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We have developed a generalized nonunitary Lindblad equation and its quantum trajectory Monte Carlo
implementation for the evolution of open quantum systé®@Ss whose coupling to the environment fea-
tures not only energy exchange but also probability flux to the environment. This generalization allows the
treatment of a class of problems where the state space of the system includes bound and continuum states. We
show the equivalence between the solution of the generalized Lindblad equation and the Monte Carlo average
over open quantum trajectories. As a first test case we study the multilevel radiative decay of a hydrogenic ion.
As a second test case we apply the theory to the time development of the internal state of fast highly charged
Kr35* jons traversing carbon foils with varying thickness subject to collisions and to spontaneous radiative
decay. We find significantly improved agreement of the nonunitary transport theory with experimental data.
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[. INTRODUCTION density operators leads to a scaling withwhile controlling
the statistical error of the result by introducing another scal-
The open guantum systef®@QS approach provides a ing with the number of trajectories.
useful theoretical framework for describing the time evolu- Solving the Redfield equation by QTMC techniques re-
tion of a system interacting with an environment representguires its reduction to a form strictly preserving positive
ing a large number of degrees of freedom. The underlyinglefiniteness of the reduced density matrix. This can be con-
concept of studying the partially coherent dynamics of theveniently achieved by a reduction to a Lindblad for637].
reduced “small” system under the influence of all other de-Alternatively, a solution of the Redfield equation by QTMC
grees of freedom of the problem to be traced out is at theénethods has been propode9] requiring, however, an ex-
core of investigations of decoherence. For example, the coudended state space. Depending on the physical system to be
pling between an atorfthe small systemand the vacuum described, the reduction to the Lindblad form is not unique
fluctuations of the radiation fiel(the environmentresults in  and is still an open problem. We have recently introduced a
spontaneous transitions in the atomic sysigm, radiative form for this reduction that accounts for both the buildup of
decay and thus to decoherence as well as in modifications ofoherences as well as the decoherdia¢eOur analysis was
the eigenstates by shifting their eigenenergil® Lamb  motivated by experimental studies of collisionally induced
shift). coherences in highly chargedKig=35) ions traversing car-
The starting point of a theoretical analysis of OQSs is,bon foils at high speed@ =47 a.u).
typically, the reduction of the master equation for the re- The passage of an atomic system through solids under
duced density matrix to a Redfield equation by applying themultiple-scattering conditions provides a classic example of
Born-Markov approximatiofil—5]. Even with such a drastic the interaction of an open quantum systétime projectilg
simplification which treats the coupling to the environmentwith a large environmenthe solid. Studying such transport
in first-order perturbation theory and neglects memory efproblems has the advantage that the system-environment in-
fects, solution of the equation of motion for the density isteraction is switched on suddenly when the projectile enters
still a formidable task. Difficulties in describing OQSs in the solid and ceases suddenly after escaping from the solid,
terms of the evolution of the reduced density matrix havethus allowing the time-resolved study of the evolution of the
their source in the high dimensionality of the problem. In thedensity matrix on an attosecond to femtosecond time scale.
solution of the master equation for the reduced density mawhile good agreement was found for thin foils correspond-
trix (N?) of the N-state systemN* couplings are involved. ing to short times, discrepancies for larger distances
The OQS approach was first successful for the theoreticg=10" a.u) corresponding to propagation times of5 fs
description of atomic systems involving only few stateswere observed5]. These discrepancies were particularly
[1,3]. However, many problems in atomic physics require atroubling as they only appeared within the formulation of
high-dimensional state space for which tiféscaling makes quantum transport in terms of a Lindblad equatishwhile
a direct solution of the underlying master equation impracti-with an earlier more phenomenological mod&D] better
cable. agreement was found. Understanding and resolving these
The importance of the quantum trajectory Monte Carlodiscrepancies is the aim of this paper.
(QTMC) method[4,5] and closely related techniques such as  One key feature of the Lindblad equation is the unitarity
the Monte Carlo wave-function methdd—3] lie in the re-  of the evolution of the reduced system described, built in by
duction of dimensionality. Propagating states rather than theonstruction. The point to be noted is that preservation of
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positivity does not necessarily require unitarity. In fact, the open quantum v reServOir
unitarity of Lindblad equation is of limited value when deal- system L AAAAAMAAN

ing with any truncated Hilbert space of the reduced system in HS B HR
a realistic simulation. As flux out of this subspace into its

complement can and, in general, is bound to occur, enforced (a)

unitarity means unphysical suppression of flux and thus dis- ] Ve ]
tortion of the evolution within the truncated Hilbert space. A subspace P ‘/VVV\/\/V\/V\,\ reserverr
classic example is the propagation of wave packets of con- f J\N\N\N\/\/\f HR
tinuum electrons. Within any basis expansion or finite ele- complement @’ v

ments (grid) representation of finite dimension, only a (b) -

bounded region in coordinate space can be represented. The
wave packet will therefore be artificially reflected at the FIG. 1. Schematic picture of the open quantum systésgrin-
boundary unless absorbing boundary conditions, optical pderacting with the reservoitlr via the interactionVsg (a) Full
tentials, or masking functions are introducgtl]. All of systemHg and(b) decomposition into subspateand complement
these methods result in absorption of probability flux and!™
thus in a manifestly nonunitary evolution. In analogy, we
introduce in this paper a generalized nonunitary Lindblad Clearly, the solution of the full Liouville-von Neumann
equation and its QTMC realization that accounts for prob-equation is out of reach for realistic systems involving a
ability flux out of the truncated Hilbert space to be explicitly large number of degrees of freedom. Instead, the focus is on
treated. The open quantum systems discussed in the follove master equation, an equation of motion for the reduced
ing are not only open with respect to energy transfer but alsdensity matrix of the system of interestt), which is ob-
with respect to probability flux. This change of approach cartained by tracing out all degrees of freedom of the reservoir
be viewed as the analogue to the transition from a canonicdly o(t)=Trg[p(t)]. One requirement for the reservoir is that
to a grand canonical ensemble in statistical mechanics. In thie has a large number of degrees of freedom compared to
application to the projectile state evolution in the solid, thethose of the system such that the energy spacing of reservoir
present approach permits us to treat explicitly the low-lyingstates is much smaller than that of the system providing a
states of the ion within a finite Hilbert space of a size man-continuous excitation spectrum. The reduction entails usually
ageable within a numerical solution using a Monte Carloa number of additional approximations such as the Born-
method, while implicitly accounting for the flow of probabil- Markov approximation which neglects memory effects,
ity towards highly excited bound states and continuum stategeats the couplinysgto first-order perturbation theory, and
in the complement. yields a master equation of the Redfield tyjag. A useful
The plan of this paper is as follows: we briefly review the further reduction is the Lindblad equati¢,7]

open quantum system approach and the solution by means of
a quantum trajectory Monte Carlo method in Sec. Il. In Sec. d = +

o(t) =—i[Hg o(t)] + Ro(t) (2.2
[l we present our extension for nonunitary systems and il- dt
lustrate its application for the simple test case of the radia’[iV@Vith the relaxation superoperator
decay of a hydrogenic atom. In Sec. IV we apply our exten-
sion to the transport of hydrogenic atoms through solids and
show that previously observed discrepancies can be ac-

1 L L
Ro(t) = - E/E [S'(KS(K)a(t) + o(t)S'(K)S(K)
counted for. Atomic units(|e)=m,=A=1,c=137) will be K

used unless otherwise stated. - 28K a(t)S'(K)], (2.3
that describes the interaction of the system with the reservoir
Il. OPEN QUANTUM SYSTEM APPROACH and involves a sum containing the transition operﬂdﬁ).
FOR UNITARY SYSTEMS The transition operator represents transitions between states

_ ) _ ) _ ) of Hg due to the coupling with the reservoir determined by

In this section we briefly review the basic properties ofVSR The physical meaning of the summation laliehnd
the Lindblad equation and its solution by a quantum trajecy,qjymeV depends on the system under consideration. In the
tory Monte Carlo method. A more detailed description can be}ollowing k represents the wave-number vector of the mo-
founq |n.Ref. [5.]' Con§|der a SyStemS) of interest With e ym exchange between system and reservoir but may
HamiltonianHs interacting with an environment referred t0 5154 include polarization indices, etc. The time evolution of
in the following as reservoir(R) with Hamiltonian Hg  the reduced density matrix(t) in this formalism is governed
through a coupling interactiotsg [Fig. 1@)]. The time evo- 1y the part of the total Hamiltonian acting on the system
Iut|op of.the density ”.‘a”"."“) of the entire mteractl.ng Sys- solely, and by the Lindblad transition opera&k). With this
tem is given by the Liouville-von Neumann equation decomposition we separate the description of the dynamics

d ] into an unperturbed part of the small system without an en-
d_tp(t):—l[H,P(t)], (2.1 vironment (Hg and put all effects of the presence of an
environment(i.e., driving transitions within the open quan-
including the total Hamiltoniat =Hg+Hg+Vgsn tum system into the relaxation superoperatéR). In the
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quantum Monte Carlo trajectory realization the first term ofentialng(t) that is 1 when a transition happens in an infini-
Eq. (2.2 and the first two terms of Eq2.3) of the Lindblad  tesimal time intervalit and that is zero otherwise. This sto-
master equation result in a continuous time evolution whilechastic element generates different stochastic realizations of
the last terms in Eq(2.3) is responsible for discontinuous quantum trajectories labeled by It can be showii12] that
(‘jump”) processes. Built into Eq2.2) is the strict positivity  the reduced density matrix calculated as the Monte Carlo
of o(t) for all times, i.e.,0(t) =0 for alli andt. The Lind-  ayerage(2.6) yields the Lindblad equatiofi2.2) when the

blad equation describes an open quantum sys@@S al-  expectation value of the Ito differentials for the system in
lowing for energy exchange state|W7) at timet are chosen as
(2.8

while preserving the total probabilit
P 9 P y Solving the NLSSE the time evolution of each quantum tra-

d 3 jectory is constructed by applying the time evolution opera-
d_tTrS[‘T(t)] =0. (2.9 tor onto the initial wave function as [¥7(t))
o o o =U7(t,0)|¥7(0)). The time evolution operato(t,0) is

The latter follows from the explicitly built-in unitarity of the  onstructed as a sequence of continuous time evolution op-

evolution into the relaxation operatfEq. (2.3)]. Equation  grators and discontinuous jump operators as
(2.2) describes a unitary mapping of the Hilbert space of the

system,Hg, onto itself. " .

The popularity of the Lindblad equation is, in part, due to U”(t,0) = Ugom(titn)l_[ UilimpK; tUndt -0 (2.9)
the fact that it can be mapped onto a nonlinear stochastic =1
Schrodinger equatiofNLSSE without further assumptions  with t,=0. The application of the continuous time evolution
or approximations. The advantage of such a mapping is thajperator results in
the NLSSE can be solved by propagating a Monte Carlo et
ensemble of state vectors: i.e., using the quantum trajectoqu,,,(t_» U7 (ot )W) = e et i |W7(t;_1))
Monte Carlo (QTMC) or Monte Carlo wave-function L contifjr -1 -1 ||e-'Heff(tj-tj-l)|\pn(tj_1)>|| ’
(MCWF) methods. In analogy to classical statistical mechan-
) . ; (2.10
ics, where the Boltzmann equation can be solved using test
particle discretization following the trajectories of an en-with the effective Hamiltonian
semble of test particles in time, the Lindblad form of the )
master equation can be solve_:d by an ensemble of quantum Hef= Hg— I—E S'(R)S(K) (2.11)
trajectories. The conceptual difference between quantum and 2V
classical trajectory Monte Carlo methods is that the dynam-
ics of the classical trajectories in phase space is governed Bgcluding the unperturbed atomic Hamiltonian of the system
the Langevin equation while in the quantum version eacHHs) and the modification of the eigenstates due to the pres-
realization corresponds to a stochastically propagated stagnce of the environment making the effective Hamiltonian
vector (quantum “trajectory” in Hilbert spageaccording the non-Hermitian.

NLSSE. The discontinuous transitions
Within the QTMC method the density matrix of a pure S(*)|‘lf”(t )
state is obtained as W7t + 80) = UK 1) [W(E))) = —
Niraj ||S(kl)|\lf7/(tj)>||
a(t) = —— 2 [W )XW (b, (2.6 (2.12
traj 7=1

_ _ _ _are specified by a transition timgump time) t; and the pa-
whereNy,; is the number of quantum trajectories controlling rameterk; which are determined by the coupling to the res-
the statistical uncertainty. In the limit,,; — o, the ensemble gy oir degrees of freedom. In spite of the non-Hermitian na-
average can be shown to be strictly equivalent to the solutiof,re of H, the evolution[Egs. (2.10—~(2.12] remains
of the original Lindblad equatiofiL2]. The time evolution of unitary as the renormalization of the kd&gs. (2.10 and

each trajectory is governed by the NLSSE, (2.12)] restores the norm at each step.
WD) = | - iHgdt- 3 [SRISK) - (SIRSE),]
s 2V 7 I1l. NONUNITARY LINDBLAD EQUATION AND NLSSE
1 SK) The unitarity constraint, E¢2.5), built into the Lindblad
+ —E dNE’(t)<— - 1) [P (1)), equation poses a hurdle for realistic numerical simulations as
VX V(S'(K)SK)):. ., it remains in force when the Hilbert space is truncated to

dimensionN. For realistic high, but finite, dimensional sys-
(2.7 oo . ) .
tems which include continuum states a strictly unitary evo-
containing a stochastic element in the form of an Ito differ-lution is unphysical. Only a subspateof the Hilbert space
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Hg can be represented in a humerical simulation by a trun- d b op

cated basis of dimensidd [see Fig. 1b)]. The subspack is d_tTfs[U(t)] ==Tr[M ()] + Trd " o(t)]

coupled to its complemerip by the system-reservoir inter-

actionVgg. The flow of probability betweelt and() is there- 1 + >

fore not an artifact but real for any computationally feasible = Ek a%é . z)s (KSR, (3.3
truncated basis set. The point to be noted is thegfers to a

subspace of the system Hilbert space, not to the reservoWhereS , andS,z in this equation correspond only to matrix
[see Fig. 1b)]. The interaction with the environment does elements of the submatrb'ip“

not only drive transitions within the open quantum sysfém While general master equations that feature nonconserva-
but is also responsible for probability flux out of it intfa.  tion of probability (or particle numberare well known, the
Therefore the class of open quantum systems this approadpecific novel aspect of the present formulation is that it can
can describe is not only open with respect to energy dissipabe mapped onto a wave-function propagation algorithm. This
tion but also with respect to probability flux. In practice, nonunitary extension of the Lindblad equation has the advan-
numerical simulations take this effect into account by opticaltageous feature that the positive-definiteness requirement re-
potentials or masking functiorjid1]. Their purpose is to pre- mains satisfied withif’. Consequently it can be solved using
vent “reflection” of wave packets, i.e., the artificial confine- a QTMC algorithm as well, provided that a modified NLSSE
ment withinP rather than the flow int®). Such approxima- and generalized versions of the continuous and jump opera-
tions can account for a flow frofi into () while neglecting tors,

the backcoupling from) to °. Their consequence is the vio-

lation of unitarity within PCHs. In the application to the |\If’7(t )= Ucont(tl’tj—l)|\1’7](ti—l)>

excited-state evolution in the solidee Sec. IV, P will rep- e—iHLff(t,-—tj_l)m,n( )

resent the hydrogenic bound-state space up<tn, where =Wt —p I (3.9
the cutoff quantum number is typically,~6. (The dimen- &7 Her=y-2 | W 7(t;_y))|

sion of I’ is thenN=182) Accordingly, () represents higher-

lying bound stategn>6) and the continuum spectrum of [W(t + 8)) = U (K ()

ionized electrons. Our goal is now to go beyond the restric-
tion (2.5) and to develop a different master equation that T S'(K)[W(t))
accounts for the probability flow frorht into (). To this end = (j—1)||||SP(|Z,)|\I,7,(t,)>||’ (3.5
we introduce a generalized Lindblad equatide(t)/dt= ! !
—i[Hsg, o(t)]+RYa(t), in which the relaxation superoperator are applied. The non-Hermitian effective Hamiltonians enter-
is replaced by its nonunitafNU) version ing Eq.(3.4) are
L Hip = Hg— 'Er“’ andHgy = Hg— r”’. (3.6)

RWa(t) = - = [P'S'(K)S(k)P o (t) + o(t) P'S'(k)S(k) P"

2V In contrast to Eq.(2.10), the continuous operatdi3.4)
does not preserve the norm of the wave function. The non-
Hermitian Hamiltonians in Eq3.6) including the decay op-
eratorsI'" and """ result in a nonunitary evolution b7,

In Eqg. (3.1 Sis defined in the entire Hilbert spaé¢k; while in Eq. (3.4). In the unitary QTMC method discussed in the

S’ is the submatrix ofS mappingP onto itself. That is§’  Previous sectiot)g,, in Eq. (2.10 contains the same effec-

—P'SP’, where P'=3,_|a)a| is the projector operator tive Hamiltonian in the nominator and in the denominator,
onto the subspack. This gives rise to the decomposition resultl_ng in an overall rotation of t_he state vecfdr’(t)) in

the Hilbert spacdig In the nonunitary QTMC method the
effective Hamiltonians inJ’,; differ by the sum over all

op 1 | o S, which is the amount of coupling fro to the comple-
= \—/E ST KS'(K) = vz '@, (323  mento. ConsequentlylZ,,, in Eq. (3.4) accounts for the
k k probability decrease in the subspaéedue to flux into the

complement).
The corresponding NLSSE now becomes

- 28" (K)o (t) S T(K)]. (3.1

-—E PISIRSKP =SS TR,  (3.2b 4t
V& () = —iHg dt= ("= ("), )
i ix withimhi 1 S'K
where the former describes the decay matrix withiavhile + _E dNZ(t) -1 v,
the latter also includes the decay frothto ). In other \/<1~1P1P(|2)>tn

words, Eq.(3.2b involves the submatrig (k) mappingP 3.7)
onto (). Consequently the norm aof(t) is no longer con- '
served but decays according to where the expectation values are now defined(lél‘?),,
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:.<\IIU|FPP|\I”1>/<\I”7|\I/’7). In order. to yield the generaliized @ 4p H (b) 4p IP)
Lindblad form(3.1), the expectation value of the Ito differ- My S i
entials when the system is in staf”) at timet is chosen as 3 %553;73(1 3§#£3H;§E..<3d
- o "“i_‘ ,.'
dNZANZ = dNZ(t) Sier = AT (K))y, S - (3.9 25/ 2p 2s ,-f 2p Q
ls/ ISV
In this case, the jump times can be obtained from the implicit F o) T T T T m
equation - n
0.0 »
s F [ PR 4 ]
U= o (1 e ey )P, (3.9) 2 B 1]
||‘1”’(tj-1)||2 . , @ Ly § Re[C 393 14
2 0.5 :. - — Im| C]I;]Iss’:;d ]—_
where u is a uniformly distributed random numbey cO .-‘ B Re[CL 14
e[0,1]. - ® Im[CE_ 11
In the Appendix we show the correspondence between the 1.0 ! ] ! ] !
QTMC method and the generalized Lindblad master equa- 0 o 20 30
tion (3.1). We conclude this section by illustrating the sig- Time [a.u.]

nificance and accuracy of the nonunitary QTMC method
with the help of an exactly solvable model problem: the mul-
tilevel time evolution of an excited hydrogenic atom subject
to spontaneous radiative decay. Since spontaneous dec
Igads onIy_ to transitions to lower-lying Ievedenl[ke colli- | crence between thes@, 1/, and the 8y 1/, States calculated ex-
sional excitatiop truncation of the bound-state Hilbert space actly for the entire Hilbert spachs (CLs ') and using the nonuni-
does not introduce errors and thus allows for an exact 5°|Utary reduction for the subspade(C.. 35)’.3"
tion within the Born-Markoui.e., Wigner-Weiskop{6]) ap- 33
proximation by directly integrating the Lindblad equation.

We consider a highly charged hydrogenic ion3¥y in s(3) = i_w3’2<a|r 18)0(w5,) (3.10
the vacuum. The only interaction with the environment is the “p \3ce At pa '

coupling to the vacuum fluctuations of the radiation field . . o .
manifesting itself in two ways: the coupling driven by this where the indeXJ indicates the polarization of the emitted

interaction is the spontaneous radiative decay of the electro_'ﬁhomn' The unperturbed Hamiltonian of the system includ-

from an excited state and also the modification of the'"9 relativistic corrections is

eigenenergies of the system by the Lamb gHi& 14. Since Hg= = V212 =Z,r + AH,g (3.12)
radiative decay is an exothermic process, i.e., the final state ' e

energy of the electron is always below its initial energy, thewhere AH,, represents relativistic and Lamb shift correc-
Hilbert space necessary for a representation of all possiblgons [5]. The transition operatofs%(j) is defined in the
final states is restricted. For example, the time evolution okntire Hilbert spacdls of the electronic states of a hydro-
an electron initially in the g state is completely represented genic atom. By allowing the state indicesand 3 to cover

in the Hilbert space covering the first four shells of the elec-opn|y the subspacé we obtain 54211“(3):5(;;(3)_ The con-

tronic states rendering the unitary system within a finite Hil-g¢ction of the decay operators is straightforward
bert spacédig, as is schematically shown in Fig(a2.

FIG. 2. Test model for a free R¥* ion under the influence of
radiative decay only@) Full Hilbert spacellg with the initial state
4p. (b) Decomposition into the subspateand the complemerntp.
Comparison of the real and imaginary parts of the relative co-

We can now test the nonunitary QTMC evolution by ar- FZE: > g;l))T(’j)S%(j), (3.12
bitrarily dividing this finite system into two subspaces con- velP 3
sisting of, e.g., the third and fourth shell representihgon-
taining the initial state g [Fig. 2(b)]. Accordingly, the Po_ nt N~
complement() contains the first and second shell. This sys- Lap ye%@‘o)zj “r (j)s(’/ﬁu)
tem features now a net flux froito ) (e.g., by a direct Ly
transition or a radiative cascadand is thus open with re- =T+ 2 2 8)(9)S))0), (3.13
spect to probability flux. Moreover, there is no probability ve) 3

flowing back from the energetically Iovv_er-lying complementynere the complete Hilbert spades=P & () is represented
(Q to the subspacé’. Therefore, for this model system, a 55 3 direct sum over the subspdtand the complemerip.
properly constructed nonunitary QTMC should exactly re- |, Fig. 2(c) we show the time evolution of the reduced
produce the results from the full unitary simulation of the gensity matrix starting initially from agstate. A remarkable
whole system for any observableslin and often overlooked aspect of the radiative decay is that
Using the dipole approximatiofa|ViB)=wg alf|B)  unless the wave packet is projected, i.e., a measurement is
with wg,=wg—w, We obtain the transition operat8ifor the  taken to determine the state of the emitted photon, the spon-
radiative(r) decay as taneous decay generates a partially coherent superposition of
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states. Only the subsequent feeding and radiative decay afinimum-energy transfer given by the step functiim Eqg.
these states leads to dephasing and to decoherence. The d#-1).

ferent eigenenergies of the final states result in a rotation of For the interaction with the reservoir of screened ionic
the relative complex phase angle as @ip,zt) with the  cores of the solid,

time constantTe*"®&27/|w,, which is 7.2 a.u. for the
35121/~ 3d3y2,1/2 relative coherence depicted in Fig(cR S“};(IZL)= ,anAH\Z:(lZL +29@)<a|ei[lzl+i(w5a/vp)]-F|IB>
(23 Up

The latter is defined as Up
t (4.2
Coplty = —Ze8 314 . o .
VO oD g5(1) with the number density, of the ions in the solid and the

Fourier transform of the screened Coulomb potertigr)
==(Z7Ir)ear, V(K =—(47Zy) | (KR+a72), with the
Thomas-Fermi screening length-=0.88%:% and the

for CL/:331/2'1/2 and,6’=3d3,2Y1/2 Because Ofa-aﬁ| = \““JO'QQO'EB,
the absolute magnitude of the relative coherefieg,|, takes

values in the interval &|C,4/<1.|C,4/=1 if the system is | h  th h f1h
in a pure state while finite relative coherences smaller than 1UCl€ar charge of the target atordy, The component of the

imply that the system is in a partially coherent state. momentum transfer parallel to the projectile velodtyis
The near-perfect agreement between the exact result cdixed by the requiremenb,=k-vy,, while the componerk,

culated inHg and the one calculated with the nonunitary SPecifies the perpendicular momentum transferred.

QTMC method employing the split into thE and () sub- Both transition operatorS [Egs. (4.1) and (4.2)] can be

spaces demonstrates the validity of the nonunitary dynamic@xPressed in the form

in . Clearly this level of agreement is, in part, due to the - -

fact that theyback coupling ?ror@ to I, WhiChpiS neglected SR = ¥, Kl ] ), (4.39

in our approach, vanishes exactly in this problem. gn ( . s -

SEKL) = 9w, K, Nalelk 2endenl7|5) (4.3

IV. APPLICATION: EXCITED-STATE EVOLUTION

with the prefactorsf® k) and f© k) given b
IN FAST HIGHLY CHARGED IONS IN SOLIDS P (ﬁ)lga ) (w’Ba L) 9 y

Egs. (4.1) and (4.2, respectively. This factorization of the
In this section we will apply the nonunitary QTMC transition operator§ will be used below.

method to atoms in a violent collisional environment. More ~ The decay operator for core collisions is

precisely, we will consider a fast projectile during its passage

through a solid. The target solid will be decomposed into two F(c%“ k)= 2> , s(;;T(kl)s%(kl) (4.4)
components, i.e., reservoirs. One consists of the ionic cores reew)

of the target atoms screened by the surrounding electrons. o R .

The interaction with them will lead to phonon excitations in =T (k) + 2 SO'K)SHK,), (4.5
the solid as reservoir degrees of freedom. The second reser- vel

voir the projectile interacts with are the electrons of the tar\yhere the states and 3 are elements oP and we denoted
get resulting in plasmon and single-particle-single-hole exyyq partial sum oveP as F(C)H)(IZL) [as in Eq.(3.13]. For

citations of the quasifree-electron gas. This system has bee(He further evaluation of Eq4.5 we employ the approxi-
previously investigated within the framework of the quantum-:q factorizatiodEq. (4.3D)]

transport theory employing the unitary QTMC method. De-

tails of the input used can be found in RES]. We focus in Fifg‘"(li) ~ rfg")"“(ﬁi) + 1O (@, K ) (wpK))

the following only on those aspects of the theory that require T AR

modifications for the present nonunitary formulation. X 2‘<a|e" KTy (AT B)  (4.6)
The Lindblad operator for reservoir of quasifree electrons veQ

is given by with K,(K,) =K, +Zw,/v, andKy(K,)=K, +Zws/v, where we

R 87 -1 R have approximated the energy transégy, (wg,) by an av-
§:23(k) = \/—lm{—J Hwp,—K-Up) erage excitation energy, (wz) independent on the state

2 - - -
k e(k wpa = K- vp) The latter is a prerequisite for using the closure relation
X (€ 4.1 R AR )] o (o KR
(a8 @0 S (ale K EI (RN = 5, (4T
with the dielectric response function of the electron gas vels

E(E,a)) andk representing the momentum transferred in theConsequenﬂy' we obtain the decay operJtB,r
transition. Using data obtained from photon absorption and = _ o .

electron energy-loss spectroscofBELS), the parametriza- 'y (K) =T (K,) + [ (w,K )

tion form of e(k, ) [15-17 enables us to include iak, ») ik (R ) K (R)F

not only excitations of the valence band but also excitations X(a‘*’g_ 2 (ale™ ey (et |’B>>’
of inner-shell electrongl8]. Since the projectile moves with

a velocity v, through the electron gas, the frequency spec- (4.8
trum of the response is Doppler shifted IByTp introducing a  valid for all diagonal elementéa=g) and the most impor-

yelP
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tant subset of off-diagonal elements# 8 between nearly 4 = RALL s e L e e )

Qegeenerfitee states with,=wg, 0,=wg, and consequently - ——— QTMC non-unitary (@) 4

Ka(k ) =kg(k ). g 3} - QTMC unitary o
With the closure approximatiot®.7) we reduce the infi- = | ) '.':."_

nite sum over the full Hilbert spadés in Eq. (4.4) to sums "g_ ',-‘,-'

in the finite Hilbert subspack of the system. The price we £ 2 o DA

have to pay is the approximation of the energy transfgy % B 3P '." &

(wg,) by an average excitation energy, (wg) so that the
prefactor can be pulled out of the sum ovee () in Eq.
(4.6). A proper choice ofv,, (Bﬁ) determines significantly the
quality of the closure approximation fa®"(k,). For fast
collisional excitations in a solid it has been shof#®] that

the generalized oscillator strength distributiafiBethe g
ridge”) peaks around the ionization threshold, i.e., a highly Q:%g
excited state or a low-lying continuum state. This consider-
ation suggests the choice of the ionization energy for the 3
average excitation energy,=e,, i.e.,w,— 0. The total tran- o’
sition matrixl“(acg]P is obtained from Eq(4.8) by the integra- N i
tion

rer- 1 f dk TOP(K)) (4.9)

aB ~ (277)3 1t ap \NL/- .

For off-diagonal elements between strongly nondegenerate
states(e, # €5) We invoke the additional approximation that

the degree of coherend&’,/\I'OT') is the same foi )"

> ; op & - -
and ng][. We thus calculaté“f)][ by rescalingl“fg[I for a = 02 N
# [ as | EE=s
5 5 ()0 IIIIIIl 1 1 IIlIlIl ] 1 IIllIll ]
I I . 2
O - p@rr | Laow Lo 10° 10° 10*
Fap =Tap (©PP(0)PP (4.10
Poo Tpp Propagation length [a.u.]

Note, however, that because of the rapid decoherence be- i, 4. Evolution of selected populations and coherences of the
tween strongly nondegenerate states this additional approXnternal state of a K8* ion traversing an amorphous carbon foil

mation has little influence on the numerical results. with velocity v,=47 a.u. as a function of propagation length. The
Similarly, the decay operator for scattering at the electronsystem is initially prepared in theslground state. We compare
gas is calculated as results of the nonunitary simulatiogsolid line9 with results ob-

tained in a unitary simulatiofdotted lineg with n.=4. (a) Popula-
tions of the 3/, _;,and 3y, -1/p States,(b) ratio of these popula-

3 4
10 107 fau] tions, and(c) relative coherence between these two states.

10
[= PN ~ N
g g ®= 2 s9RsHK
j;‘)‘ 10" ye(PeQ)
2 =T (K) + 1@, KO (wp k) (4.1D
& 10”
_§ 3 ik K-
5 HIH T X 2( (ale™ YA B (4.12

10*3 |W||n| 1 - el

10 100 [pg/em’]|
Foil thickness with the transition operatcﬁ(;;(IZ) specified in Eq(4.1). Un-

like the corresponding equation for core collisiddst), the

momentum transferk of the boost operators in Eg4.12)

through amorphous carbon at a velocityvgE47 a.u. as a function are identical and we can thus apply the closure apbroxima-
of foil thickness. Symbols are experimental data from R&4] and PPy P PP

lines show results of the nonunitary QTMC simulation. The thick-fion without  restricting the resultingl’ ; (k) to near-
ness of 1ug/cn? of amorphous carbon with a density of 2 g/cm degenerate states with, =€z The total transition matrix

corresponds to a propagation length of 92 a.u. F(HC;P is then obtained by the integration

FIG. 3. Charge state fraction of a Rf(1s) ion in transport

062901-7
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) 1 > o
F(G)T - _f d3k I‘(e)][ K
6 = 2me) T¥Tas ®

without any further approximation.

V. NUMERICAL RESULTS

The collision system we are investigating in the following
is the transport of a KP*(1s) ion with a velocity of 47 a.u.
through amorphous carbon foils of varying thickness, corre- R
sponding to varying evolution times. The Hamiltonian of the
system is given by Eq3.11), however, with interaction with
the wake field induced by the projectile i980] included.
For small distances from the projectile nucleus this wake of
density fluctuations creates, to leading order, a linear electric
field that causes Stark splitting of the projectile electronic
eigenstates. A more detailed descriptionHif can be found

in Ref.[10].

To explore the effect of our nonunitary QTMC method we
present two different simulations of the transport. First, we
consider the nonunitary QTMC method within the subspace
P spanned by the hydrogenic basis set with the quantum
numbersn, I, j, andm;. We label the resulting time evolved
nonunitary density matrix ag"U(t). To be consistent with
our previous work[5] we choosel® as the Hilbert space
represented by the first four shells of the hydrogenic basis set
(n.=4) limiting the size ofdNY(t) to 60X 60 elements. We
note, however, that extensions to larger subspaces are com-
putationally feasible. Increasing the dimensionloffor ex-
ample to 18X 182 (corresponding ta.=6), does not sig-
nificantly modify the results. The time evolution is governed
by the decay operatdr” in the effective HamiltoniarHy,,

[Eg. (3.6)]. For comparison we use the unitary QTMC
method involvingl'™™" while leaving all other parameters un-
changed. The resulting unitary density matrix will be de-

IOETITI—I—I-I'I'ITITI LI B R AL | T
(413) I]=2 (a) i

1'2 IIIIIII ) Ll IlIIIIl L} L IIIIIII

- = QTMC non-unitary

1.0 |- s QTMC unitary
o 08
g 1
=
S 06}
=l
e ,
S 04 P(n=4)/P(n=3) e

P(n=3)/P(n=2)

P=4)/P(=2) oot

0.0 IIIIIIl 1 L IIIIII' L L IIIIIIl

2

10° 10°

Propagation length [a.u.]

10*

PHYSICAL REVIEW A 71, 062901(2005

08 - ____ QTMC non-unitary
R QTMC unitary
06

-

04}

P(n,1)/P(n=2)

P(n,1)/P(n=3)

P(n,1)/P(n=4)

10

Propagation length [a.u.]

FIG. 6. Evolution of relative populations of K& states as a
function of propagation length for the full nonunitary QTMéblid
lines) and a unitary QTMC simulatioridotted line$ with n,=4.
Results are shown for different principal quantum numbeend
angular moment& The populations are normalized to the overall
probability in the corresponding shella) P(n=2,1) for n=2, (b)
P(n=3,l) for n=3, and(c) P(h=4,l) for n=4.

noted byaY(t). Since in this work we are dealing with the
passage of fast projectiles through thin targets we can treat

FIG. 5. Evolution of shell population ratios as a function of the velocity of the projectile nucleus as constant and neglect
propagation length for the nonunitary QTM@olid lines and a  the slowing down of the projectile. We use tinh@n the

unitary QTMC simulation(dotted lineg with n.=4.

projectile rest frame and distancein the laboratory frame
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3d 512,52 3
3d52,32| (a)d=10 a.u. (b) d=10" a.u. 10
3d 52,112
3d 32,312 10%
3d 32172
3p 32,312
3p312,1/2 10°
3p 12112
3s 12112
2p 312,312 [ |
2p 32,112 o ; FIG. 7. Reduced density matrix of a R¥ ion
2p 112172 )

. in transport through amorphous carbon at a ve-
. locity of v,=47 a.u. at various propagation
3d5232| () d=10"a.u. (d) d=3x10" a.u. | lengths. (8 d=10 a.u.,(b) d=1® a.u., (c) d
3d5/2,112 =10 a.u., and(d) d=3x 10* a.u. Absolute mag-
3d 312,32 || nitude of excited-states matrix elemelhmﬁ'u(dﬂ

3432112 | - —q: ing m
33030 | | from n=2 andn=3 involving m;>0 are shown.

3p 32,112 |

3p 12,112 .
35 12112

2032302

232,112
S
‘Q_ﬂ — %j
SE&S8

2p 112,112
25 12112

g
Q

=

&

112
172

32
3d 32,112

&S
S5
83

5252

12112
3p 12,112
3p 32,102

=

2p 1,112

N ™) 3

interchangeably wittd(t=0)=0 at the entrance of the foil coherencdEg. (3.14)] only a slight increase is observed.
and d(t):vpt/\/l—(vp/c)z. By contrast, the shell populations ratiori&n)/P(n’)
Figure 3 shows that while the ionized fraction of3kt  show drastic modifications when loss intpis taken into
ions is small for thin foils, for the largest foil thickness used account(Fig. 5. For small propagation lengths the ratios
in the experiment about 10% of the projectile ions are fullyPetween shell populations are controlled by single collisions
stripped. This fraction is an approximate measure of the los@nd remain constant. They are identical in the unitary and
of probability of the one-electron bound-state Hilbert spacdonunitary QTMC simulation. In the multiple collision re-
due to transitions to the continuum. More precisely, all high-g'm.e the unitary S|mulz'at|on aCC”m“'?‘te$ the electron. prob-
ying bound states witn->n, also belong toy increasing GV 0 e VTR SIS NRE 1R 0 TR
s acton someAPaL. 8 acer calure of 8 €01 leciou of probabiy anong sates 1 balances th fow o

ther | h | ding to the t ition f flux from P to () and back to the 4 state.
er 10ss channel corresponding to the transition from a oné- - tq a|ative subshell populations of states with different
electron to a two-electron Hilbert space. Figure 3 indicat

L ‘ . €&ngular momenta within a shell as a function of propagation
that this is for the system under consideration a slow Procesgngth agree for a unitary and a nonunitary QTMC calcula-

leading to only 1% K¥** for the thickest foil and is neglected tjon for short distancegFig. 6. However, differences be-
in the following. Loss due to ionization dominates and hascome noticeable at large distances. Relative to the nonunitary
motivated our investigation of nonunitary transport. By com-QTMC result the unitary transport enhances the probability
paring the experimental findings with the results of the nonfor higher angular momentum states.
unitary QTMC we find that the trace of the density matrix, The buildup and decay of coherences is most directly ob-
Trlo"Y(d)] and 1-Tfo"(d)], agree well with the charge served in the reduced density mattix;'"”(d)|, which dis-
state probability for K" and K%, respectively. plays, on one hand, the excitation to excited states in the
The effect of the nonunitary evolution on individual state diagonal elementei’}‘u(d) and, on the other hand, the coher-
populations and coherences is shown in Fig. 4 for thesnces in the off-diagonal eIementsa:i}‘U(d) (i#]). The ab-
3sy/p.-12and Py -1/> SUbspace. The most pronounced dif- solute magnitude of the elements@f® for excited states is
ference is observed for the populations of these states. Whilgiven in Fig. 7 while the matrix of relative coherences is
in a unitary calculation the feeding from low-lying states shown in Fig. 8 for different propagation distanaksihile
remains dominant even for long propagation lengths, in thé-igs. 1a) and 7b) reflect the excitation by single collisions,
nonunitary simulation loss from higher excited states into thé~igs. 7c) and 71d) reflect the multiple collision regime,
complement() lead to a depletion and thus to a dynamicalwhere we can observe not only the initially generated coher-
equilibrium of the populations shown in Fig(a. Remark- ences by excitation from theslground state but also coher-
ably, the population ratio between states of different angulagnces generated by deexcitation. Coherences most robust
momenta within the same shékig. 4(b)] is very similar in  against decoherence and still visible after a propagation
both calculations, the nonunitary QTMC results showing aength of 3x 10* a.u.(~15 fs) are intrashell coherences be-
slightly higher ratio for thick targets. Also for the relative tween different angular momentum states.

3d 32,32
3d 52,112
3d 52,52

Soge
PR
&&&E

e
ol
&

&
B
3

3p 32
3d 312,112
2p 32

3d
3s
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3d 52,512
3d 5/2,312
3d 52,112

(a) d=10 a.u.

(b) d=10" a.u.
N

1.00
0.63
3d 312,32 0.40
3d 32,12 0.25
3p 312,312 0.16
3p 312,112 8 (1) g
3p 112112 )
3s 12,172 0.04
2p 312,312 882
ng ?g}g 0.01 FIG. 8. Relative coherencés;'(d)|of the re-
25 112,112 duced density matrix of a R?* ion in transport

through amorphous carbon at a velocity of
=47 a.u. at various propagation lengths) d
=10 a.u.,(b) d=1C? a.u.,(c) d=10° a.u., and(d)
d=3x10*a.u. Only matrix elements from=2
andn=3 involving m;>0 are shown.

3d 52,512 R
3dsp3n|(c) d=10 a.u...
3d 52,12

3d 32,3
3d 32,12
3p 32,302
3p32,1P
3p 1212
3s 112,112
2p 302,32
232,12

2p 112,112
2s 12,112

d) d=3x10"a.u.

SRR R EERRERERERRRR
s%%%g%%%%%%ﬁase%%gg%%%%%%%
d&ELVLESEI I UG LAESSHIZIIII

The matrix of relative coherencékq. (3.14)] displayed one circle in the complex plane after each multiple of
in Fig. 8 shows the gradual shift and decay of coherences a#'®*"2s¢ The shift, i.e., the fact that after an2rotation the
a function of propagation distander foil thickness. The trajectory does not exactly return to its starting point, signi-
intrashell coherences between the @hd 2 states survive fies the effect of multiple collisions and radiative decay dur-
longest. Two mechanisms are destroying coherénee de- ing further transport. The eIememtsz 122P3/2 172 (dashed
coherence dephasing and dissipation. The characteristidine in Fig. 9 with the shortest dephasing patiferhase
time of dephasing between two states is mainly determineé 100 a.u. is least affected Whereﬁa%a/2 22312 310 (solid line)

by the inverse of the difference of their eigenenergies as it 3 ten times longer dephasing path is strongly perturbed.

Multiple scattering and dissipation manifests itself in a shift
TIPS 3 1. (5.0) P 9 P

TABLE I. Dephasing lengtii®®*"§n a.u. for a KP5* ion trav-
Table | lists the path length for dephasimtfeP"@e the pro-  eling with a speed of 47 a.u. during the tiMEEP % 277/ |, g| foOr
jectile travels during the dephasing tim%‘;ﬁhasefor intrashell  intrashell combinations of hydrogenic eigenstates with the unper-
states(a, 8). The point to be noted is that most of the non- turbed Hamiltonian specified in E¢3.11).
vanishing coherences survive for longer than predicted by
Eqg. (5.1). The reason is that as long as the primary source, n=2 a=2sy, 2p1/2
the 1s ground state, is still populated, the excited-state co-

herences get replenished and a transient dynamical equilib- B=2p3p2 110 107
rium is established for coherences. 2p1s2 4954
Figures 7 and 8 do not present direct information on the
phase of the density-matrix elemes’. We therefore dis- n=3 a=3s;, 3p12 3p3/2 3ds/,
play in Figs. 9 and 10 the trajectories in the complex plane of
a selected set of density matrix elements with snapshots pB=3ds/ 274 270 1118 1125
taken at different propagation distances. While coherences 3d3/2 363 355 178224
shown in Fig. 9 are destroyed primarily by dephasing, in Fig. 3p3s2 363 356
10 dissipation in the dominant decoherence mechanism. For 3P0 16547
a better comparison we rescale in Fig. 9 the propagation
distance by the corresponding de_phasmg dls'_[aﬁﬂ‘é‘asefor n=4 a=4s,, 4ps 4y,
each coherence separately. Starting at the origin, the selected a=4p d 45
elements of the reduced density matrig“(d) [Figs. 12 32 512
9(a)-9(c)] evolve counterclockwise in the complex plane B=4f, 580 1780 5369
with increasing propagation path. This subset has in common 44, 4f, 651 2663
that the buildup of coherence occurs already in the single- 4psy, 4ds) 861

collision regime. These elements approximately complete
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JE@ 0@ [aam] @ (@] 10 L@ o | d=3x10"au. | C@ D]
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- Jo04 E 2 04
= Jo2
Ny 00 1 0.2
PN T i M B
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K Re[C,
10 RC[GU] e[! UJ 0 0.0
FIG. 9. Evolution of selected elements of the density matfi =
of a Kr¥®* jon in transport through amorphous carbon at a velocity E 1 02 8:
of v,=47 a.u. for different propagation lengths in the complex =
plane. The left column, i.e(a), (b), and(c), shows off-diagonal = =
elements of the density matrb{j\‘U while the right column, i.e.(d),
(e), and(f), shows the relative coheren€d, i.e., the off-diagonal 2 04
elementsoi'Y normalized to the population of the involved staftes
oy’ and o according to Eq(3.14]. The maximum propagation
length of each coherence has been rescaled, such that in the fir: -3 -0.6

row, (&) and (d), it corresponds to the dephasing lengi#fPhase

shown in Table I. For the second ro¢l) and (d), d=2dderhasegng

for the third

row, (c) and (f),

d=3dderhase  gplid

lines:

1 0
10” Relo,]

-0.2 0.0

Re[C,]

FIG. 10. Evolution of selected elements of the density matrix
oy’ of a Kr¥* jon in transport through amorphous carbon at a
velocity of v,=47 a.u. for different maximum propagation lengths
of the circle as well as in a shrinking radius of the rotation.in the complex plane. The left column, i.a), (b), and(c), shows

The relative coherenc@i’}'u(d) in Figs. 9d)-9(f) starts out off-dlago_nal elements of the density mat_ra»ﬁ‘ while the r_|ght
to be purely imaginary as expected in a single collision Wherﬁ?lun;fn(’j_"e"(d)’l(e)l’ and(tfs);\,ﬁhows thl_e rzli\tlvti COherelnct.ﬁ§' Lfe.t’h
the Born approximation holds. Just after one single rotatio n\? ofi-diagonal emen Hu ;:;g:gi:qzetog (3elp4(;]puS?)|Ii3n|ir(‘|)eS' €
(d=d’erhasy the relative coherence approaches the origin of NU g a5 '

NU ) © e NU ) -
o dotted lines: o dashed lines:
RRy12,31230512,312 3P1/2,1/23d3/2,1/2

Iz .
281/2,1122P312,1/2

olved state$ o}y’ andor

indicati i a ;. dashed lines: o}V - dotted lines:
the complex plane indicating very fast decrease in coherencegiy2v22Pv21/2 73515 410 P12,112
3055 5103y 5y AND dOt-dashed linesr, . The results

: NU '3p3/2,1/2343/2,1/7 -
shown in(a(c) for o5 . 2, ,,, (SOlid lines have been divided

10.

while still performing further revolutions.

In Fig. 10 we selected elements of'(d) with a long
dephasing length(dPhas§ suych that multiple collisions
dominate the buildup of coherence and decoherence. We sg@inlike Fig. 9 we have not rescaled the propagation path but
lected four elements aﬂ}‘“(d) that approach a nonvanishing show the density matrix for the identical propagation path in
larger (transient equilibrium value of the relative coherence each plot ranging frond=3x 107 a.u. tod=3X 10*. There-
|Cij | =0.1 within the propagation distances studied. Startingore some elements with relatively shait®?"s¢succeed in
at the origin[Fig. 10a)] the coherences first evolve along almost completing one circle while others with a lcaiftehase
circles of different radi{Fig. 10b)]. Note that in this figure still evolve almost tangentially. Multiple collisions and radia-
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18 10° 10" [au]
16 - QTMC non—unjtary v LILIL llll L) ) LI ) ll' )
14| e QTMC unitary I 5| ® Experiment
nE o QTMC non-unitary

_ 10 N mem.,Esmlm - [* esssssss QTMC umtal’y T
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-~ SF ] 41 N/
s E s ¢
6 - & '
4 GSPm,m’3Sm,1lz oo | = S
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FIG. 11. Comparison of selected coherences of #'Kion in [ i}
transport through amorphous carbon at a velocity5f47 a.u. as a 1 sl AT | )
function of propagation length. We show absolute magnitude 10 1()()[”g/cmz]

oMY of coherences betweemand p states forn=2 andn=3
obtained by a nonunitary QTMGsolid lineg and by a unitary
QTMC simulation(dotted line$ with n.=4. FIG. 12. Relative line emission intensitida@llzllz.;sl/2 resulting
from the transmission of a R¥*(1s) ion through amorphous carbon

. ! g at a velocity of 47 a.u. as a function of target thickness. Symbols
motion for long propagation paths in Fig. (& The long- are experimental data from R¢R4], the solid line shows the result

tlmg behaVIor of these elements | (d) mimics Brownian of the nonunitary QTMC simulation and the dotted line represents
motion in the complex plane. Since these coherences aigqits obtained by a unitary QTMC simulation wit=4.
most sensitive to an accurate theoretical description, they

provide a test for our approach. L . e
It is important to note that the diagonal as well as thethe projectile through the foil and after exiting it. Therefore

off-diagonal elements O'fri'j\lu are very sensitive to the com- the spatial information can only be obtained by repeating the

petition between gain and loss. It is the contribution from theheasurement using targets with different thickness. Second,

loss into the complemernty, included in the present calcula- th_e contriputions to a_given Balmer line i_s not only _de_:t_er-
tion, that significantly changee}}‘“ in the region where a mined fbyh_the gpp_ulatlon c_o_II|S|%naIIyI ex;:lted t(l)l ';]hehlmtlal
transient equilibrium persists. The diagonal elements)tf, sFats of this ;a :ja}tlve rt]r_ansmond ut asoh romdg igher exé
thg population p_robabilities, are cle_arly very diﬁerent'from ag;iailztztris deesecr;gg dtir']SRS:[gtoe] Igrg;getr fb rca:)rlraet(l;\ﬁoﬁﬁ;a €
unitary oj as discussed before. Likewise, the Off_d"rigonalcascade contribution from>4 states, we extrapolate the
elements ofaﬁ’(d) do not reach an equilibriurtFig. 11) un- A ; ’ ap .

, NU quantumn, |, m distributions to highen levels using scaling

like those ofayj;~(d). properties drawn from classical transport thedi@TT)

We conclude this section by presenting a comparison witm18,21_23_ We have shown that for high principal quantum
the experiment that originally stimulated our investigation.nymbersn the solution of the NLSSE in E@2.7) reduces to
The experiment we compare with has been performed & |inear Schrédinger equation for quasifree electrons. For
GANIL (Grand Acceélérateur National d’lons Lounden the  high n only collisional interactions are contributing while
LISE (Ligne d’lons Super Epluchgsacility. The projectiles  radiative decay can be neglected on the time scale consid-
used were hydrogenic Rt at an energy of 60 MeV/amu gred. We apply the same extrapolation correction to both the
corresponding to a collision velocity @f,=47 a.u. The ini-  ynjtary and nonunitary QTMC calculation.
tial state of transport is the ground state®Kr(1s) in In Fig. 12 we compare the experimental intensity ratio
vacuum, we employ a sudden approximation at the foil eny,, /1,; with results obtained with the nonunitary QTMC
trance at which the terms in the Hamiltonian referring to thegajcylation and with results form a unitary QTMC simulation
carbon foil are switched on. Likewise, we project onto a5 g function of target thickness. The nonunitary approach
atomic final states in vacuum at the exit surface mvokmgdeaﬂy improves the intensity ratio in the regime of multiple

again, a sudden approximation. Using high-resolution highzqjjisions for thicker targets and leads to much better agree-
transmission Bragg-crystal spectrometers the emitted phgsent with the experimental findings.

tons of the Balmew lines have been measured as a function
of foil thicknesg[10]. The intensities of the emitted Balmer

Foil thickness

tive decay(i.e., dissipatioin completely distort this circular

lines (trgnsitions fromn=3 to n:2) give a measure of the VI. SUMMARY
population of the corresponding electronic state of the pro-
jectile during the time evolution for states with=3. There We have introduced a generalized Lindblad master equa-

are two important details to be considered. First, the lindion for the description of the time evolution of a subspace of
intensities measured are integrated over the whole passagetbe reduced density matrix that allows for the flow of prob-
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ability out of the truncated Hilbert space. We have developed Ty, = (OO () [ (P7(1)[P (1))
the corresponding generalized nonunitary quantum trajectory )
Monte Carlo method solving this Lindblad master equation = ()| () ()]
and have implemented it for the transport of a fast highly
charged hydrogenic ion through a solid.

We have calculated the time evolution of the internal elec- ] ) .
tronic state of a K¥* jon during transport through carbon ~ We define a stochastic variadig/(t) that counts the num-
with the generalized nonunitary quantum trajectory Monteber of jumps up to a timéfor a given quantum trajectory
Carlo method. We find that inclusion of loss processes via and indexk of the transition. The differential, also called Ito
nonunitary formulation of transport leads to a modificationdifferentiaLng(t)zNg(Hdt)—Ng(t), takes for an infinitesi-
of coherences and not just to a change of excited-state Popyaly short time intervalt the value 1 when a jump hap-
lations. The good agreement with experimentally obtainethened and 0 for no jump for a given quantum trajectgry
intensity ratios of emitted photons underlines the need for &onsequently, the product of two Ito differentials for the
nonunl_tary treatment of this transport problem and indicateg, o time istE’(t)ng(t)zéggrng(t) because only one
the validity of our approach for such a complex system. k PR o

mp can occur in an infinitesimal short time intendtl

. S ju
One conceptual shortcoming of the present formulation id . _
the lack of the capture channel. While insignificant for the+|\£rr2§+((;?)?r}ge of the wave functiofdW(t))=—|¥7(t))

experimental data studied in this work, its inclusion is essen
tial for further applications. Work along these lines is in

progress.
|dW7(t)) == [W (1)
1 .
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APPENDIX: CORRESPONDENCE OF QTMC AND where the second term corresponds to the case when a jump
LINDBLAD FORM IN A NONUNITARY SYSTEM happens in the time intervalt weighted with probabilities

V‘lng(t). The continuous time evolution operator is applied

to the wave function first and afterwards the jump operator
gcts on the evolved quantum trajectory. When no jump hap-

In this Appendix we briefly show the correspondence of
the solution of the QTMC method with the solution of the

Lindblad master equation. Our analysis applies to both th Sens|third term with the complementary probability of 1

unitary and nonunitary QTMC methods. The important point™* "7"=" "~ . . . .
is that only the short-time behavior of the solution enters.” ¥~ >kdN((t)] only the continuous time evolution contrib-

The continuous time evolution operator from Hg.4) can ~ utes viaUdon(t+dt,t).
be expanded using the Taylor Serb—yﬁ#“dtzl_mgﬁwdt Inserting the explicit form ofJ7, (t+dt,t) from Eq.(A2)

+0(dt) up to first order indt as into the last expressiofEq. (A3)] we obtain
UZ(t+dtt)|P7(t))
) 1 ,
=¥ AW (1)) = [— iHL, dt+ St
(1 -iH 5 db|T7(1))
X ” (PP PP n(+)\]L2° 1
(A1) Vi

By inserting the definition of the effective HamiltonigRqg.
(3.6)] the denominator of Eq.(Al) simplifies to
((¥7(t)|1-T""dt|w7(t)))1'2, so that we obtain in first order
of dt

+ o(\—1/2 ng(t)dt) ] w(t).  (Ad)
k

All terms in Eq.(A4) proportional todN/(t)dt vanish to first

order in dt when we take the average over all stochastic

A2 reali;ations of a quantum trajectory. Inserting the definition
(A2) " of HL. [Eq. (3.6)] into Eq. (A4) we obtain the NLSSE with-

using the definition of the expectation value as out specifying th&Jjﬁmp(IZ,t) and the jump times idNZ(t) as

UZ(t+dt ) w7(t)) = (1 —iHL, dt+ %<rﬂf’>t,,, dt)|w<t)>,
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dt 3} 3] 0] . dt 2 2P
|dWw(t)) = (- iHgdt - E(F‘ (")) do”(t) = —i[Hs,o™(t)]dt + E[F " oT(t)], + () o (dt
lww—— . 1o T PP ep -
+ <2 AN U pfKet) - 1]) (1)), + \_/Eg dNJOKT ) S (Ko”()S (k) = a(1)].
k
(A5)
The ansatz made in E@3.5) for the jump operator leads ) )
directly to the NLSSHEQ. (3.7)]. The generalized Lindblad form of the master equafigq.

Finally, the differential change of the reduced density ma{3-1] is obtained with the ansatz for the averaged jump time
trix for a stochastic realizatiods(t)=|d¥7(t))(d¥(t)| is  distributiondN/(t) as shown in Eq(3.8) as a sum over quan-

given by tum trajectories(t) =N 3, = waig(1).
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