order
Born approximation given by Eq.s7d.

FIG. 2. The same as in Fig. 1, at theR=2 value for the screen-
ing parameter.
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fixed Z. Our deduced scaling argument, together with Figs.
1–3, could give further orientations in the parameter space.

The observed reduction and shifting in quantum oscilla-
tions, obtained here for a finite-range model potential, are in
nice agreement with recent quantum calculations performed
with a Moliere modelssum of three Yukawa formsd for the
interactionf26g. Very recently, a simple rescalingl=Î6/R
between Eq.s1d and a Yukawa-typeVsrd=−sZ/ rdexps−lrd
screened potential has been suggestedf27g. This rescaling is
based on a perturbatively treated Friedel sum rule and could
result in, therefore, quantitatively similar quantum results at
higher values of theRv product and for moderateZ.

The statement is illustrated in Fig. 3 by solid circles.
Physically, the larger screening lenghtfR. s1/ldg in Eq. s1d
compensates for the longer spatial range of the Yukawa form
f27g. For lower velocities and at highZ, the aboveZ- and
k-independent scaling becomes only qualitativesdue to non-
linearitiesd and the mapping between potentials needs a sepa-
rate study.

Other useful information, based on the performed numer-
ics, is related to the interestingZ dependence of the stopping
power. There are ranges, always below the quantum oscilla-
tions, in which we have an approximatelyZn dependence
with n.1. This observation is in accordance with earlier
numerical ones obtained in Ref.f16g, in which the experi-
mental verification is also discussed.

Our analytical expression in Eq.s2d, which is based on a
classical 3D treatment, provides an accurate representation of
this so-calledsin a quantum treatmentd strong-coupling ef-
fect, as the figures show. Notice, parenthetically, that in the
classicals"=0d 2D Coulomb case one hasf7g a strict uZu
proportionality forany value of uZu.

The observed, remarkable agreement between the quan-
tum and classical results would require a rigorous theoretical
analysis of the"→0 limit in our 3D quantum case. This
analysis may rest on consideration of operators that arise
naturally in the study of coherent statesf6g. But an investi-
gation of the role of harmonic quantum fluctuations around
the classical trajectory is beyond the scope of the present
work.

We can state that the classical method is applicable in a
remarkably large range of the physical parameters,if they are
constrained byfsZ/vd / sRvdg,1. This is our main result. It
provides anupperbound forZ and shows, in this form, the
additional role of theRv product.

III. SUMMARY

Motivated by the experimental and theoretical importance
of swift, heavy-ion stopping in condensed matter, the capa-
bility range of the classical approximation for scattering is
investigated in a detailed, comparative study. Based on nu-
merically exact, quantum-mechanical calculations a simple
and physically transparent conditionfsZ/vd / sRvdg,1, as an
upper bound in the problem, on this applicability range is
deduced. The condition may provide ana posteriori justifi-
cation of the real validity of recent, numerics-based classical
binary theories.

The analytical expression for the transport cross section,
together with the established and quite strong condition on
its validity, is expected to find applications in various simu-
lation methods. The inelastic energy loss and the nuclear
stopping are the key ingredients in such methods devoted, in
material science, to the design of target properties. Further
works on the stopping-related channels, capture loss, and
multielectron processes, could help in constraining the physi-
cally relevant, averagevaluesof R.
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FIG. 3. The same as in Fig. 1, at theR=3 value for the screen-
ing parameter. Solid circles refer to quantum-mechanical calcula-
tions with a rescaled Yukawa potential and are obtained from Eq.
s6d. ssee the text for further details.d
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