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We have developed a generalized nonunitary Lindblad equation and its quantum trajectory Monte Carlo
implementation for the evolution of open quantum systemssOQSsd whose coupling to the environment fea-
tures not only energy exchange but also probability flux to the environment. This generalization allows the
treatment of a class of problems where the state space of the system includes bound and continuum states. We
show the equivalence between the solution of the generalized Lindblad equation and the Monte Carlo average
over open quantum trajectories. As a first test case we study the multilevel radiative decay of a hydrogenic ion.
As a second test case we apply the theory to the time development of the internal state of fast highly charged
Kr35+ ions traversing carbon foils with varying thickness subject to collisions and to spontaneous radiative
decay. We find significantly improved agreement of the nonunitary transport theory with experimental data.
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I. INTRODUCTION

The open quantum systemsOQSd approach provides a
useful theoretical framework for describing the time evolu-
tion of a system interacting with an environment represent-
ing a large number of degrees of freedom. The underlying
concept of studying the partially coherent dynamics of the
reduced “small” system under the influence of all other de-
grees of freedom of the problem to be traced out is at the
core of investigations of decoherence. For example, the cou-
pling between an atomsthe small systemd and the vacuum
fluctuations of the radiation fieldsthe environmentd results in
spontaneous transitions in the atomic systemsi.e., radiative
decayd and thus to decoherence as well as in modifications of
the eigenstates by shifting their eigenenergiessthe Lamb
shiftd.

The starting point of a theoretical analysis of OQSs is,
typically, the reduction of the master equation for the re-
duced density matrix to a Redfield equation by applying the
Born-Markov approximationf1–5g. Even with such a drastic
simplification which treats the coupling to the environment
in first-order perturbation theory and neglects memory ef-
fects, solution of the equation of motion for the density is
still a formidable task. Difficulties in describing OQSs in
terms of the evolution of the reduced density matrix have
their source in the high dimensionality of the problem. In the
solution of the master equation for the reduced density ma-
trix sN2d of the N-state system,N4 couplings are involved.
The OQS approach was first successful for the theoretical
description of atomic systems involving only few states
f1,3g. However, many problems in atomic physics require a
high-dimensional state space for which theN4 scaling makes
a direct solution of the underlying master equation impracti-
cable.

The importance of the quantum trajectory Monte Carlo
sQTMCd methodf4,5g and closely related techniques such as
the Monte Carlo wave-function methodf1–3g lie in the re-
duction of dimensionality. Propagating states rather than the

density operators leads to a scaling withN2 while controlling
the statistical error of the result by introducing another scal-
ing with the number of trajectories.

Solving the Redfield equation by QTMC techniques re-
quires its reduction to a form strictly preserving positive
definiteness of the reduced density matrix. This can be con-
veniently achieved by a reduction to a Lindblad formf6,7g.
Alternatively, a solution of the Redfield equation by QTMC
methods has been proposedf8,9g requiring, however, an ex-
tended state space. Depending on the physical system to be
described, the reduction to the Lindblad form is not unique
and is still an open problem. We have recently introduced a
form for this reduction that accounts for both the buildup of
coherences as well as the decoherencef5g. Our analysis was
motivated by experimental studies of collisionally induced
coherences in highly charged Krq sq=35d ions traversing car-
bon foils at high speedssvp=47 a.u.d.

The passage of an atomic system through solids under
multiple-scattering conditions provides a classic example of
the interaction of an open quantum systemsthe projectiled
with a large environmentsthe solidd. Studying such transport
problems has the advantage that the system-environment in-
teraction is switched on suddenly when the projectile enters
the solid and ceases suddenly after escaping from the solid,
thus allowing the time-resolved study of the evolution of the
density matrix on an attosecond to femtosecond time scale.
While good agreement was found for thin foils correspond-
ing to short times, discrepancies for larger distances
sù104 a.u.d corresponding to propagation times ofù5 fs
were observedf5g. These discrepancies were particularly
troubling as they only appeared within the formulation of
quantum transport in terms of a Lindblad equationf5g while
with an earlier more phenomenological modelf10g better
agreement was found. Understanding and resolving these
discrepancies is the aim of this paper.

One key feature of the Lindblad equation is the unitarity
of the evolution of the reduced system described, built in by
construction. The point to be noted is that preservation of
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positivity does not necessarily require unitarity. In fact, the
unitarity of Lindblad equation is of limited value when deal-
ing with any truncated Hilbert space of the reduced system in
a realistic simulation. As flux out of this subspace into its
complement can and, in general, is bound to occur, enforced
unitarity means unphysical suppression of flux and thus dis-
tortion of the evolution within the truncated Hilbert space. A
classic example is the propagation of wave packets of con-
tinuum electrons. Within any basis expansion or finite ele-
ments sgridd representation of finite dimension, only a
bounded region in coordinate space can be represented. The
wave packet will therefore be artificially reflected at the
boundary unless absorbing boundary conditions, optical po-
tentials, or masking functions are introducedf11g. All of
these methods result in absorption of probability flux and
thus in a manifestly nonunitary evolution. In analogy, we
introduce in this paper a generalized nonunitary Lindblad
equation and its QTMC realization that accounts for prob-
ability flux out of the truncated Hilbert space to be explicitly
treated. The open quantum systems discussed in the follow-
ing are not only open with respect to energy transfer but also
with respect to probability flux. This change of approach can
be viewed as the analogue to the transition from a canonical
to a grand canonical ensemble in statistical mechanics. In the
application to the projectile state evolution in the solid, the
present approach permits us to treat explicitly the low-lying
states of the ion within a finite Hilbert space of a size man-
ageable within a numerical solution using a Monte Carlo
method, while implicitly accounting for the flow of probabil-
ity towards highly excited bound states and continuum states
in the complement.

The plan of this paper is as follows: we briefly review the
open quantum system approach and the solution by means of
a quantum trajectory Monte Carlo method in Sec. II. In Sec.
III we present our extension for nonunitary systems and il-
lustrate its application for the simple test case of the radiative
decay of a hydrogenic atom. In Sec. IV we apply our exten-
sion to the transport of hydrogenic atoms through solids and
show that previously observed discrepancies can be ac-
counted for. Atomic unitssueu=me="=1,c=137d will be
used unless otherwise stated.

II. OPEN QUANTUM SYSTEM APPROACH
FOR UNITARY SYSTEMS

In this section we briefly review the basic properties of
the Lindblad equation and its solution by a quantum trajec-
tory Monte Carlo method. A more detailed description can be
found in Ref. f5g. Consider a systemsSd of interest with
HamiltonianHS interacting with an environment referred to
in the following as reservoirsRd with Hamiltonian HR

through a coupling interactionVSR fFig. 1sadg. The time evo-
lution of the density matrixrstd of the entire interacting sys-
tem is given by the Liouville–von Neumann equation

d

dt
rstd = − ifH,rstdg, s2.1d

including the total HamiltonianH=HS+HR+VSR.

Clearly, the solution of the full Liouville–von Neumann
equation is out of reach for realistic systems involving a
large number of degrees of freedom. Instead, the focus is on
a master equation, an equation of motion for the reduced
density matrix of the system of interestsstd, which is ob-
tained by tracing out all degrees of freedom of the reservoir
by sstd=TrRfrstdg. One requirement for the reservoir is that
it has a large number of degrees of freedom compared to
those of the system such that the energy spacing of reservoir
states is much smaller than that of the system providing a
continuous excitation spectrum. The reduction entails usually
a number of additional approximations such as the Born-
Markov approximation which neglects memory effects,
treats the couplingVSR to first-order perturbation theory, and
yields a master equation of the Redfield typef5g. A useful
further reduction is the Lindblad equationf6,7g

d

dt
sstd = − ifHS,sstdg + Rsstd s2.2d

with the relaxation superoperator

Rsstd = −
1

2Vo
kW

fS†skWdSskWdsstd + sstdS†skWdSskWd

− 2SskWdsstdS†skWdg, s2.3d

that describes the interaction of the system with the reservoir
and involves a sum containing the transition operatorSskWd.
The transition operator represents transitions between states
of HS due to the coupling with the reservoir determined by
VSR. The physical meaning of the summation labelkW and
volumeV depends on the system under consideration. In the
following kW represents the wave-number vector of the mo-
mentum exchange between system and reservoir but may
also include polarization indices, etc. The time evolution of
the reduced density matrixsstd in this formalism is governed
by HS, the part of the total Hamiltonian acting on the system
solely, and by the Lindblad transition operatorSskWd. With this
decomposition we separate the description of the dynamics
into an unperturbed part of the small system without an en-
vironment sHSd and put all effects of the presence of an
environmentsi.e., driving transitions within the open quan-
tum systemd into the relaxation superoperatorsRd. In the

FIG. 1. Schematic picture of the open quantum systemHS in-
teracting with the reservoirHR via the interactionVSR. sad Full
systemHS andsbd decomposition into subspaceP and complement
P.
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quantum Monte Carlo trajectory realization the first term of
Eq. s2.2d and the first two terms of Eq.s2.3d of the Lindblad
master equation result in a continuous time evolution while
the last terms in Eq.s2.3d is responsible for discontinuous
s“jump” d processes. Built into Eq.s2.2d is the strict positivity
of sstd for all times, i.e.,siistdù0 for all i and t. The Lind-
blad equation describes an open quantum systemsOQSd al-
lowing for energy exchange

d

dt
kHSl =

d

dt
TrfsstdHSg Þ 0 s2.4d

while preserving the total probability

d

dt
TrSfsstdg = 0. s2.5d

The latter follows from the explicitly built-in unitarity of the
evolution into the relaxation operatorfEq. s2.3dg. Equation
s2.2d describes a unitary mapping of the Hilbert space of the
system,HS, onto itself.

The popularity of the Lindblad equation is, in part, due to
the fact that it can be mapped onto a nonlinear stochastic
Schrödinger equationsNLSSEd without further assumptions
or approximations. The advantage of such a mapping is that
the NLSSE can be solved by propagating a Monte Carlo
ensemble of state vectors: i.e., using the quantum trajectory
Monte Carlo sQTMCd or Monte Carlo wave-function
sMCWFd methods. In analogy to classical statistical mechan-
ics, where the Boltzmann equation can be solved using test
particle discretization following the trajectories of an en-
semble of test particles in time, the Lindblad form of the
master equation can be solved by an ensemble of quantum
trajectories. The conceptual difference between quantum and
classical trajectory Monte Carlo methods is that the dynam-
ics of the classical trajectories in phase space is governed by
the Langevin equation while in the quantum version each
realization corresponds to a stochastically propagated state
vectorsquantum “trajectory” in Hilbert spaced according the
NLSSE.

Within the QTMC method the density matrix of a pure
state is obtained as

sstd =
1

Ntraj
o
h=1

Ntraj

uChstdlkChstdu, s2.6d

whereNtraj is the number of quantum trajectories controlling
the statistical uncertainty. In the limitNtraj →`, the ensemble
average can be shown to be strictly equivalent to the solution
of the original Lindblad equationf12g. The time evolution of
each trajectory is governed by the NLSSE,

udChstdl = F− iHS dt −
dt

2Vo
kW

fS†skWdSskWd − kS†skWdSskWdlt,hg

+
1

Vo
kW

dNkW
hstdS SskWd

ÎkS†skWdSskWdlt,h

− 1DGuChstdl,

s2.7d

containing a stochastic element in the form of an Ito differ-

entialdNkW
hstd that is 1 when a transition happens in an infini-

tesimal time intervaldt and that is zero otherwise. This sto-
chastic element generates different stochastic realizations of
quantum trajectories labeled byh. It can be shownf12g that
the reduced density matrix calculated as the Monte Carlo
averages2.6d yields the Lindblad equations2.2d when the
expectation value of the Ito differentials for the system in
stateuChl at time t are chosen as

dNkW
hstddNkW8

h std = dNkW
hstddkWkW8 = dtkS†skWdSskWdlt,hdkWkW8.

s2.8d

Solving the NLSSE the time evolution of each quantum tra-
jectory is constructed by applying the time evolution opera-
tor onto the initial wave function as uChstdl
=Uhst ,0duChs0dl. The time evolution operatorUhst ,0d is
constructed as a sequence of continuous time evolution op-
erators and discontinuous jump operators as

Uhst,0d = Ucont
h st,tndp

j=1

n

Ujump
h skW j,tjdUcont

h stj,tj−1d s2.9d

with t0=0. The application of the continuous time evolution
operator results in

uChstjdl = Ucont
h stj,tj−1duChstj−1dl =

e−iHef fst j−t j−1duChstj−1dl
uue−iHef fst j−t j−1duChstj−1dluu

,

s2.10d

with the effective Hamiltonian

Hef f = HS−
i

2Vo
kW

S†skWdSskWd s2.11d

including the unperturbed atomic Hamiltonian of the system
sHSd and the modification of the eigenstates due to the pres-
ence of the environment making the effective Hamiltonian
non-Hermitian.

The discontinuous transitions

uChstj + dtdl = Ujump
h skW j,tjduChstjdl =

SskW jduChstjdl

uuSskW jduChstjdluu
s2.12d

are specified by a transition timesjump timed tj and the pa-
rameterkW j which are determined by the coupling to the res-
ervoir degrees of freedom. In spite of the non-Hermitian na-
ture of Heff, the evolution fEqs. s2.10d–s2.12dg remains
unitary as the renormalization of the ketsfEqs. s2.10d and
s2.12dg restores the norm at each step.

III. NONUNITARY LINDBLAD EQUATION AND NLSSE

The unitarity constraint, Eq.s2.5d, built into the Lindblad
equation poses a hurdle for realistic numerical simulations as
it remains in force when the Hilbert space is truncated to
dimensionN. For realistic high, but finite, dimensional sys-
tems which include continuum states a strictly unitary evo-
lution is unphysical. Only a subspaceP of the Hilbert space
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HS can be represented in a numerical simulation by a trun-
cated basis of dimensionN fsee Fig. 1sbdg. The subspaceP is
coupled to its complementQ by the system-reservoir inter-
actionVSR. The flow of probability betweenP andQ is there-
fore not an artifact but real for any computationally feasible
truncated basis set. The point to be noted is thatQ refers to a
subspace of the system Hilbert space, not to the reservoir
fsee Fig. 1sbdg. The interaction with the environment does
not only drive transitions within the open quantum systemP,
but is also responsible for probability flux out of it intoQ.
Therefore the class of open quantum systems this approach
can describe is not only open with respect to energy dissipa-
tion but also with respect to probability flux. In practice,
numerical simulations take this effect into account by optical
potentials or masking functionsf11g. Their purpose is to pre-
vent “reflection” of wave packets, i.e., the artificial confine-
ment withinP rather than the flow intoQ. Such approxima-
tions can account for a flow fromP into Q while neglecting
the backcoupling fromQ to P. Their consequence is the vio-
lation of unitarity within P,HS. In the application to the
excited-state evolution in the solidssee Sec. IVd, P will rep-
resent the hydrogenic bound-state space up tonønc where
the cutoff quantum number is typicallync<6. sThe dimen-
sion ofP is thenN=182.d Accordingly,Q represents higher-
lying bound statessn.6d and the continuum spectrum of
ionized electrons. Our goal is now to go beyond the restric-
tion s2.5d and to develop a different master equation that
accounts for the probability flow fromP into Q. To this end
we introduce a generalized Lindblad equationdsstd /dt=
−ifHS,sstdg+RNUsstd, in which the relaxation superoperator
is replaced by its nonunitarysNUd version

RNUsstd = −
1

2Vo
kW

fPPS†skWdSskWdPPsstd + sstdPPS†skWdSskWdPP

− 2SPskWdsstdSP†skWdg. s3.1d

In Eq. s3.1d S is defined in the entire Hilbert spaceHS while
SP is the submatrix ofS mappingP onto itself. That is,SP

=PPSPP, where PP=oaPPualkau is the projector operator
onto the subspaceP. This gives rise to the decomposition

GPP =
1

Vo
kW

SP†skWdSPskWd =
1

Vo
kW

GPPskWd, s3.2ad

GP =
1

Vo
kW

PPS†skWdSskWdPP =
1

Vo
kW

GPskWd, s3.2bd

where the former describes the decay matrix withinP while
the latter also includes the decay fromP to Q. In other
words, Eq.s3.2bd involves the submatrixSPQskWd mappingP
onto Q. Consequently the norm ofsstd is no longer con-
served but decays according to

d

dt
TrSfsstdg = − TrSfGPsstdg + TrSfGPPsstdg

=−
1

Vo
kW

o
a,bPP

o
nPQ

San
† skWdSnbskWdsba, s3.3d

whereSan
† andSnb in this equation correspond only to matrix

elements of the submatrixSPQ.
While general master equations that feature nonconserva-

tion of probability sor particle numberd are well known, the
specific novel aspect of the present formulation is that it can
be mapped onto a wave-function propagation algorithm. This
nonunitary extension of the Lindblad equation has the advan-
tageous feature that the positive-definiteness requirement re-
mains satisfied withinP. Consequently it can be solved using
a QTMC algorithm as well, provided that a modified NLSSE
and generalized versions of the continuous and jump opera-
tors,

uChstjdl = Ucont
h stj,tj−1duChstj−1dl

= iChstj−1di
e−iHef f

P st j−t j−1duChstj−1dl

ie−iHef f
PPst j−t j−1duChstj−1dli

, s3.4d

uChstj + dtdl = Ujump
h skW j,tjduChstjdl

= iChstj−1di
SPskW jduChstjdl

iSPskW jduChstjdli
, s3.5d

are applied. The non-Hermitian effective Hamiltonians enter-
ing Eq. s3.4d are

Hef f
P = HS−

i

2
GP andHef f

PP = HS−
i

2
GPP. s3.6d

In contrast to Eq.s2.10d, the continuous operators3.4d
does not preserve the norm of the wave function. The non-
Hermitian Hamiltonians in Eq.s3.6d including the decay op-
eratorsGP andGPP result in a nonunitary evolution inUcont

h

in Eq. s3.4d. In the unitary QTMC method discussed in the
previous sectionUcont

h in Eq. s2.10d contains the same effec-
tive Hamiltonian in the nominator and in the denominator,
resulting in an overall rotation of the state vectoruChstdl in
the Hilbert spaceHS. In the nonunitary QTMC method the
effective Hamiltonians inUcont

h differ by the sum over all
SPQ, which is the amount of coupling fromP to the comple-
ment Q. Consequently,Ucont

h in Eq. s3.4d accounts for the
probability decrease in the subspaceP due to flux into the
complementQ.

The corresponding NLSSE now becomes

udChstdl =H− iHS
P dt −

dt

2
sGP − kGPPlt,hd

+
1

Vo
kW

dNkW
hstdS SPskWd

ÎkGPPskWdlt,h

− 1DJuChl,

s3.7d

where the expectation values are now defined askGPPlh
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=kChuGPPuChl / kCh uChl. In order to yield the generalized
Lindblad form s3.1d, the expectation value of the Ito differ-
entials when the system is in stateuChl at timet is chosen as

dNkW
hdNkW8

h = dNkW
hstddkWkW8 = dtkGPPskWdlt,hdkWkW8. s3.8d

In this case, the jump times can be obtained from the implicit
equation

u =
1

iChstj−1di2s1 − ie−iHef f
PPst j−t j−1duChstj−1dli2d, s3.9d

where u is a uniformly distributed random number,u
P f0,1g.

In the Appendix we show the correspondence between the
QTMC method and the generalized Lindblad master equa-
tion s3.1d. We conclude this section by illustrating the sig-
nificance and accuracy of the nonunitary QTMC method
with the help of an exactly solvable model problem: the mul-
tilevel time evolution of an excited hydrogenic atom subject
to spontaneous radiative decay. Since spontaneous decay
leads only to transitions to lower-lying levelssunlike colli-
sional excitationd truncation of the bound-state Hilbert space
does not introduce errors and thus allows for an exact solu-
tion within the Born-Markovsi.e., Wigner-Weiskopff6gd ap-
proximation by directly integrating the Lindblad equation.

We consider a highly charged hydrogenic ion, Kr35+, in
the vacuum. The only interaction with the environment is the
coupling to the vacuum fluctuations of the radiation field
manifesting itself in two ways: the coupling driven by this
interaction is the spontaneous radiative decay of the electron
from an excited state and also the modification of the
eigenenergies of the system by the Lamb shiftf13,14g. Since
radiative decay is an exothermic process, i.e., the final state
energy of the electron is always below its initial energy, the
Hilbert space necessary for a representation of all possible
final states is restricted. For example, the time evolution of
an electron initially in the 4p state is completely represented
in the Hilbert space covering the first four shells of the elec-
tronic states rendering the unitary system within a finite Hil-
bert spaceHS, as is schematically shown in Fig. 2sad.

We can now test the nonunitary QTMC evolution by ar-
bitrarily dividing this finite system into two subspaces con-
sisting of, e.g., the third and fourth shell representingP con-
taining the initial state 4p fFig. 2sbdg. Accordingly, the
complementQ contains the first and second shell. This sys-
tem features now a net flux fromP to Q se.g., by a direct Lyg
transition or a radiative cascaded and is thus open with re-
spect to probability flux. Moreover, there is no probability
flowing back from the energetically lower-lying complement
Q to the subspaceP. Therefore, for this model system, a
properly constructed nonunitary QTMC should exactly re-
produce the results from the full unitary simulation of the
whole system for any observables inP.

Using the dipole approximationkau¹W rWubl=vbakaurWubl
with vba=vb−va we obtain the transition operatorS for the
radiativesrd decay as

Sab
srd sId =

2
Î3c3

vba
3/2kaurIublusvbad, s3.10d

where the indexI indicates the polarization of the emitted
photon. The unperturbed Hamiltonian of the system includ-
ing relativistic corrections is

HS= − ¹rW
2/2 − Zp/r + DHrel, s3.11d

where DHrel represents relativistic and Lamb shift correc-
tions f5g. The transition operatorSab

srd sId is defined in the
entire Hilbert spaceHS of the electronic states of a hydro-
genic atom. By allowing the state indicesa and b to cover
only the subspaceP we obtainSab

srdPsId=Sab
srd sId. The con-

struction of the decay operators is straightforward,

Gab
PP = o

nPP
o
I

San
srd†sIdSnb

srdsId, s3.12d

Gab
P = o

gPsP%Qd
o
I

Sag
srd†sIdSgb

srdsId

= Gab
PP + o

gPsQd
o
I

Sag
srd†sIdSgb

srdsId, s3.13d

where the complete Hilbert spaceHS=P % Q is represented
as a direct sum over the subspaceP and the complementQ.

In Fig. 2scd we show the time evolution of the reduced
density matrix starting initially from a 4p state. A remarkable
and often overlooked aspect of the radiative decay is that
unless the wave packet is projected, i.e., a measurement is
taken to determine the state of the emitted photon, the spon-
taneous decay generates a partially coherent superposition of

FIG. 2. Test model for a free Kr35+ ion under the influence of
radiative decay only.sad Full Hilbert spaceHS with the initial state
4p. sbd Decomposition into the subspaceP and the complementQ.
scd Comparison of the real and imaginary parts of the relative co-
herence between the 3s1/2,1/2 and the 3d3/2,1/2 states calculated ex-
actly for the entire Hilbert spaceHS sC3s,3d

HS d and using the nonuni-
tary reduction for the subspaceP sC3s,3d

P d.
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states. Only the subsequent feeding and radiative decay of
these states leads to dephasing and to decoherence. The dif-
ferent eigenenergies of the final states result in a rotation of
the relative complex phase angle as exps−ivabtd with the
time constantTab

dephase=2p / uvabu which is 7.2 a.u. for the
3s1/2,1/2−3d3/2,1/2 relative coherence depicted in Fig. 2scd.
The latter is defined as

Cabstd =
sabstd

Îsaastdsbbstd
s3.14d

for a=3s1/2,1/2 andb=3d3/2,1/2. Because ofusabuøÎsaasbb,
the absolute magnitude of the relative coherence,uCabu, takes
values in the interval 0ø uCabuø1. uCabu=1 if the system is
in a pure state while finite relative coherences smaller than 1
imply that the system is in a partially coherent state.

The near-perfect agreement between the exact result cal-
culated inHS and the one calculated with the nonunitary
QTMC method employing the split into theP and Q sub-
spaces demonstrates the validity of the nonunitary dynamics
in P. Clearly this level of agreement is, in part, due to the
fact that the back coupling fromQ to P, which is neglected
in our approach, vanishes exactly in this problem.

IV. APPLICATION: EXCITED-STATE EVOLUTION
IN FAST HIGHLY CHARGED IONS IN SOLIDS

In this section we will apply the nonunitary QTMC
method to atoms in a violent collisional environment. More
precisely, we will consider a fast projectile during its passage
through a solid. The target solid will be decomposed into two
components, i.e., reservoirs. One consists of the ionic cores
of the target atoms screened by the surrounding electrons.
The interaction with them will lead to phonon excitations in
the solid as reservoir degrees of freedom. The second reser-
voir the projectile interacts with are the electrons of the tar-
get resulting in plasmon and single-particle–single-hole ex-
citations of the quasifree-electron gas. This system has been
previously investigated within the framework of the quantum
transport theory employing the unitary QTMC method. De-
tails of the input used can be found in Ref.f5g. We focus in
the following only on those aspects of the theory that require
modifications for the present nonunitary formulation.

The Lindblad operator for reservoir of quasifree electrons
is given by

Sab
sedskWd =Î8p

k2 ImF − 1

eskW,vba − kW ·vWpd
Gusvba − kW ·vWpd

3kaueikW·rWubl s4.1d

with the dielectric response function of the electron gas
eskW ,vd andkW representing the momentum transferred in the
transition. Using data obtained from photon absorption and
electron energy-loss spectroscopysEELSd, the parametriza-
tion form of eskW ,vd f15–17g enables us to include ineskW ,vd
not only excitations of the valence band but also excitations
of inner-shell electronsf18g. Since the projectile moves with
a velocity vWp through the electron gas, the frequency spec-
trum of the response is Doppler shifted bykW ·vWp introducing a

minimum-energy transfer given by the step functionu in Eq.
s4.1d.

For the interaction with the reservoir of screened ionic
cores of the solid,

Sab
scdskW'd =Î2pnA

vp
ṼcSkW' + ẑ

vba

vp
DkaueifkW'+ẑsvba/vpdg·rWubl,

s4.2d

with the number densitynA of the ions in the solid and the
Fourier transform of the screened Coulomb potentialVcsrWd
=−sZT/ rde−r/aTF, ṼcskWd=−s4pZTd / sk2+aTF

−2d, with the
Thomas-Fermi screening lengthaTF=0.885ZT

−1/3 and the
nuclear charge of the target atoms,ZT. The component of the
momentum transfer parallel to the projectile velocitykz is
fixed by the requirementvba=kW ·vWp, while the componentkW'

specifies the perpendicular momentum transferred.
Both transition operatorsS fEqs. s4.1d and s4.2dg can be

expressed in the form

Sab
sedskWd = f sedsvba,kWdkaueikW·rWubl, s4.3ad

Sab
scdskW'd = f scdsvba,kW'dkaueifkW'+ẑsvba/vpdg·rWubl s4.3bd

with the prefactorsf sedsvba ,kWd and f scdsvba ,kW'd given by
Eqs. s4.1d and s4.2d, respectively. This factorization of the
transition operatorsS will be used below.

The decay operator for core collisions is

Gab
scdPskW'd = o

gPsP%Qd
Sag

scd†skW'dSgb
scdskW'd s4.4d

=Gab
scdPPskW'd + o

gPQ
Sag

scd†skW'dSgb
scdskW'd, s4.5d

where the statesa andb are elements ofP and we denoted
the partial sum overP as Gab

scdPPskW'd fas in Eq.s3.13dg. For
the further evaluation of Eq.s4.5d we employ the approxi-
mate factorizationfEq. s4.3bdg

Gab
scdPskW'd . Gab

scdPPskW'd + f scd†sv̄a,kW'df scdsv̄b,kW'd

3 o
gPQ

kaue−ikWaskW'd·rWuglkgueikWbskW'd·rWubl s4.6d

with kWaskW'd=kW'+ ẑv̄a /vp andkWbskW'd=kW'+ ẑv̄b /vp where we
have approximated the energy transfervag svbgd by an av-
erage excitation energyv̄a sv̄bd independent on the stateg.
The latter is a prerequisite for using the closure relation

o
gPHS

kaue−ikWaskW'd·rWuglkgueikWaskW'd·rWubl = dab. s4.7d

Consequently, we obtain the decay operatorGP,

Gab
scdPskW'd . Gab

scdPPskW'd + uf scdsv̄a,kW'du2

3Sdab − o
gPP

kaue−ikWaskW'd·rWuglkgueikWaskW'd·rWublD ,

s4.8d

valid for all diagonal elementssa=bd and the most impor-
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tant subset of off-diagonal elementsaÞb between nearly
degenerate states withva=vb, v̄a=v̄b, and consequently
kWaskW'd=kWbskW'd.

With the closure approximations4.7d we reduce the infi-
nite sum over the full Hilbert spaceHS in Eq. s4.4d to sums
in the finite Hilbert subspaceP of the system. The price we
have to pay is the approximation of the energy transfervag

svbgd by an average excitation energyv̄a sv̄bd so that the
prefactor can be pulled out of the sum overgPQ in Eq.
s4.6d. A proper choice ofv̄a sv̄bd determines significantly the
quality of the closure approximation forGscdPskW'd. For fast
collisional excitations in a solid it has been shownf19g that
the generalized oscillator strength distributions“Bethe
ridge”d peaks around the ionization threshold, i.e., a highly
excited state or a low-lying continuum state. This consider-
ation suggests the choice of the ionization energy for the
average excitation energyv̄a=ea, i.e.,vg→0. The total tran-
sition matrixGab

scdP is obtained from Eq.s4.8d by the integra-
tion

Gab
scdP =

1

s2pd3E d2k'Gab
scdPskW'd. s4.9d

For off-diagonal elements between strongly nondegenerate
statesseaÞebd we invoke the additional approximation that
the degree of coherenceGab

scd /ÎGaa
scdGbb

scd is the same forGab
scdPP

and Gab
scdP. We thus calculateGab

scdP by rescalingGab
scdPP for a

Þb as

Gab
scdP = Gab

scdPPÎ Gaa
scdPGbb

scdP

Gaa
scdPPGbb

scdPP . s4.10d

Note, however, that because of the rapid decoherence be-
tween strongly nondegenerate states this additional approxi-
mation has little influence on the numerical results.

Similarly, the decay operator for scattering at the electron
gas is calculated as

Gab
sedPskWd = o

gPsP%Qd
Sag

sed†skWdSgb
sedskWd

.Gab
sedPPskWd + f sed†sv̄a,kWdf sedsv̄b,kWd s4.11d

3 o
gPQ

kaue−ikW·rWuglkgueikW·rWubl s4.12d

with the transition operatorSab
sedskWd specified in Eq.s4.1d. Un-

like the corresponding equation for core collisionss4.6d, the
momentum transferskW of the boost operators in Eq.s4.12d
are identical and we can thus apply the closure approxima-
tion without restricting the resultingGab

sedPskWd to near-
degenerate states withea=eb. The total transition matrix
Gab

scdP is then obtained by the integration

FIG. 3. Charge state fraction of a Kr35+s1sd ion in transport
through amorphous carbon at a velocity ofvp=47 a.u. as a function
of foil thickness. Symbols are experimental data from Ref.f24g and
lines show results of the nonunitary QTMC simulation. The thick-
ness of 1mg/cm2 of amorphous carbon with a density of 2 g/cm3

corresponds to a propagation length of 92 a.u.

FIG. 4. Evolution of selected populations and coherences of the
internal state of a Kr35+ ion traversing an amorphous carbon foil
with velocity vp=47 a.u. as a function of propagation length. The
system is initially prepared in the 1s ground state. We compare
results of the nonunitary simulationssolid linesd with results ob-
tained in a unitary simulationsdotted linesd with nc=4. sad Popula-
tions of the 3s1/2,−1/2 and 3p1/2,−1/2 states,sbd ratio of these popula-
tions, andscd relative coherence between these two states.
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Gab
sedP =

1

s2pd3E d3k Gab
sedPskWd s4.13d

without any further approximation.

V. NUMERICAL RESULTS

The collision system we are investigating in the following
is the transport of a Kr35+s1sd ion with a velocity of 47 a.u.
through amorphous carbon foils of varying thickness, corre-
sponding to varying evolution times. The Hamiltonian of the
system is given by Eq.s3.11d, however, with interaction with
the wake field induced by the projectile ionf20g included.
For small distances from the projectile nucleus this wake of
density fluctuations creates, to leading order, a linear electric
field that causes Stark splitting of the projectile electronic
eigenstates. A more detailed description ofHS can be found
in Ref. f10g.

To explore the effect of our nonunitary QTMC method we
present two different simulations of the transport. First, we
consider the nonunitary QTMC method within the subspace
P spanned by the hydrogenic basis set with the quantum
numbersn, l, j , andmj. We label the resulting time evolved
nonunitary density matrix assNUstd. To be consistent with
our previous workf5g we chooseP as the Hilbert space
represented by the first four shells of the hydrogenic basis set
snc=4d limiting the size ofsNUstd to 60360 elements. We
note, however, that extensions to larger subspaces are com-
putationally feasible. Increasing the dimension ofP, for ex-
ample to 1823182 scorresponding tonc=6d, does not sig-
nificantly modify the results. The time evolution is governed
by the decay operatorGP in the effective HamiltonianHef f

P

fEq. s3.6dg. For comparison we use the unitary QTMC
method involvingGPP while leaving all other parameters un-
changed. The resulting unitary density matrix will be de-

noted bysUstd. Since in this work we are dealing with the
passage of fast projectiles through thin targets we can treat
the velocity of the projectile nucleus as constant and neglect
the slowing down of the projectile. We use timet in the
projectile rest frame and distanced in the laboratory frame

FIG. 5. Evolution of shell population ratios as a function of
propagation length for the nonunitary QTMCssolid linesd and a
unitary QTMC simulationsdotted linesd with nc=4.

FIG. 6. Evolution of relative populations of Kr35+ states as a
function of propagation length for the full nonunitary QTMCssolid
linesd and a unitary QTMC simulationsdotted linesd with nc=4.
Results are shown for different principal quantum numbersn and
angular momental. The populations are normalized to the overall
probability in the corresponding shell.sad Psn=2,ld for n=2, sbd
Psn=3,ld for n=3, andscd Psn=4,ld for n=4.
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interchangeably withdst=0d=0 at the entrance of the foil
anddstd=vpt /Î1−svp/cd2.

Figure 3 shows that while the ionized fraction of Kr35+

ions is small for thin foils, for the largest foil thickness used
in the experiment about 10% of the projectile ions are fully
stripped. This fraction is an approximate measure of the loss
of probability of the one-electron bound-state Hilbert space
due to transitions to the continuum. More precisely, all high-
lying bound states withn.nc also belong toQ increasing
this fraction somewhat. In addition, capture of a second elec-
tron leading to the formation of Kr34+ would represent a fur-
ther loss channel corresponding to the transition from a one-
electron to a two-electron Hilbert space. Figure 3 indicates
that this is for the system under consideration a slow process
leading to only 1% Kr34+ for the thickest foil and is neglected
in the following. Loss due to ionization dominates and has
motivated our investigation of nonunitary transport. By com-
paring the experimental findings with the results of the non-
unitary QTMC we find that the trace of the density matrix,
TrfsNUsddg and 1−TrfsNUsddg, agree well with the charge
state probability for Kr35+ and Kr36+, respectively.

The effect of the nonunitary evolution on individual state
populations and coherences is shown in Fig. 4 for the
3s1/2,−1/2 and 3p1/2,−1/2 subspace. The most pronounced dif-
ference is observed for the populations of these states. While
in a unitary calculation the feeding from low-lying states
remains dominant even for long propagation lengths, in the
nonunitary simulation loss from higher excited states into the
complementQ lead to a depletion and thus to a dynamical
equilibrium of the populations shown in Fig. 4sad. Remark-
ably, the population ratio between states of different angular
momenta within the same shellfFig. 4sbdg is very similar in
both calculations, the nonunitary QTMC results showing a
slightly higher ratio for thick targets. Also for the relative

coherencefEq. s3.14dg only a slight increase is observed.
By contrast, the shell populations rationsPsnd /Psn8d

show drastic modifications when loss intoQ is taken into
accountsFig. 5d. For small propagation lengths the ratios
between shell populations are controlled by single collisions
and remain constant. They are identical in the unitary and
nonunitary QTMC simulation. In the multiple collision re-
gime the unitary simulation accumulates the electron prob-
ability in the higher-lying shells while in the nonunitary
simulation the ratios approach saturation. In this regime the
flow of probability among states inP balances the flow of
flux from P to Q and back to the 1s state.

The relative subshell populations of states with different
angular momenta within a shell as a function of propagation
length agree for a unitary and a nonunitary QTMC calcula-
tion for short distancessFig. 6d. However, differences be-
come noticeable at large distances. Relative to the nonunitary
QTMC result the unitary transport enhances the probability
for higher angular momentum states.

The buildup and decay of coherences is most directly ob-
served in the reduced density matrixusij

NUsddu, which dis-
plays, on one hand, the excitation to excited states in the
diagonal elementssii

NUsdd and, on the other hand, the coher-
ences in the off-diagonal elements ofsij

NUsdd si Þ jd. The ab-
solute magnitude of the elements ofsNU for excited states is
given in Fig. 7 while the matrix of relative coherences is
shown in Fig. 8 for different propagation distancesd. While
Figs. 7sad and 7sbd reflect the excitation by single collisions,
Figs. 7scd and 7sdd reflect the multiple collision regime,
where we can observe not only the initially generated coher-
ences by excitation from the 1s ground state but also coher-
ences generated by deexcitation. Coherences most robust
against decoherence and still visible after a propagation
length of 33104 a.u. s,15 fsd are intrashell coherences be-
tween different angular momentum states.

FIG. 7. Reduced density matrix of a Kr35+ ion
in transport through amorphous carbon at a ve-
locity of vp=47 a.u. at various propagation
lengths. sad d=10 a.u., sbd d=102 a.u., scd d
=103 a.u., andsdd d=33104 a.u. Absolute mag-
nitude of excited-states matrix elementsusij

NUsddu
from n=2 andn=3 involving mj .0 are shown.
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The matrix of relative coherencesfEq. s3.14dg displayed
in Fig. 8 shows the gradual shift and decay of coherences as
a function of propagation distancesor foil thicknessd. The
intrashell coherences between the 2s and 2p states survive
longest. Two mechanisms are destroying coherencesi.e., de-
coherenced: dephasing and dissipation. The characteristic
time of dephasing between two states is mainly determined
by the inverse of the difference of their eigenenergies as

Tab
dephase= 2p/uvabu. s5.1d

Table I lists the path length for dephasing,ddephase, the pro-
jectile travels during the dephasing time Tab

dephasefor intrashell
statessa ,bd. The point to be noted is that most of the non-
vanishing coherences survive for longer than predicted by
Eq. s5.1d. The reason is that as long as the primary source,
the 1s ground state, is still populated, the excited-state co-
herences get replenished and a transient dynamical equilib-
rium is established for coherences.

Figures 7 and 8 do not present direct information on the
phase of the density-matrix elementsij

NU. We therefore dis-
play in Figs. 9 and 10 the trajectories in the complex plane of
a selected set of density matrix elements with snapshots
taken at different propagation distances. While coherences
shown in Fig. 9 are destroyed primarily by dephasing, in Fig.
10 dissipation in the dominant decoherence mechanism. For
a better comparison we rescale in Fig. 9 the propagation
distance by the corresponding dephasing distanceddephasefor
each coherence separately. Starting at the origin, the selected
elements of the reduced density matrixsij

NUsdd fFigs.
9sad–9scdg evolve counterclockwise in the complex plane
with increasing propagation path. This subset has in common
that the buildup of coherence occurs already in the single-
collision regime. These elements approximately complete

one circle in the complex plane after each multiple of
ddephase. The shift, i.e., the fact that after a 2p rotation the
trajectory does not exactly return to its starting point, signi-
fies the effect of multiple collisions and radiative decay dur-
ing further transport. The elements2s1/2,1/2,2p3/2,1/2

sdashed
line in Fig. 9d with the shortest dephasing pathddephase

=100 a.u. is least affected whereass3p3/2,3/2,3d5/2,3/2
ssolid lined

with a ten times longer dephasing path is strongly perturbed.
Multiple scattering and dissipation manifests itself in a shift

FIG. 8. Relative coherencesuCij
NUsdduof the re-

duced density matrix of a Kr35+ ion in transport
through amorphous carbon at a velocity ofvp

=47 a.u. at various propagation lengths.sad d
=10 a.u.,sbd d=102 a.u.,scd d=103 a.u., andsdd
d=33104 a.u. Only matrix elements fromn=2
andn=3 involving mj .0 are shown.

TABLE I. Dephasing lengthdab
dephasein a.u. for a Kr35+ ion trav-

eling with a speed of 47 a.u. during the timeTab
dephase=2p / uvabu for

intrashell combinations of hydrogenic eigenstates with the unper-
turbed Hamiltonian specified in Eq.s3.11d.

n=2 a=2s1/2 2p1/2

b=2p3/2 110 107

2p1/2 4954

n=3 a=3s1/2 3p1/2 3p3/2 3d3/2

b=3d5/2 274 270 1118 1125

3d3/2 363 355 178224

3p3/2 363 356

3p1/2 16547

n=4 a=4s1/2 4p3/2 4d5/2

a=4p1/2 4d3/2 4f5/2

b=4f7/2 580 1780 5369

4d5/2,4f5/2 651 2663

4p3/2,4d3/2 861
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of the circle as well as in a shrinking radius of the rotation.
The relative coherenceCij

NUsdd in Figs. 9sdd–9sfd starts out
to be purely imaginary as expected in a single collision when
the Born approximation holds. Just after one single rotation
sd=ddephased the relative coherence approaches the origin of
the complex plane indicating very fast decrease in coherence
while still performing further revolutions.

In Fig. 10 we selected elements ofsij
NUsdd with a long

dephasing lengthsddephased such that multiple collisions
dominate the buildup of coherence and decoherence. We se-
lected four elements ofsij

NUsdd that approach a nonvanishing
largerstransientd equilibrium value of the relative coherence
uCij u ù0.1 within the propagation distances studied. Starting
at the originfFig. 10sadg the coherences first evolve along
circles of different radiifFig. 10sbdg. Note that in this figure

sunlike Fig. 9d we have not rescaled the propagation path but
show the density matrix for the identical propagation path in
each plot ranging fromd=33102 a.u. tod=33104. There-
fore some elements with relatively shortddephasesucceed in
almost completing one circle while others with a longddephase

still evolve almost tangentially. Multiple collisions and radia-

FIG. 9. Evolution of selected elements of the density matrixsij
NU

of a Kr35+ ion in transport through amorphous carbon at a velocity
of vp=47 a.u. for different propagation lengths in the complex
plane. The left column, i.e.,sad, sbd, and scd, shows off-diagonal
elements of the density matrixsij

NU while the right column, i.e.,sdd,
sed, andsfd, shows the relative coherenceCij

NU, i.e., the off-diagonal
elementssij

NU normalized to the population of the involved statesf
si,i

NU andsj,j
NU according to Eq.s3.14dg. The maximum propagation

length of each coherence has been rescaled, such that in the first
row, sad and sdd, it corresponds to the dephasing lengthddephase

shown in Table I. For the second row,sbd and sdd, d=2ddephaseand
for the third row, scd and sfd, d=3ddephase. Solid lines:
s3p3/2,3/2,3d5/2,3/2

NU ; dotted lines: s3p1/2,1/2,3d3/2,1/2

NU ; dashed lines:
s2s1/2,1/2,2p3/2,1/2

NU .

FIG. 10. Evolution of selected elements of the density matrix
si j

NU of a Kr35+ ion in transport through amorphous carbon at a
velocity of vp=47 a.u. for different maximum propagation lengths
in the complex plane. The left column, i.e.,sad, sbd, andscd, shows
off-diagonal elements of the density matrixsi j

NU while the right
column, i.e.,sdd, sed, andsfd, shows the relative coherencesCij , i.e.,
the off-diagonal elementssi j

NU normalized to the population of the
involved statesf si,i

NU ands j ,j
NU according to Eq.s3.14dg. Solid lines:

s2s1/2,1/2,2p1/2,1/2

NU ; dashed lines: s3s1/2,1/2,3p1/2,1/2

NU ; dotted lines:
s3p3/2,3/2,3d3/2,3/2

NU ; and dot-dashed lines,s3p3/2,1/2,3d3/2,1/2

NU . The results
shown insad–scd for s2s1/2,1/2,2p1/2,1/2

NU ssolid linesd have been divided
by 10.
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tive decaysi.e., dissipationd completely distort this circular
motion for long propagation paths in Fig. 10scd. The long-
time behavior of these elements ofsij

NUsdd mimics Brownian
motion in the complex plane. Since these coherences are
most sensitive to an accurate theoretical description, they
provide a test for our approach.

It is important to note that the diagonal as well as the
off-diagonal elements ofsij

NU are very sensitive to the com-
petition between gain and loss. It is the contribution from the
loss into the complementQ, included in the present calcula-
tion, that significantly changessij

NU in the region where a
transient equilibrium persists. The diagonal elements ofsii

NU,
the population probabilities, are clearly very different from a
unitary sij

U as discussed before. Likewise, the off-diagonal
elements ofsij

Usdd do not reach an equilibriumsFig. 11d un-

like those ofsij
NUsdd.

We conclude this section by presenting a comparison with
the experiment that originally stimulated our investigation.
The experiment we compare with has been performed at
GANIL sGrand Accélérateur National d’Ions Lourded on the
LISE sLigne d’Ions Super Epluchésd facility. The projectiles
used were hydrogenic Kr35+ at an energy of 60 MeV/amu
corresponding to a collision velocity ofvp=47 a.u. The ini-
tial state of transport is the ground state Kr35+ s1sd in
vacuum, we employ a sudden approximation at the foil en-
trance at which the terms in the Hamiltonian referring to the
carbon foil are switched on. Likewise, we project onto
atomic final states in vacuum at the exit surface invoking,
again, a sudden approximation. Using high-resolution high-
transmission Bragg-crystal spectrometers the emitted pho-
tons of the Balmera lines have been measured as a function
of foil thicknessf10g. The intensities of the emitted Balmera
lines stransitions fromn=3 to n=2d give a measure of the
population of the corresponding electronic state of the pro-
jectile during the time evolution for states withn=3. There
are two important details to be considered. First, the line
intensities measured are integrated over the whole passage of

the projectile through the foil and after exiting it. Therefore
the spatial information can only be obtained by repeating the
measurement using targets with different thickness. Second,
the contributions to a given Balmer line is not only deter-
mined by the population collisionally excited to the initial
state of this radiative transition but also from all higher ex-
cited states feeding this state during the radiative cascade.
Details are described in Ref.f10g. In order to correct for the
cascade contribution fromn.4 states, we extrapolate the
quantumn, l ,m distributions to highern levels using scaling
properties drawn from classical transport theorysCTTd
f18,21–23g. We have shown that for high principal quantum
numbersn the solution of the NLSSE in Eq.s2.7d reduces to
a linear Schrödinger equation for quasifree electrons. For
high n only collisional interactions are contributing while
radiative decay can be neglected on the time scale consid-
ered. We apply the same extrapolation correction to both the
unitary and nonunitary QTMC calculation.

In Fig. 12 we compare the experimental intensity ratio
I3p1/2

/ I3s1/2
with results obtained with the nonunitary QTMC

calculation and with results form a unitary QTMC simulation
as a function of target thickness. The nonunitary approach
clearly improves the intensity ratio in the regime of multiple
collisions for thicker targets and leads to much better agree-
ment with the experimental findings.

VI. SUMMARY

We have introduced a generalized Lindblad master equa-
tion for the description of the time evolution of a subspace of
the reduced density matrix that allows for the flow of prob-

FIG. 11. Comparison of selected coherences of a Kr35+ ion in
transport through amorphous carbon at a velocity ofvp=47 a.u. as a
function of propagation length. We show absolute magnitude
usij

U,NUu of coherences betweens and p states forn=2 and n=3
obtained by a nonunitary QTMCssolid linesd and by a unitary
QTMC simulationsdotted linesd with nc=4. FIG. 12. Relative line emission intensitiesI3p1/2

/ I3s1/2
resulting

from the transmission of a Kr35+s1sd ion through amorphous carbon
at a velocity of 47 a.u. as a function of target thickness. Symbols
are experimental data from Ref.f24g, the solid line shows the result
of the nonunitary QTMC simulation and the dotted line represents
results obtained by a unitary QTMC simulation withnc=4.
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ability out of the truncated Hilbert space. We have developed
the corresponding generalized nonunitary quantum trajectory
Monte Carlo method solving this Lindblad master equation
and have implemented it for the transport of a fast highly
charged hydrogenic ion through a solid.

We have calculated the time evolution of the internal elec-
tronic state of a Kr35+ ion during transport through carbon
with the generalized nonunitary quantum trajectory Monte
Carlo method. We find that inclusion of loss processes via a
nonunitary formulation of transport leads to a modification
of coherences and not just to a change of excited-state popu-
lations. The good agreement with experimentally obtained
intensity ratios of emitted photons underlines the need for a
nonunitary treatment of this transport problem and indicates
the validity of our approach for such a complex system.

One conceptual shortcoming of the present formulation is
the lack of the capture channel. While insignificant for the
experimental data studied in this work, its inclusion is essen-
tial for further applications. Work along these lines is in
progress.

ACKNOWLEDGMENTS

This work was supported by the NSF, FWFsAustriad, and
EU under Contract No. HPRI-CT-2001-50036. C.O.R. ac-
knowledges support by the DCS, OBES, USDOE, managed
by UT-Battelle, LLC, under Contract No. DE-AC05-
00OR22725.

APPENDIX: CORRESPONDENCE OF QTMC AND
LINDBLAD FORM IN A NONUNITARY SYSTEM

In this Appendix we briefly show the correspondence of
the solution of the QTMC method with the solution of the
Lindblad master equation. Our analysis applies to both the
unitary and nonunitary QTMC methods. The important point
is that only the short-time behavior of the solution enters.
The continuous time evolution operator from Eq.s3.4d can

be expanded using the Taylor seriese−iHeff
P,PP

dt=1−iHeff
P,PPdt

+Osdt2d up to first order indt as

Ucont
h st + dt,tduChstdl

= iChstdi

3
s1 − iHeff

P dtduChstdl
fkChstdus1 + iHeff

PP† dtds1 − iHeff
PP dtduChstdlg1/2.

sA1d

By inserting the definition of the effective HamiltonianfEq.
s3.6dg the denominator of Eq. sA1d simplifies to
skChstdu1−GPPdtuChstdld1/2, so that we obtain in first order
of dt

Ucont
h st + dt,tduChstdl = S1 − iHeff

P dt +
1

2
kGPPlt,h dtDuChstdl,

sA2d

using the definition of the expectation value as

kGPPlt,h = kChstduGPPstduChstdl / kChstduChstdl

= kChstduGPPuChstdl/iChstdi2

.
We define a stochastic variableNkW

hstd that counts the num-
ber of jumps up to a timet for a given quantum trajectoryh
and indexkW of the transition. The differential, also called Ito
differential,dNkW

hstd=NkW
hst+dtd−NkW

hstd, takes for an infinitesi-
mally short time intervaldt the value 1 when a jump hap-
pened and 0 for no jump for a given quantum trajectoryh.
Consequently, the product of two Ito differentials for the
same time isdNkW

hstddNkW8
h std=dkW,kW8dNkW

hstd because only one
jump can occur in an infinitesimal short time intervaldt.

The change of the wave functionudChstdl=−uChstdl
+ uChst+dtdl is

udChstdl = − uChstdl

+ FS 1

Vo
kW

dNkW
hstdUjump

h skW,tdDUcont
h st + dt,td

+ S1 −
1

Vo
kW

dNkW
hstdDUcont

h st + dt,tdGuChstdl,

sA3d

where the second term corresponds to the case when a jump
happens in the time intervaldt weighted with probabilities
V−1dNkW

hstd. The continuous time evolution operator is applied
to the wave function first and afterwards the jump operator
acts on the evolved quantum trajectory. When no jump hap-
pens fthird term with the complementary probability of 1
−V−1okWdNkW

hstdg only the continuous time evolution contrib-
utes viaUcont

h st+dt,td.
Inserting the explicit form ofUcont

h st+dt,td from Eq. sA2d
into the last expressionfEq. sA3dg we obtain

udChstdl = F− iHeff
P dt +

1

2
kGPPlt,h dt

+
1

Vo
kW

dNkW
hstdfUjump

h skW,td − 1g

+ OS 1

Vo
kW

dNkW
hstddtDGuChstdl. sA4d

All terms in Eq.sA4d proportional todNkW
hstddt vanish to first

order in dt when we take the average over all stochastic
realizations of a quantum trajectory. Inserting the definition
of Heff

P fEq. s3.6dg into Eq. sA4d we obtain the NLSSE with-
out specifying theUjump

h skW ,td and the jump times indNkW
hstd as
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udChstdl = S− iHSdt −
dt

2
sGP − kGPPlt,hd

+
1

Vo
kW

dNkW
hstdfUjump

h skW,td − 1gDuChstdl.

sA5d

The ansatz made in Eq.s3.5d for the jump operator leads
directly to the NLSSEfEq. s3.7dg.

Finally, the differential change of the reduced density ma-
trix for a stochastic realizationdshstd= udChstdlkdChstdu is
given by

dshstd = − ifHS,shstdgdt +
dt

2
fGP,shstdg+ + kGPPlt,hshstddt

+
1

Vo
kW

dNkW
hstdfkGkW

PPlt,h
−1SPskWdshstdSP†skWd − shstdg.

The generalized Lindblad form of the master equationfEq.
s3.1dg is obtained with the ansatz for the averaged jump time
distributiondNkW

hstd as shown in Eq.s3.8d as a sum over quan-
tum trajectoriessstd=Ntraj

−1 oh=1
Ntrajshstd.
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